281 research outputs found

    RFID-based Disaster-Relief System

    Get PDF

    An automated lifeboat, manifesting embarkation system (ALMES): the utilization of RFID/NFC in passenger manifestation during ship evacuation

    Get PDF

    An Investigation into Long Range Detection of Passive UHF RFID Tags

    Get PDF
    Radio frequency identification tags (RFID) have been in use for a number of years, in a variety of applications. They are a small computer chip like device that can range in size from a thumbnail to a credit card size device. They consist of a small silicon chip, and an antenna used to receive and transmit data. When a tag receives a signal from a valid reader it sends a response, typically a tag ID and any other requested/available data back to the reader device. The newer range of RFID chips that are coming into use now use higher frequencies (UHF) and are able to be detected, or transmitted to, from longer distances (1 – 10 m) with a conventional handheld reader. This increased distance alone presents many opportunities for users and misusers alike. These include but are not limited to passive scanning/sniffing of information in transit, deception, disruption of signal, and injection of malicious or false data into the broadcast envelope. There is no evidence currently in the literature of long-range scans or attacks on UHF RFID tag or supporting infrastructure. Given that these tags are now being used in military applications, an improved understanding of their vulnerabilities from long range scanning techniques will contribute to national security. An understanding of the long range scanning potential of these devices also will allow further study into the possible misuse of RFID technology in society by governments, business and individuals

    Design of solar harvested semi active RFID transponder with supercapacitor storage

    Get PDF
    This paper presents the analysis, design and manufacture of a low cost, low maintenance and long-range prototype of RFID transponder with continuous operability. A prototype of semi-active RFID transponder is produced with a range that can be extended via a DC input to allow all of the readers signal power to be reflected via backscatter modulation. The transponder is powered via solar harvested power which is selected over other energy harvesting technologies as it provides a greater energy density and lower cost. Solar has one major drawback in terms of providing a steady DC voltage in it needed a constant supply of sunlight. A method of power storage is proposed, and the use of a supercapacitor over a rechargeable battery is used as it has a longer lifespan due to higher recharge rates. The prototype underwent a series of experiments in various working environments and proves an effective solution in providing long lasting operability. The paper concludes the use of solar harvesting with supercapacitor storage has potential for further uses in external remote sensors used in the Internet of Things

    Integrated ZigBee RFID sensor networks for resource tracking and monitoring in logistics management

    Get PDF
    The Radio Frequency Identification (RFID), which includes passive and active systems and is the hottest Auto-ID technology nowadays, and the wireless sensor network (WSN), which is one of the focusing topics on monitoring and control, are two fast-growing technologies that have shown great potential in future logistics management applications. However, an information system for logistics applications is always expected to answer four questions: Who, What, When and Where (4Ws), and neither of the two technologies is able to provide complete information for all of them. WSN aims to provide environment monitoring and control regarded as When and What , while RFID focuses on automatic identification of various objects and provides Who (ID). Most people usually think RFID can provide Where at all the time. But what normal passive RFID does is to tell us where an object was the last time it went through a reader, and normal active RFID only tells whether an object is presenting on site. This could sometimes be insufficient for certain applications that require more accurate location awareness, for which a system with real-time localization (RTLS), which is an extended concept of RFID, will be necessary to answer Where constantly. As WSN and various RFID technologies provide information for different but complementary parts of the 4Ws, a hybrid system that gives a complete answer by combining all of them could be promising in future logistics management applications. Unfortunately, in the last decade those technologies have been emerging and developing independently, with little research been done in how they could be integrated. This thesis aims to develop a framework for the network level architecture design of such hybrid system for on-site resource management applications in logistics centres. The various architectures proposed in this thesis are designed to address different levels of requirements in the hierarchy of needs, from single integration to hybrid system with real-time localization. The contribution of this thesis consists of six parts. Firstly, two new concepts, Reader as a sensor and Tag as a sensor , which lead to RAS and TAS architectures respectively, for single integrations of RFID and WSN in various scenarios with existing systems; Secondly, a integrated ZigBee RFID Sensor Network Architecture for hybrid integration; Thirdly, a connectionless inventory tracking architecture (CITA) and its battery consumption model adding location awareness for inventory tracking in Hybrid ZigBee RFID Sensor Networks; Fourthly, a connectionless stochastic reference beacon architecture (COSBA) adding location awareness for high mobility target tracking in Hybrid ZigBee RFID Sensor Networks; Fifthly, improving connectionless stochastic beacon transmission performance with two proposed beacon transmission models, the Fully Stochastic Reference Beacon (FSRB) model and the Time Slot Based Stochastic Reference Beacon (TSSRB) model; Sixthly, case study of the proposed frameworks in Humanitarian Logistics Centres (HLCs). The research in this thesis is based on ZigBee/IEEE802.15.4, which is currently the most widely used WSN technology. The proposed architectures are demonstrated through hardware implementation and lab tests, as well as mathematic derivation and Matlab simulations for their corresponding performance models. All the tests and simulations of my designs have verified feasibility and features of our designs compared with the traditional systems

    Wearable flexible lightweight modular RFID tag with integrated energy harvester

    Get PDF
    A novel wearable radio frequency identification (RFID) tag with sensing, processing, and decision-taking capability is presented for operation in the 2.45-GHz RFID superhigh frequency (SHF) band. The tag is powered by an integrated light harvester, with a flexible battery serving as an energy buffer. The proposed active tag features excellent wearability, very high read range, enhanced functionality, flexible interfacing with diverse low-power sensors, and extended system autonomy through an innovative holistic microwave system design paradigm that takes antenna design into consideration from the very early stages. Specifically, a dedicated textile shorted circular patch antenna with monopolar radiation pattern is designed and optimized for highly efficient and stable operation within the frequency band of operation. In this process, the textile antenna's functionality is augmented by reusing its surface as an integration platform for light-energy-harvesting, sensing, processing, and transceiver hardware, without sacrificing antenna performance or the wearer's comfort. The RFID tag is validated by measuring its stand-alone and on-body characteristics in free-space conditions. Moreover, measurements in a real-world scenario demonstrate an indoor read range up to 23 m in nonline-of-sight indoor propagation conditions, enabling interrogation by a reader situated in another room. In addition, the RFID platform only consumes 168.3 mu W, when sensing and processing are performed every 60 s

    Smart RFID Tags

    Get PDF

    An IoT-Aware Architecture for Smart Healthcare Systems

    Get PDF
    none7Over the last few years, the convincing forward steps in the development of Internet-of-Things (IoT) enabling solutions are spurring the advent of novel and fascinating applications. Among others, mainly Radio Frequency Identification (RFID), Wireless Sensor Network (WSN), and smart mobile technologies are leading this evolutionary trend. In the wake of this tendency, this paper proposes a novel, IoTaware, smart architecture for automatic monitoring and tracking of patients, personnel, and biomedical devices within hospitals and nursing institutes. Staying true to the IoT vision, we propose a Smart Hospital System (SHS) which relies on different, yet complementary, technologies, specifically RFID, WSN, and smart mobile, interoperating with each other through a CoAP/6LoWPAN/REST network infrastructure. The SHS is able to collect, in real time, both environmental conditions and patients’ physiological parameters via an ultra-low-power Hybrid Sensing Network (HSN) composed of 6LoWPAN nodes integrating UHF RFID functionalities. Sensed data are delivered to a control center where an advanced monitoring application makes them easily accessible by both local and remote users via a REST web service. The simple proof of concept implemented to validate the proposed SHS has highlighted a number of key capabilities and aspects of novelty which represent a significant step forward compared to the actual state of art.restrictedCATARINUCCI L.; DE DONNO D.; MAINETTI L.; PALANO L.; PATRONO L.; STEFANIZZI M.; TARRICONE L.Catarinucci, Luca; DE DONNO, Danilo; Mainetti, Luca; Palano, L.; Patrono, Luigi; Stefanizzi, MARIA LAURA; Tarricone, Lucian

    RFID localization using special antenna technique

    Get PDF
    In this paper, a RFID localization method using special antenna technique is presented. By using an active RFID system with external dipole antenna the angle and the distance from the antenna to the RFID tag can be found based on the principle of null steering. Compared with other techniques, this method has a number of advantages such as simple design, easy to implement, low cost and high reliability
    corecore