526 research outputs found

    Experimental study of on-body radio channel performance of a compact ultra wideband antenna

    Get PDF
    In this paper, on-body radio channel performance of a compact ultra wideband (UWB) antenna is investigated for body-centric wireless communications. Measurement campaigns were first done in the chamber and then repeated in an indoor environment for comparison. The path loss parameter for eight different on-body radio channels has been characterized and analyzed. In addition, the path loss was modeled as a function of distance for 34 different receiver locations for propagation along the front part of the body. Results and analysis show that, compared with anechoic chamber, a reduction of 16.34% path loss exponent is noticed in indoor environment. The antenna shows very good on-body radio channel performance and will be a suitable candidate for future efficient and reliable body-centric wireless communications

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    Performance of ultrawideband wireless tags for on-body radio channel characterisation

    Get PDF
    Experimental characterisation of on-body radio channel for ultrawideband (UWB) wireless active tags is reported in this paper. The aim of this study is to investigate the performance of the commercially available wireless tags on the UWB on-body radio channel characterisation. Measurement campaigns are performed in the chamber and in an indoor environment. Statistical path loss parameters of nine different on-body radio channels for static and dynamic cases are shown and analyzed. Results demonstrated that lognormal distribution provides the best fits for on-body propagation channels path loss model. The path loss was modeled as a function of distance for 34 different receiver locations for propagation along the front part of the body. A reduction of 11.46% path loss exponent is noticed in case of indoor environment as compared to anechoic chamber. In addition, path loss exponent is also extracted for different body parts (trunk, arms, and legs). Second-order channel parameters as fade probability (FP), level crossing rate (LCR), and average fade duration (AFD) are also investigated

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Improved reception of in-body signals by means of a wearable multi-antenna system

    Get PDF
    High data-rate wireless communication for in-body human implants is mainly performed in the 402-405 MHz Medical Implant Communication System band and the 2.45 GHz Industrial, Scientific and Medical band. The latter band offers larger bandwidth, enabling high-resolution live video transmission. Although in-body signal attenuation is larger, at least 29 dB more power may be transmitted in this band and the antenna efficiency for compact antennas at 2.45 GHz is also up to 10 times higher. Moreover, at the receive side, one can exploit the large surface provided by a garment by deploying multiple compact highly efficient wearable antennas, capturing the signals transmitted by the implant directly at the body surface, yielding stronger signals and reducing interference. In this paper, we implement a reliable 3.5 Mbps wearable textile multi-antenna system suitable for integration into a jacket worn by a patient, and evaluate its potential to improve the In-to-Out Body wireless link reliability by means of spatial receive diversity in a standardized measurement setup. We derive the optimal distribution and the minimum number of on-body antennas required to ensure signal levels that are large enough for real-time wireless endoscopy-capsule applications, at varying positions and orientations of the implant in the human body

    Comprehensive design and propagation study of a compact dual band antenna for healthcare applications

    Get PDF
    In this paper, a dual band planar inverted F antenna (PIFA) has been investigated for cooperative on- and off-body communications. Free space and on-body performance parameters like return loss, bandwidth, radiation pattern and efficiency of this antenna are shown and investigated. The on- and off-body radio propagation channel performance at 2.45 GHz and 1.9 GHz have been investigated, respectively. Experimental investigations are performed both in the anechoic chamber and in an indoor environment. The path loss exponent has been extracted for both on- and off-body radio propagation scenarios. For on-body propagation, the path loss exponent is 2.48 and 2.22 in the anechoic chamber and indoor environment, respectively. The path loss exponent is 1.27 for off-body radio propagation situation. For on-body case, the path loss has been characterized for ten different locations on the body at 2.45 GHz, whereas for off-body case radio channel studies are performed for five different locations at 1.9 GHz. The proposed antenna shows a good on- and off-body radio channel performance
    • 

    corecore