79,178 research outputs found
On The Continuous Coverage Problem for a Swarm of UAVs
Unmanned aerial vehicles (UAVs) can be used to provide wireless network and
remote surveillance coverage for disaster-affected areas. During such a
situation, the UAVs need to return periodically to a charging station for
recharging, due to their limited battery capacity. We study the problem of
minimizing the number of UAVs required for a continuous coverage of a given
area, given the recharging requirement. We prove that this problem is
NP-complete. Due to its intractability, we study partitioning the coverage
graph into cycles that start at the charging station. We first characterize the
minimum number of UAVs to cover such a cycle based on the charging time, the
traveling time, and the number of subareas to be covered by the cycle. Based on
this analysis, we then develop an efficient algorithm, the cycles with limited
energy algorithm. The straightforward method to continuously cover a given area
is to split it into N subareas and cover it by N cycles using N additional
UAVs. Our simulation results examine the importance of critical system
parameters: the energy capacity of the UAVs, the number of subareas in the
covered area, and the UAV charging and traveling times.We demonstrate that the
cycles with limited energy algorithm requires 69%-94% fewer additional UAVs
relative to the straightforward method, as the energy capacity of the UAVs is
increased, and 67%-71% fewer additional UAVs, as the number of subareas is
increased.Comment: 6 pages, 6 figure
D3S: A Framework for Enabling Unmanned Aerial Vehicles as a Service
In this paper, we consider the use of UAVs to provide wireless connectivity
services, for example after failures of wireless network components or to
simply provide additional bandwidth on demand, and introduce the concept of
UAVs as a service (UaaS). To facilitate UaaS, we introduce a novel framework,
dubbed D3S, which consists of four phases: demand, decision, deployment, and
service. The main objective of this framework is to develop efficient and
realistic solutions to implement these four phases. The technical problems
include determining the type and number of UAVs to be deployed, and also their
final locations (e.g., hovering or on-ground), which is important for serving
certain applications. These questions will be part of the decision phase. They
also include trajectory planning of UAVs when they have to travel between
charging stations and deployment locations and may have to do this several
times. These questions will be part of the deployment phase. The service phase
includes the implementation of the backbone communication and data routing
between UAVs and between UAVs and ground control stations
Decentralized 3D Collision Avoidance for Multiple UAVs in Outdoor Environments
The use of multiple aerial vehicles for autonomous missions is turning into commonplace. In many of these applications, the Unmanned Aerial Vehicles (UAVs) have to cooperate and navigate in a shared airspace, becoming 3D collision avoidance a relevant issue. Outdoor scenarios impose additional challenges: (i) accurate positioning systems are costly; (ii) communication can be unreliable or delayed; and (iii) external conditions like wind gusts affect UAVs’ maneuverability. In this paper, we present 3D-SWAP, a decentralized algorithm for 3D collision avoidance with multiple
UAVs. 3D-SWAP operates reactively without high computational requirements and allows UAVs to integrate measurements from their local sensors with positions of other teammates within communication range. We tested 3D-SWAP with our team of custom-designed UAVs. First, we used a Software-In-The-Loop simulator for system integration and evaluation. Second, we run field experiments with up to three UAVs in an outdoor scenario with uncontrolled conditions (i.e., noisy positioning systems, wind gusts, etc). We report our results and our procedures for this field experimentation.European Union’s Horizon 2020 research and innovation programme No 731667 (MULTIDRONE
Wireless Communication using Unmanned Aerial Vehicles (UAVs): Optimal Transport Theory for Hover Time Optimization
In this paper, the effective use of flight-time constrained unmanned aerial
vehicles (UAVs) as flying base stations that can provide wireless service to
ground users is investigated. In particular, a novel framework for optimizing
the performance of such UAV-based wireless systems in terms of the average
number of bits (data service) transmitted to users as well as UAVs' hover
duration (i.e. flight time) is proposed. In the considered model, UAVs hover
over a given geographical area to serve ground users that are distributed
within the area based on an arbitrary spatial distribution function. In this
case, two practical scenarios are considered. In the first scenario, based on
the maximum possible hover times of UAVs, the average data service delivered to
the users under a fair resource allocation scheme is maximized by finding the
optimal cell partitions associated to the UAVs. Using the mathematical
framework of optimal transport theory, a gradient-based algorithm is proposed
for optimally partitioning the geographical area based on the users'
distribution, hover times, and locations of the UAVs. In the second scenario,
given the load requirements of ground users, the minimum average hover time
that the UAVs need for completely servicing their ground users is derived. To
this end, first, an optimal bandwidth allocation scheme for serving the users
is proposed. Then, given this optimal bandwidth allocation, the optimal cell
partitions associated with the UAVs are derived by exploiting the optimal
transport theory. Results show that our proposed cell partitioning approach
leads to a significantly higher fairness among the users compared to the
classical weighted Voronoi diagram. In addition, our results reveal an inherent
tradeoff between the hover time of UAVs and bandwidth efficiency while serving
the ground users
Optimal Deployments of UAVs With Directional Antennas for a Power-Efficient Coverage
To provide a reliable wireless uplink for users in a given ground area, one
can deploy Unmanned Aerial Vehicles (UAVs) as base stations (BSs). In another
application, one can use UAVs to collect data from sensors on the ground. For a
power-efficient and scalable deployment of such flying BSs, directional
antennas can be utilized to efficiently cover arbitrary 2-D ground areas. We
consider a large-scale wireless path-loss model with a realistic
angle-dependent radiation pattern for the directional antennas. Based on such a
model, we determine the optimal 3-D deployment of N UAVs to minimize the
average transmit-power consumption of the users in a given target area. The
users are assumed to have identical transmitters with ideal omnidirectional
antennas and the UAVs have identical directional antennas with given half-power
beamwidth (HPBW) and symmetric radiation pattern along the vertical axis. For
uniformly distributed ground users, we show that the UAVs have to share a
common flight height in an optimal power-efficient deployment. We also derive
in closed-form the asymptotic optimal common flight height of UAVs in terms
of the area size, data-rate, bandwidth, HPBW, and path-loss exponent
Wireless Communication using Unmanned Aerial Vehicles (UAVs): Optimal Transport Theory for Hover Time Optimization
In this paper, the effective use of flight-time constrained unmanned aerial
vehicles (UAVs) as flying base stations that can provide wireless service to
ground users is investigated. In particular, a novel framework for optimizing
the performance of such UAV-based wireless systems in terms of the average
number of bits (data service) transmitted to users as well as UAVs' hover
duration (i.e. flight time) is proposed. In the considered model, UAVs hover
over a given geographical area to serve ground users that are distributed
within the area based on an arbitrary spatial distribution function. In this
case, two practical scenarios are considered. In the first scenario, based on
the maximum possible hover times of UAVs, the average data service delivered to
the users under a fair resource allocation scheme is maximized by finding the
optimal cell partitions associated to the UAVs. Using the mathematical
framework of optimal transport theory, a gradient-based algorithm is proposed
for optimally partitioning the geographical area based on the users'
distribution, hover times, and locations of the UAVs. In the second scenario,
given the load requirements of ground users, the minimum average hover time
that the UAVs need for completely servicing their ground users is derived. To
this end, first, an optimal bandwidth allocation scheme for serving the users
is proposed. Then, given this optimal bandwidth allocation, the optimal cell
partitions associated with the UAVs are derived by exploiting the optimal
transport theory. Results show that our proposed cell partitioning approach
leads to a significantly higher fairness among the users compared to the
classical weighted Voronoi diagram. In addition, our results reveal an inherent
tradeoff between the hover time of UAVs and bandwidth efficiency while serving
the ground users
Velocity field path-planning for single and multiple unmanned ariel vehicles
Unmanned aerial vehicles (UAV) have seen a rapid growth in utilisation for reconnaissance, mostly using single UAVs. However, future utilisation of UAVs for applications such as bistatic synthetic aperture radar and stereoscopic imaging, will require the use of multiple UAVs acting cooperatively to achieve mission goals. In addition, to de-skill the operation of UAVs for certain applications will require the migration of path-planning functions from the ground to the UAV. This paper details a computationally efficient algorithm to enable path-planning for single UAVs and to form and re-form UAV formations with active collision avoidance. The algorithm presented extends classical potential field methods used in other domains for the UAV path-planning problem. It is demonstrated that a range of tasks can be executed autonomously, allowing high level tasking of single and multiple UAVs in formation, with the formation commanded as a single entity
Security in networks of unmanned aerial vehicles for surveillance with an agent-based approach inspired by the principles of blockchain
Unmanned aerial vehicles (UAVs) can support surveillance even in areas without network infrastructure. However, UAV networks raise security challenges because of its dynamic topology. This paper proposes a technique for maintaining security in UAV networks in the context of surveillance, by corroborating information about events from different sources. In this way, UAV networks can conform peer-to-peer information inspired by the principles of blockchain, and detect compromised UAVs based on trust policies. The proposed technique uses a secure asymmetric encryption with a pre-shared list of official UAVs. Using this technique, the wrong information can be detected when an official UAV is physically hijacked. The novel agent based simulator ABS-SecurityUAV is used to validate the proposed approach. In our experiments, around 90% of UAVs were able to corroborate information about a person walking in a controlled area, while none of the UAVs corroborated fake information coming from a hijacked UAV
Optimal circular flight of multiple UAVs for target tracking in urban areas
This work is an extension of our previous result in which a novel single-target tracking
algorithm for fixed-wing UAVs (Unmanned Air Vehicles) was proposed. Our previous
algorithm firstly finds the centre of a circular flight path, rc, over the interested ground
target which maximises the total chance of keeping the target inside the camera field of view
of UAVs, , while the UAVs fly along the circular path. All the UAVs keep their maximum
allowed altitude and fly along the same circle centred at rc with the possible minimum turn
radius of UAVs. As discussed in [1,4], these circular flights are highly recommended for
various target tracking applications especially in urban areas, as for each UAV the
maximum altitude flight ensures the maximum visibility and the minimum radius turn
keeps the minimum distance to the target at the maximum altitude.
Assuming a known probability distribution for the target location, one can quantify ,
which is incurred by the travel of a single UAV along an arbitrary circle, using line-of-sight
vectors. From this observation, (the centre of) an optimal circle among numerous feasible
ones can be obtained by a gradient-based search combined with random sampling, as
suggested in [1]. This optimal circle is then used by the other UAVs jointly tracking the
same target. As the introduction of multiple UAVs may minimise further, the optimal
spacing between the UAVs can be naturally considered. In [1], a typical line search method
is suggested for this optimal spacing problem. However, as one can easily expect, the
computational complexity of this search method may undesirably increase as the number of
UAVs increases.
The present work suggests a remedy for this seemingly complex optimal spacing problem.
Instead of depending on time-consuming search techniques, we develop the following
algorithm, which is computationally much more efficient. Firstly, We calculate the
distribution (x), where x is an element of , which is the chance of capturing the target by
one camera along . Secondly, based on the distribution function, (x), find separation
angles between UAVs such that the target can be always tracked by at least one UAV with a
guaranteed probabilistic measure. Here, the guaranteed probabilistic measure is chosen by
taking into account practical constraints, e.g. required tracking accuracy and UAVs'
minimum and maximum speeds. Our proposed spacing scheme and its guaranteed
performance are demonstrated via numerical simulations
- …
