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1. Abstract 
This work is an extension of our previous result in which a novel single-target tracking 
algorithm for fixed-wing UAVs (Unmanned Air Vehicles) was proposed. Our previous 
algorithm firstly finds the centre of a circular flight path, rc, over the interested ground 
target which maximises the total chance of keeping the target inside the camera field of view 
of UAVs, , while the UAVs fly along the circular path. All the UAVs keep their maximum 
allowed altitude and fly along the same circle centred at rc with the possible minimum turn 
radius of UAVs. As discussed in [1,4], these circular flights are highly recommended for 
various target tracking applications especially in urban areas, as for each UAV the 
maximum altitude flight ensures the maximum visibility and the minimum radius turn 
keeps the minimum distance to the target at the maximum altitude. 
Assuming a known probability distribution for the target location, one can quantify , 
which is incurred by the travel of a single UAV along an arbitrary circle, using line-of-sight 
vectors. From this observation, (the centre of) an optimal circle  among numerous feasible 
ones can be obtained by a gradient-based search combined with random sampling, as 
suggested in [1]. This optimal circle  is then used by the other UAVs jointly tracking the 
same target. As the introduction of multiple UAVs may minimise  further, the optimal 
spacing between the UAVs can be naturally considered. In [1], a typical line search method 
is suggested for this optimal spacing problem. However, as one can easily expect, the 
computational complexity of this search method may undesirably increase as the number of 
UAVs increases. 
The present work suggests a remedy for this seemingly complex optimal spacing problem. 
Instead of depending on time-consuming search techniques, we develop the following 
algorithm, which is computationally much more efficient. Firstly, We calculate the 
distribution (x), where x is an element of , which is the chance of capturing the target by 
one camera along . Secondly, based on the distribution function, (x), find separation 
angles between UAVs such that the target can be always tracked by at least one UAV with a 
guaranteed probabilistic measure. Here, the guaranteed probabilistic measure is chosen by 
taking into account practical constraints, e.g. required tracking accuracy and UAVs' 
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minimum and maximum speeds. Our proposed spacing scheme and its guaranteed 
performance are demonstrated via numerical simulations. 
Key words: target tracking; optimal circular flight; multiple UAVs 

2. Introduction and Problem Statement 
Motivated by our previous novel formulation for the STTP (Single-Target Tracking 
Problem) using multiple UAVs (Unmanned Air Vehicles) in [1], we extend our previous 
ideas of handling the STTP using multiple UAVs in this work. The STTP to be considered 
here can be stated as follows: 
Problem 2.1 Given a ground-based target and fixed-wing UAVs equipped with a camera, find an 
optimal strategy in a known urban environment such that the target is kept inside at least one 
camera's field-of-view. 
Due to the importance and enormous applications of this problem, it has attracted a great 
deal of attention from researchers and has been studied in various directions, e.g. target 
identification or classification, fault-tolerant target tracking, multi-sensor target tracking, 
target position estimation. See [1] for a detailed literature review. However, it is our 
observation that most of the existing works are mainly focused on sensory data processing 
or fusion. In this work, we are more interested in path planning for target trackers, especially 
in densely populated urban domains. As far as our knowledge is concerned, there are very 
few works in this research area. We note that [2,3] directly address the present STTP. In 
particular, [3] poses the STTP as a stochastic optimisation and then proposes a real-time 
genetic algorithm which gradually improves an initially guessed solution. 
In this present work, we develop a deterministic algorithm which is computationally much 
more efficient than the existing algorithms. As suggested in [1, 4], the main idea here begins 
with using circular motions of the fixed-wing UAVs tracking the same target. These UAVs' 
circular motions are highly recommended for various target tracking applications especially 
in urban areas, as for each UAV the maximum altitude ensures the maximum visibility and 
the minimum radius turn keeps the minimum distance to the target at the maximum 
altitude. More precisely, we first find a position, rc, over the interested target (location), rtar, 
which maximises the total chance of keeping the target inside the camera field of view, , 
during the circular motions of the UAVs around rc. Here, all the UAVs tracking rtar keep 
their maximum allowed altitude  and fly along the same circle , centred at rc with the 
UAVs' minimum turn radius . We assume that the probability distribution p(t) of the 
target location at time t is known. Note that, as the UAVs are a fixed-wing type in our 
present discussion, the following practical constraints are part of the STTP: 

  (1) 
where  is the turning rate (magnitude) of the ith UAV, and  and  are the minimum 
and the maximum turning rates of UAVs, respectively. In contrast with [1], we here use  
as a control variable to solve the STTP problem. Note that the minimum radius turn is a 
function of angular velocity and bank angle. Therefore, in order to turn with the minimum 
radius but different speed, the angular speed must be increased or decreased by thrust, and 
bank angle must be adjusted appropriately so that the minimum turn radius can be 
maintained. 
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In §3.1, we first summarise how to find rc and . For more details, we direct readers to the 
reference [1]. Once the UAVs' flying path  is determined, it is natural to question about 
how to place more than one UAV on . To answer this question, our present work is 
focused on the following problem: 
Problem 2.2 Determine spacing  between the UAVs flying along  such that at least one UAV 
keeps the target inside its camera's field-of-view all the time. 
This UAV spacing problem is mathematically formulated in §3.2 and two spacing schemes 
are proposed thereafter. Finally, numerical examples will demonstrate the efficacy of the 
proposed spacing schemes in §4. 

3. UAV Path Planning for STTP 
3.1 Optimal circle over target 
In this section, we briefly summarise a method to find the centre rc of an optimal circular 
path, along which UAVs fly and track a target at rtar.2 
Suppose tc is the current time and the optimal circular path is updated every tcom seconds. 
Then, assuming a known probability density function p(rtar) of the target location during the 
time interval [tc, tc + tcom] (or at tc + tcom/2), one can quantify  incurred by any UAV's travel 
(360-degree turn) along a circular path  using line-of-sight vectors, i.e. 

  
(2)

 
where (x) is the set of all the ground locations within the UAV's camera's field-of-view at x 

. Thus, the following optimisation problem is of our interest: 

 
A sub-optimal  (centred at rc with a radius of ) may be obtained by a gradient-based 
search (starting with a circle whose centre is precisely over the most probable target 
location) combined with a random sampling scheme. Note that this search is not much 
computationally involved as long as a moderate number of samples is used to approximate 
the integration (2). 

3.2 Spacing Strategy I 
Once  is calculated, we allow more UAVs to join  for tracking the same target. As the 
introduction of more UAVs on  may decrease the chance of losing the target further, we 
are now interested in finding spacing between the UAVs so that the target is always within 
at least one UAV's camera's field-of-view. 
Suppose the first UAV is placed on  at 3 and other n—1 
UAVs are placed on  according to the following sequence of spacing, 

 

                                                                 
2 See [1] for more details. 
3 The z coordinate of x1 is the maximum altitude that the first UAV can assume, and is dropped in the 
expressions hereafter. 
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where i defines the angle measured from the ith UAV to the (i+l)th UAV counterclockwise 
with respect to rc. That is,  for i = 1, 2, . . . , n—1 and . We then 
consider the following new cost function (x), where , 

  
(3)

 
where i (xi) is the set of all the ground locations within the ith UAV's camera's field-of-view 
at xi.  As x can be written in terms of angles, we also call (3) , where 

 and 

 
for i = 1, 2, . . . ,n. 
As implied before, the direct optimisation to find  may be computationally involved as the 
number of UAVs on  increases. For this reason, we here slightly modify the problem 
statement as follows: 
Problem 3.1 Find  such that the target is kept inside at least one UAV's camera's field-of-view 
with a fixed probability or probabilistic measure , i.e. 

  (4) 

as UAVs fly along . 
To this end, we first consider ( ) when n = 1, i.e .   For a fixed probability 
distribution for the target location p(rtar) during the time interval [tc, tc + tcom], one can 
compute  for each  or . Figure 1 depicts one period of a typical 

. Note that, as shown in Figure 1, , which belong to  for , are 
the angles for which the sign of  changes. The corresponding positions to  are 
called transition points.4 
 

 
Figure 1. A typical example of  for  

                                                                 
4 We assume that . If , i.e. no transition point exists, (4) is trivially satisfied. 
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Our first spacing strategy is given in Table 1.5  Clearly, this strategy guarantees the existence 
of at least one UAV flying along a positive section of  in which . Indeed, it 
guarantees an even better bound on average. 

(1) Place the ith UAV at , where k = 
. That is, k = i if n is less than or equal to ; otherwise, ith-UAV, 

where i > , is placed at one of the already occupied transition points. 

(2) UAV’s angular speeds are chosen such that the times to travel between any 
two consecutive transition points are all equal. UAVs keep constant angular 
speeds during their flights between two consecutive transition points. 

Table 1. Spacing Strategy I 
Theorem 3.1 Spacing Strategy I given in Table 1 guarantees (4). Furthermore, during UAVs' 360-
degree turns along , 

  
(5)

 

on average, where  is the set of intervals in which , and  is the length of the largest 
interval in . 
Proof: As  is straightforward to prove, we prove the second part only. Suppose 

  (6) 

and the interval lengths in  are l1, l3, . . ., respectively. In view of the second part of 
Spacing Strategy I, we set T to the time to travel between any two consecutive transition 
points. Then, for the example profile of  as shown in Figure 2, if two UAVs 
start at 1 and 2 at t = 0 and turn 360 degrees along the circle, the corresponding  in 
the time-domain can be calculated as shown in Figure 3. As seen in the figures, each positive 
part (peak) of  in the -domain appears twice with its stretched, shrunk or 
modified shape in the time-domain, depending on the two UAVs' locations. 
More precisely, when t belongs to the interval [(k — 1)T, kT) for some k = 1, 2, . . . , , the 
cost is given by 

 
where  is the constant angular velocity of the ith UAV during the given time interval, 
and for i = 1,2, ... ,n 

 
where tik is the time when the ith UAV is at ik. 

                                                                 
5 We here do not consider collision avoidance issues between UAVs. 
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Figure 2. An example profile of  for :  (j = 1,2,..., 6) are transition points 

 
 
 

 
Figure 3.  for the  shown in Figure 2: T is the time for UAVs to travel between any 
two consecutive transition points 
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Therefore, the mean value of  during UAVs' 360-degree turns can be expressed as 

 
Note that  is always an even number when  is continuous. Using the constant angular 
velocity assumption between any two consecutive transition points, one can easily check 
that for each k = 1, 2, . . . , /2, 

 
Thus, the claimed inequality follows.  
This theorem allows us to approximately calculate average  (guaranteed average 
performance level) once  is given, regardless of the time T to travel between any two 
consecutive transition points. It is obvious that one may wish to choose , so that the 
performance level in (2.5) becomes as high as possible, but this may result in transition 
points between which the interval is too small. Clearly, such a small interval makes UAVs 
flight infeasible. Therefore,  must be determined based on various flight constraints such as 
(1). In the next section, we modify the first spacing strategy to accommodate those flight 
constraints. 

3.3  Spacing Strategy II 
In this section, we take into account flight constraints on UAV’s travel speed and time along 

. In view of (1.1),  must be chosen such that 

 
where , as defined in (6). 
These flight constraints immediately imply that  cannot be arbitrarily large. In this regard, 
we propose the second spacing strategy which now involves a search for a proper . The 
second strategy starts with setting  to the average  over , i.e. 

, and check if there exist(s) an interval(s)  
 in (6) such that 

  

(7)
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are satisfied. If there exist such intervals, one can increase  and repeat the same step above. 
Otherwise, one should decrease  until such intervals are found and the search is 
terminated. 
Once the search is finished with a proper  and its corresponding , UAVs are 
placed on  at 

  (8) 

and if , 

  

(9)

 
otherwise 

  

(10)

 
for i = 2,3, . . . ,n. 
The conditions in (7) ensure that at least one UAV flies over one of the intervals in , and 
so . In fact, one can easily show that the bound obtained in Proposition 2.1 still 
holds. 

 
Table 2. Spacing Strategy II 
Theorem 3.2 Spacing Strategy II guarantees (4) and (5). 
However, finding such intervals may not be a simple task, as  is likely to be non-convex 
(a union of disjoint intervals). In this regard, assuming that there is a small number of 
intervals in , one can go through every possible combination of intervals in + to find 
feasible  (j = 1,..., ).6 In fact, we start the search with the case of  = 1. For 
example, consider an interval  and solve the following linear program for 

 and T: minimise T subject to 

 

                                                                 
6 MILP (Mixed Integer Linear Programming) could be used for this purpose. 
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If no feasible solution is found for each interval in ,  is now increased to 2 and two 
intervals are chosen from .7 For example, we choose  , and solve 
the following linear program for  and T: minimise T subject to 

 

When this trial is still not successful with different two intervals in ,  is increased (up 
to /2) and gives rise to similar linear programs as above. If no feasible solution is found 
for each ,  must be decreased to relax the constraints.8 

 

 

 

 
Figure 4. The polygon (dashed area) formed by the constraints when  = 1 

                                                                 
7 When time is critical, one may not want to increase , but to decrease  and keep considering the 
case of  = 1 with new . 
8 It is not exactly true that less  implies less stringent constraints. However, it is true that decreasing  
eventually yields a feasible solution. 
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As a matter of fact, the case of  = 1 allows a more efficient way of obtaining the solution. 
First note that the constraints in the associated linear program can be written as 

 

where . These two constraints in l and T form a polygon in two-dimensional 
space, as shown in Figure 4. From the figure, one can read that the minimum and maximum 
l possible in the polygon are 

 

Therefore, in order for some  to be feasible, the corresponding  must contain an interval 
whose length is in between lm and lM. If there exists such an interval(s) in  whose lengths 
are l1, l2, . . ., one can then read the corresponding T1, T2, . . . from the figure, i.e. 

 

Thus, the solution  is the interval in  whose length l* is such that Tj is minimised 
over all  j. One can repeat finding  with an increased  to improve the solution. 

4. Numerical Tests 
To demonstrate the performance of the suggested algorithm (Spacing Strategy II), we 
randomly generate urban-area maps and model a ground target as a random jump 
process. As the employed strategy directs, each UAV flies along a designed circular path 
(consisting of several segments which are defined by separation angle(s)) at a different 
speed, but at a constant speed along each segment. In our tests, UAVs' minimum turn 
radius is assumed to be equal to 200 m, and their flight altitude is fixed to 100 m. The 
corner velocity, i.e. the velocity for a minimum radius turn at a maximum rate, is 30 m/s 
(approximately 100 km/h). Therefore, the maximum angular rate ( ) is given by 0.15 
rad/s. The minimum angular velocity ( ) is assumed to be equal to the half of the 
maximum rate, i.e. 0.075 rad/s. The number of UAVs is two and they are of the same 
type. 
One test example is shown in Figure 5. In the figure, two UAVs fly along the optimised 
circular path (thick solid line) in a counterclockwise direction, with an initial separation of 
130 degrees. The starting position of each UAV is indicated by a triangle. The ground 
moving target (denoted by a red star) jumps to a random place every 1 s. Note that the 
target's operational area is densely populated by buildings, and thus tracking the target is 
very challenging. The simulation shows that, as expected, the two UAVs swap their 
starting positions and reach there at the same time by changing their angular velocities. 
Figure 6 shows  (dotted line; before introducing two UAVs),  (solid line; after 
introducing two UAVs with the separation angle suggested by our spacing strategy), and 
the corresponding lower bound . The actual cost slightly violates the lower bound at 27 
s. This violation is caused by the discretisation of  when numerically obtaining 
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separation angles. A finer discretisation may alleviate this problem, but this slight 
violation does not make any significant physical difference in tracking the target. Figure 7 
shows when the target is captured by the cameras. During one complete 360-degree turn 
along the circular path, the joint visibility is guaranteed during more than 69% of the total 
flight time. That is, the target is outside the two cameras' field-of-views for about 16s and 
the longest continuous time during which the target is lost is about 6 s. 
 
 
 

 
 

Figure 5. Two UAVs tracking a ground moving target in a dense urban area 

A 1000-Monte-Carlo random simulation is also performed. This simulation is done using 
a personal computer (Windows-XP Professional version 2002, Intel Core 2 Quad CPU, 
2.66GHz, 2.75GB of RAM, MATLAB 7.5 (R2007b)). The mean time spent to calculate 
separation angles for each case is 0.4963 s. In Figure 8, our proposed spacing strategy is 
compared with a simple separation strategy in which two UAVs are initially separated by 
180 degrees. Figure 8 depicts, for both strategies, the number of cases versus the per cent 
of visible time during one 360-degree turn along the circular path associated with each 
case. The mean visibility is around 56% for both strategies. However, the variance 
corresponding to our spacing strategy is slightly better (smaller) than the simple one: our 
spacing strategy yields about 23% and the simple one about 27%. Also note that the two 
distributions look quite different: the distribution for the simple strategy is almost 
uniform, whereas the one for our proposed spacing strategy is skewed towards the right. 
This implies that our separation strategy handles difficult scenarios much better than the 
simple one. 
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Figure 6. Original cost , optimised cost  and lower bound 

 
 

 
Figure 7. Target visibility during a 360-degree turn along the circular path shown in 
Figure 5 
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Figure 8. Target visibility distribution for 1000 random cases during a 360-degree turn along 
the circular path associated with each case 

5. Conclusion 
In this work, we extended our previous result by suggesting two spacing strategies which 
allow more than one UAV to jointly track a target with a guaranteed probabilistic bound. 
As opposed to typical line search methods, the proposed spacing strategies are 
independent of the number of UAVs tracking the same target in terms of computational 
complexity, and so easy to implement on UAVs especially with low computational power. 
However, there are a few points that need to be addressed in our future work. For 
example, suppose that a target moves beyond the area covered by a circular path , and 
so a new circular path  and the corresponding spacing are calculated. Then, one needs 
to consider a transition strategy which allows UAVs to move from  to  while still 
guaranteeing a probabilistic bound. Needless to say, extensions to the multiple target 
tracking case should be useful as well. 
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