79,178 research outputs found

    On The Continuous Coverage Problem for a Swarm of UAVs

    Full text link
    Unmanned aerial vehicles (UAVs) can be used to provide wireless network and remote surveillance coverage for disaster-affected areas. During such a situation, the UAVs need to return periodically to a charging station for recharging, due to their limited battery capacity. We study the problem of minimizing the number of UAVs required for a continuous coverage of a given area, given the recharging requirement. We prove that this problem is NP-complete. Due to its intractability, we study partitioning the coverage graph into cycles that start at the charging station. We first characterize the minimum number of UAVs to cover such a cycle based on the charging time, the traveling time, and the number of subareas to be covered by the cycle. Based on this analysis, we then develop an efficient algorithm, the cycles with limited energy algorithm. The straightforward method to continuously cover a given area is to split it into N subareas and cover it by N cycles using N additional UAVs. Our simulation results examine the importance of critical system parameters: the energy capacity of the UAVs, the number of subareas in the covered area, and the UAV charging and traveling times.We demonstrate that the cycles with limited energy algorithm requires 69%-94% fewer additional UAVs relative to the straightforward method, as the energy capacity of the UAVs is increased, and 67%-71% fewer additional UAVs, as the number of subareas is increased.Comment: 6 pages, 6 figure

    D3S: A Framework for Enabling Unmanned Aerial Vehicles as a Service

    Get PDF
    In this paper, we consider the use of UAVs to provide wireless connectivity services, for example after failures of wireless network components or to simply provide additional bandwidth on demand, and introduce the concept of UAVs as a service (UaaS). To facilitate UaaS, we introduce a novel framework, dubbed D3S, which consists of four phases: demand, decision, deployment, and service. The main objective of this framework is to develop efficient and realistic solutions to implement these four phases. The technical problems include determining the type and number of UAVs to be deployed, and also their final locations (e.g., hovering or on-ground), which is important for serving certain applications. These questions will be part of the decision phase. They also include trajectory planning of UAVs when they have to travel between charging stations and deployment locations and may have to do this several times. These questions will be part of the deployment phase. The service phase includes the implementation of the backbone communication and data routing between UAVs and between UAVs and ground control stations

    Decentralized 3D Collision Avoidance for Multiple UAVs in Outdoor Environments

    Get PDF
    The use of multiple aerial vehicles for autonomous missions is turning into commonplace. In many of these applications, the Unmanned Aerial Vehicles (UAVs) have to cooperate and navigate in a shared airspace, becoming 3D collision avoidance a relevant issue. Outdoor scenarios impose additional challenges: (i) accurate positioning systems are costly; (ii) communication can be unreliable or delayed; and (iii) external conditions like wind gusts affect UAVs’ maneuverability. In this paper, we present 3D-SWAP, a decentralized algorithm for 3D collision avoidance with multiple UAVs. 3D-SWAP operates reactively without high computational requirements and allows UAVs to integrate measurements from their local sensors with positions of other teammates within communication range. We tested 3D-SWAP with our team of custom-designed UAVs. First, we used a Software-In-The-Loop simulator for system integration and evaluation. Second, we run field experiments with up to three UAVs in an outdoor scenario with uncontrolled conditions (i.e., noisy positioning systems, wind gusts, etc). We report our results and our procedures for this field experimentation.European Union’s Horizon 2020 research and innovation programme No 731667 (MULTIDRONE

    Wireless Communication using Unmanned Aerial Vehicles (UAVs): Optimal Transport Theory for Hover Time Optimization

    Get PDF
    In this paper, the effective use of flight-time constrained unmanned aerial vehicles (UAVs) as flying base stations that can provide wireless service to ground users is investigated. In particular, a novel framework for optimizing the performance of such UAV-based wireless systems in terms of the average number of bits (data service) transmitted to users as well as UAVs' hover duration (i.e. flight time) is proposed. In the considered model, UAVs hover over a given geographical area to serve ground users that are distributed within the area based on an arbitrary spatial distribution function. In this case, two practical scenarios are considered. In the first scenario, based on the maximum possible hover times of UAVs, the average data service delivered to the users under a fair resource allocation scheme is maximized by finding the optimal cell partitions associated to the UAVs. Using the mathematical framework of optimal transport theory, a gradient-based algorithm is proposed for optimally partitioning the geographical area based on the users' distribution, hover times, and locations of the UAVs. In the second scenario, given the load requirements of ground users, the minimum average hover time that the UAVs need for completely servicing their ground users is derived. To this end, first, an optimal bandwidth allocation scheme for serving the users is proposed. Then, given this optimal bandwidth allocation, the optimal cell partitions associated with the UAVs are derived by exploiting the optimal transport theory. Results show that our proposed cell partitioning approach leads to a significantly higher fairness among the users compared to the classical weighted Voronoi diagram. In addition, our results reveal an inherent tradeoff between the hover time of UAVs and bandwidth efficiency while serving the ground users

    Optimal Deployments of UAVs With Directional Antennas for a Power-Efficient Coverage

    Get PDF
    To provide a reliable wireless uplink for users in a given ground area, one can deploy Unmanned Aerial Vehicles (UAVs) as base stations (BSs). In another application, one can use UAVs to collect data from sensors on the ground. For a power-efficient and scalable deployment of such flying BSs, directional antennas can be utilized to efficiently cover arbitrary 2-D ground areas. We consider a large-scale wireless path-loss model with a realistic angle-dependent radiation pattern for the directional antennas. Based on such a model, we determine the optimal 3-D deployment of N UAVs to minimize the average transmit-power consumption of the users in a given target area. The users are assumed to have identical transmitters with ideal omnidirectional antennas and the UAVs have identical directional antennas with given half-power beamwidth (HPBW) and symmetric radiation pattern along the vertical axis. For uniformly distributed ground users, we show that the UAVs have to share a common flight height in an optimal power-efficient deployment. We also derive in closed-form the asymptotic optimal common flight height of NN UAVs in terms of the area size, data-rate, bandwidth, HPBW, and path-loss exponent

    Wireless Communication using Unmanned Aerial Vehicles (UAVs): Optimal Transport Theory for Hover Time Optimization

    Full text link
    In this paper, the effective use of flight-time constrained unmanned aerial vehicles (UAVs) as flying base stations that can provide wireless service to ground users is investigated. In particular, a novel framework for optimizing the performance of such UAV-based wireless systems in terms of the average number of bits (data service) transmitted to users as well as UAVs' hover duration (i.e. flight time) is proposed. In the considered model, UAVs hover over a given geographical area to serve ground users that are distributed within the area based on an arbitrary spatial distribution function. In this case, two practical scenarios are considered. In the first scenario, based on the maximum possible hover times of UAVs, the average data service delivered to the users under a fair resource allocation scheme is maximized by finding the optimal cell partitions associated to the UAVs. Using the mathematical framework of optimal transport theory, a gradient-based algorithm is proposed for optimally partitioning the geographical area based on the users' distribution, hover times, and locations of the UAVs. In the second scenario, given the load requirements of ground users, the minimum average hover time that the UAVs need for completely servicing their ground users is derived. To this end, first, an optimal bandwidth allocation scheme for serving the users is proposed. Then, given this optimal bandwidth allocation, the optimal cell partitions associated with the UAVs are derived by exploiting the optimal transport theory. Results show that our proposed cell partitioning approach leads to a significantly higher fairness among the users compared to the classical weighted Voronoi diagram. In addition, our results reveal an inherent tradeoff between the hover time of UAVs and bandwidth efficiency while serving the ground users

    Velocity field path-planning for single and multiple unmanned ariel vehicles

    Get PDF
    Unmanned aerial vehicles (UAV) have seen a rapid growth in utilisation for reconnaissance, mostly using single UAVs. However, future utilisation of UAVs for applications such as bistatic synthetic aperture radar and stereoscopic imaging, will require the use of multiple UAVs acting cooperatively to achieve mission goals. In addition, to de-skill the operation of UAVs for certain applications will require the migration of path-planning functions from the ground to the UAV. This paper details a computationally efficient algorithm to enable path-planning for single UAVs and to form and re-form UAV formations with active collision avoidance. The algorithm presented extends classical potential field methods used in other domains for the UAV path-planning problem. It is demonstrated that a range of tasks can be executed autonomously, allowing high level tasking of single and multiple UAVs in formation, with the formation commanded as a single entity

    Security in networks of unmanned aerial vehicles for surveillance with an agent-based approach inspired by the principles of blockchain

    Get PDF
    Unmanned aerial vehicles (UAVs) can support surveillance even in areas without network infrastructure. However, UAV networks raise security challenges because of its dynamic topology. This paper proposes a technique for maintaining security in UAV networks in the context of surveillance, by corroborating information about events from different sources. In this way, UAV networks can conform peer-to-peer information inspired by the principles of blockchain, and detect compromised UAVs based on trust policies. The proposed technique uses a secure asymmetric encryption with a pre-shared list of official UAVs. Using this technique, the wrong information can be detected when an official UAV is physically hijacked. The novel agent based simulator ABS-SecurityUAV is used to validate the proposed approach. In our experiments, around 90% of UAVs were able to corroborate information about a person walking in a controlled area, while none of the UAVs corroborated fake information coming from a hijacked UAV

    Optimal circular flight of multiple UAVs for target tracking in urban areas

    Get PDF
    This work is an extension of our previous result in which a novel single-target tracking algorithm for fixed-wing UAVs (Unmanned Air Vehicles) was proposed. Our previous algorithm firstly finds the centre of a circular flight path, rc, over the interested ground target which maximises the total chance of keeping the target inside the camera field of view of UAVs, , while the UAVs fly along the circular path. All the UAVs keep their maximum allowed altitude and fly along the same circle centred at rc with the possible minimum turn radius of UAVs. As discussed in [1,4], these circular flights are highly recommended for various target tracking applications especially in urban areas, as for each UAV the maximum altitude flight ensures the maximum visibility and the minimum radius turn keeps the minimum distance to the target at the maximum altitude. Assuming a known probability distribution for the target location, one can quantify , which is incurred by the travel of a single UAV along an arbitrary circle, using line-of-sight vectors. From this observation, (the centre of) an optimal circle among numerous feasible ones can be obtained by a gradient-based search combined with random sampling, as suggested in [1]. This optimal circle is then used by the other UAVs jointly tracking the same target. As the introduction of multiple UAVs may minimise further, the optimal spacing between the UAVs can be naturally considered. In [1], a typical line search method is suggested for this optimal spacing problem. However, as one can easily expect, the computational complexity of this search method may undesirably increase as the number of UAVs increases. The present work suggests a remedy for this seemingly complex optimal spacing problem. Instead of depending on time-consuming search techniques, we develop the following algorithm, which is computationally much more efficient. Firstly, We calculate the distribution (x), where x is an element of , which is the chance of capturing the target by one camera along . Secondly, based on the distribution function, (x), find separation angles between UAVs such that the target can be always tracked by at least one UAV with a guaranteed probabilistic measure. Here, the guaranteed probabilistic measure is chosen by taking into account practical constraints, e.g. required tracking accuracy and UAVs' minimum and maximum speeds. Our proposed spacing scheme and its guaranteed performance are demonstrated via numerical simulations
    corecore