10 research outputs found

    A Broadband and High Gain Tapered Slot Antenna for W-Band Imaging Array Applications

    Get PDF
    A broadband and high gain tapered slot antenna (TSA) by utilizing a broadband microstrip- (MS-) to-coplanar stripline (CPS) balun has been developed for millimeter-wave imaging systems and sensors. This antenna exhibits ultrawideband performance for frequency ranges from 70 to over 110 GHz with the high antenna gain, low sidelobe levels, and narrow beamwidth. The validity of this antenna as imaging arrays is also demonstrated by analyzing mutual couplings and 4-element linear array. This antenna can be applied to mm-wave phased array, imaging array for plasma diagnostics applications

    Design of an Ultra-Wideband Transition from Double-Sided Parallel Stripline to Coplanar Waveguide

    Get PDF
    A design method of an ultra-wideband transition from double-sided parallel stripline (DSPSL) to coplanar waveguide (CPW) is proposed based on analytical expressions of characteristic impedance. The conformal mapping is used to obtain the characteristic impedance for each section of the transition within 3.7% accuracy as compared with the EM simulation results. An efficient and clear guideline for the design of the transition is proposed. The implemented transition performs less than 0.6 dB insertion loss per transition for frequencies from 40 MHz to 12 GHz and less than 1.2 dB insertion loss to 27 GHz, which well exceeds the previous results in the literature

    Design and analysis of wideband passive microwave devices using planar structures

    Get PDF
    A selected volume of work consisting of 84 published journal papers is presented to demonstrate the contributions made by the author in the last seven years of his work at the University of Queensland in the area of Microwave Engineering. The over-arching theme in the author’s works included in this volume is the engineering of novel passive microwave devices that are key components in the building of any microwave system. The author’s contribution covers innovative designs, design methods and analyses for the following key devices and associated systems: Wideband antennas and associated systems Band-notched and multiband antennas Directional couplers and associated systems Power dividers and associated systems Microwave filters Phase shifters Much of the motivation for the work arose from the desire to contribute to the engineering o

    High Gain Broadband mm-wave Antennas and Beamforming for Wireless Communication Systems

    Get PDF
    Generating multi-beams along with having broadband and beam steering capability in the mm-waves band are of crucial importance for diverse applications such as remote piloted vehicles, satellites, collision-avoidance radars, and ultra-wideband communications systems. Besides, the propagation environment at millimeter wave (mm-wave) frequencies—suggested for the next generation of wireless networks (5G)—lends itself to a beamforming structure wherein antenna arrays are required in order to obtain the necessary link budget and to overcome the associated strong attenuation. Therefore, the design of high gain antennas (to focus the directive beam to a user) and beamforming networks (to reduce interference) are essential and are needed to address many challenges associated with 5G wireless communications. This work addresses the design and development of high-performance Quasi-Yagi antenna and Rotman lens-based beamforming networks. Accordingly, several issues are addressed in this thesis. A Quasi-Yagi antenna with a perturbed dielectric lens that is broadband and has high gain is designed, optimized, fabricated and tested at 30 GHz. The antenna provides 95% aperture efficiency with a measured gain of 15 dBi as well as a radiation efficiency of ~90% at 30 GHz and a broadband (24-40 GHz) for |S_11 |<-10 dB. The designed end-fire antenna, with its low-profile and compact size, is a good candidate for many applications in the mm-wave band. An optimum and accurate methodology for designing Rotman lens-based mm-wave analog beamforming network (BFN) is presented. The simulation and measurement results showed good beamforming capabilities as well as a scanning range of 80° in the azimuth plane, and, also, good matching at the array ports. The maximum phase error is ±6.6°, and the main beam of the proposed BFN points at seven different angular directions that cover the range of ±40°. The maximum achieved realized gain is 14 dBi at 28 GHz for the center beam. An analog Rotman lens-based BFN using RWG technology, integrated with the excitation ports and the antenna array elements, was designed, simulated, manufactured, and measured. The proposed integrated system is realized using the metallized 3D-printing technology, in order to reduce the implementation cost of the full metal RGW Rotman lens. The measured results demonstrate that the system scan range equals ±39.5º over a wideband 27.5-37 GHz decreases to 30º in the band 37-40 GHz. The BFN bandwidth for VSWR < 2 is larger than 38% and is limited by its single antenna element

    Analysis, design and implementation of front-end reconfigurable antenna systems (FERAS)

    Get PDF
    The increase in demand on reconfigurable systems and especially for wireless communications applications has stressed the need for smart and agile RF devices that sense and respond to the RF changes in the environment. Many different applications require frequency agility with software control ability such as in a cognitive radio environment where antenna systems have to be designed to fulfill the extendable and reconfigurable multi-service and multi-band requirements. Such applications increase spectrum efficiency as well as the power utilization in modern wireless systems. The emphasis of this dissertation revolves around the following question: Is it possible to come up with new techniques to achieve reconfigurable antenna systems with better performance?\u27 Two main branches constitute the outline of this work. The first one is based on the design of reconfigurable antennas by incorporating photoconductive switching elements in order to change the antenna electrical properties. The second branch relies on the change in the physical structure of the antenna via a rotational motion. In this work a new photoconductive switch is designed with a new light delivery technique. This switch is incorporated into new optically pumped reconfigurable antenna systems (OPRAS). The implementation of these antenna systems in applications such as cognitive radio is demonstrated and discussed. A new radio frequency (RF) technique for measuring the semiconductor carrier lifetime using optically reconfigurable transmission lines is proposed. A switching time investigation for the OPRAS is also accomplished to better cater for the cognitive radio requirements. Moreover, different reconfiguration mechanisms are addressed such as physical alteration of antenna parts via a rotational motion. This technique is supported by software to achieve a complete controlled rotatable reconfigurable cognitive radio antenna system. The inter-correlation between neural networks and cellular automata is also addressed for the design of reconfigurable and multi-band antenna systems for various applications.\u2

    Design and characterisation of millimetre wave planar Gunn diodes and integrated circuits

    Get PDF
    Heterojunction planar Gunn devices were first demonstrated by Khalid et al in 2007. This new design of Gunn device, or transferred electron device, was based on the well-established material system of GaAs as the oscillation media. The design did not only breakthrough the frequency record of GaAs for conventional Gunn devices, but also has several advantages over conventional Gunn devices, such as the possibility of making multiple oscillators on a single chip and compatibility with monolithic integrated circuits. However, these devices faced the challenge of producing high enough RF power for practical applications and circuit technology for integration. This thesis describes systematic work on the design and characterisations of planar Gunn diodes and the associated millimetre-wave circuits for RF signal power enhancement. Focus has been put on improving the design of planar Gunn diodes and developing high performance integrated millimetre-wave circuits for combining multiple Gunn diodes. Improvement of device design has been proved to be one of the key methods to increase the signal power. By introducing additional δ-doping layers, electron concentration in the channel increases and better Gunn domain formation is achieved, therefore higher RF power and frequency are produced. Combining multiple channels in the vertical direction within devices is another effective way to increase the output signal power as well as DC-to-RF conversion efficiency. In addition, an alternative material system, i.e. In0.23Ga0.77As, has also been studied for this purpose. Planar passive components, such as resonators, couplers, low pass filters (LPFs), and power combiners with high performance over 100 GHz have been developed. These components can be smoothly integrated with planar Gunn diodes for compact planar Gunn oscillators, and therefore contribute to RF power enhancement. In addition, several new measurement techniques for characterising oscillators and passive devices have also been developed during this work and will be included in this thesis

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Collective analog bioelectronic computation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 677-710).In this thesis, I present two examples of fast-and-highly-parallel analog computation inspired by architectures in biology. The first example, an RF cochlea, maps the partial differential equations that describe fluid-membrane-hair-cell wave propagation in the biological cochlea to an equivalent inductor-capacitor-transistor integrated circuit. It allows ultra-broadband spectrum analysis of RF signals to be performed in a rapid low-power fashion, thus enabling applications for universal or software radio. The second example exploits detailed similarities between the equations that describe chemical-reaction dynamics and the equations that describe subthreshold current flow in transistors to create fast-and-highly-parallel integrated-circuit models of protein-protein and gene-protein networks inside a cell. Due to a natural mapping between the Poisson statistics of molecular flows in a chemical reaction and Poisson statistics of electronic current flow in a transistor, stochastic effects are automatically incorporated into the circuit architecture, allowing highly computationally intensive stochastic simulations of large-scale biochemical reaction networks to be performed rapidly. I show that the exponentially tapered transmission-line architecture of the mammalian cochlea performs constant-fractional-bandwidth spectrum analysis with O(N) expenditure of both analysis time and hardware, where N is the number of analyzed frequency bins. This is the best known performance of any spectrum-analysis architecture, including the constant-resolution Fast Fourier Transform (FFT), which scales as O(N logN), or a constant-fractional-bandwidth filterbank, which scales as O (N2).(cont.) The RF cochlea uses this bio-inspired architecture to perform real-time, on-chip spectrum analysis at radio frequencies. I demonstrate two cochlea chips, implemented in standard 0.13m CMOS technology, that decompose the RF spectrum from 600MHz to 8GHz into 50 log-spaced channels, consume < 300mW of power, and possess 70dB of dynamic range. The real-time spectrum analysis capabilities of my chips make them uniquely suitable for ultra-broadband universal or software radio receivers of the future. I show that the protein-protein and gene-protein chips that I have built are particularly suitable for simulation, parameter discovery and sensitivity analysis of interaction networks in cell biology, such as signaling, metabolic, and gene regulation pathways. Importantly, the chips carry out massively parallel computations, resulting in simulation times that are independent of model complexity, i.e., O(1). They also automatically model stochastic effects, which are of importance in many biological systems, but are numerically stiff and simulate slowly on digital computers. Currently, non-fundamental data-acquisition limitations show that my proof-of-concept chips simulate small-scale biochemical reaction networks at least 100 times faster than modern desktop machines. It should be possible to get 103 to 106 simulation speedups of genome-scale and organ-scale intracellular and extracellular biochemical reaction networks with improved versions of my chips. Such chips could be important both as analysis tools in systems biology and design tools in synthetic biology.by Soumyajit Mandal.Ph.D
    corecore