2 research outputs found

    Analysis of GPS and UWB positioning system for athlete tracking

    Get PDF
    In recent years, wearable performance monitoring systems have become increasingly popular in competitive sports. Wearable devices can provide vital information including distance covered, velocity, change of direction, and acceleration, which can be used to improve athlete performance and prevent injuries. Tracking technology that monitors the movement of an athlete is an important element of sport wearable devices. For tracking, the cheapest option is to use global positioning system (GPS) data however, their large margins of error are a major concern in many sports. Consequently, indoor positioning systems (IPS) have become popular in sports in recent years where the ultra-wideband (UWB) positioning sensor is now being used for tracking. IPS promises much higher accuracy, but unlike GPS, it requires a longer set-up time and its costs are significantly more. In this research, we investigate the suitability of the UWB-based localisation technique for wearable sports performance monitoring systems. We implemented a hardware set-up for both positioning sensors, UWB and the GPS-based (both 10 Hz and 1 Hz) localisation systems, and then monitored their accuracy in 2D and 3D side-by-side for the sport of tennis. Our gathered data shows a major drawback in the UWB-based localisation system. To address this major drawback we introduce an artificial intelligent model, which shows some promising results

    Monitoring breathing via signal strength in wireless networks

    Get PDF
    pre-printThis paper shows experimentally that standard wireless networks which measure received signal strength (RSS) can be used to reliably detect human breathing and estimate the breathing rate, an application we call "BreathTaking". We present analysis showing that, as a first order approximation, breathing induces sinusoidal variation in the measured RSS on a link, with amplitude a function of the relative amplitude and phase of the breathing-affected multipath. We show that although an individual link may not reliably detect breathing, the collective spectral content of a network of devices reliably indicates the presence and rate of breathing. We present a maximum likelihood estimator (MLE) of breathing rate, amplitude, and phase, which uses the RSS data from many links simultaneously. We show experimental results which demonstrate that reliable detection and frequency estimation is possible with 30 seconds of data, within 0.07 to 0.42 breaths per minute (bpm) RMS error in several experiments. The experiments also indicate that the use of directional antennas may improve the systems robustness to external motion
    corecore