9 research outputs found

    Adaptive Cyber-Defense for Unmanned Aerial Vehicles: A Modular Simulation Model with Dynamic Performance Management

    Get PDF
    In light of escalating cyber threats, this study tackles the cybersecurity challenges in UAV systems, underscoring the limitations of static defense mechanisms. Traditional security approaches fall short against the sophisticated and evolving nature of cyber-attacks, particularly for UAVs that depend on real-time autonomy. Addressing this deficiency, we introduce an adaptive modular security system tailored for UAVs, enhancing resilience through real-time defensive adaptability. This system integrates scalable, modular components and employs machine learning techniques—specifically, neural networks and anomaly detection algorithm to improve threat prediction and response. Our approach marks a significant leap in UAV cybersecurity, departing from static defenses to a dynamic, context-aware strategy. By employing this system, UAV stakeholders gain the flexibility needed to counteract multifaceted cyber risks in diverse operational scenarios. The paper delves into the system's design and operational efficacy, juxtaposing it with conventional strategies. Experimental evaluations, using varied UAV scenarios, measure defense success rates, computational efficiency, and resource utilization. Findings reveal that our system surpasses traditional models in defense success and computational speed, albeit with a slight increase in resource usage a consideration for deployment in resource-constrained contexts. In closing, this research underscores the imperative for dynamic, adaptable cybersecurity solutions in UAV operations, presenting an innovative and proactive defense framework. It not only illustrates the immediate benefits of such adaptive systems but also paves the way for ongoing enhancements in UAV cyber defense mechanisms

    Role of smart vehicles concept in reducing traffic congestion on the road

    Get PDF
    The aim of this simple qualitative review was to provide an overview of how smart vehicles concept facilitates reducing traffic congestion on the road. Google Scholar was searched for literature sources using the topic itself as the search term. The search yielded 40 usable papers for this review. Many elements of smart city are inter-mixed with the smart vehicles concept. On the other hand in the smart vehicle concept, enabling technologies like VANET, IoV, SDN, use of mobiles and even use of electric poles on the road as IoT gateway were tested in the different frameworks proposed by different researchers. Many other traffic management systems have also been tested especially in Japan and India. In general, two scenarios have been considered-one of current types of roads and the other automated highways. Understandably, the requirements and approaches are different for the two scenarios. Some limitations of this review have also been listed at the end. Maximum of works dealt with VANET technolog

    Anomalous behaviour detection for cyber defence in modern industrial control systems

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.The fusion of pervasive internet connectivity and emerging technologies in smart cities creates fragile cyber-physical-natural ecosystems. Industrial Control Systems (ICS) are intrinsic parts of smart cities and critical to modern societies. Not designed for interconnectivity or security, disruptor technologies enable ubiquitous computing in modern ICS. Aided by artificial intelligence and the industrial internet of things they transform the ICS environment towards better automation, process control and monitoring. However, investigations reveal that leveraging disruptive technologies in ICS creates security challenges exposing critical infrastructure to sophisticated threat actors including increasingly hostile, well-organised cybercrimes and Advanced Persistent Threats. Besides external factors, the prevalence of insider threats includes malicious intent, accidental hazards and professional errors. The sensing capabilities create opportunities to capture various data types. Apart from operational use, this data combined with artificial intelligence can be innovatively utilised to model anomalous behaviour as part of defence-in-depth strategies. As such, this research aims to investigate and develop a security mechanism to improve cyber defence in ICS. Firstly, this thesis contributes a Systematic Literature Review (SLR), which helps analyse frameworks and systems that address CPS’ cyber resilience and digital forensic incident response in smart cities. The SLR uncovers emerging themes and concludes several key findings. For example, the chronological analysis reveals key influencing factors, whereas the data source analysis points to a lack of real CPS datasets with prevalent utilisation of software and infrastructure-based simulations. Further in-depth analysis shows that cross-sector proposals or applications to improve digital forensics focusing on cyber resilience are addressed by a small number of research studies in some smart sectors. Next, this research introduces a novel super learner ensemble anomaly detection and cyber risk quantification framework to profile anomalous behaviour in ICS and derive a cyber risk score. The proposed framework and associated learning models are experimentally validated. The produced results are promising and achieve an overall F1-score of 99.13%, and an anomalous recall score of 99% detecting anomalies lasting only 17 seconds ranging from 0.5% to 89% of the dataset. Further, a one-class classification model is developed, leveraging stream rebalancing followed by adaptive machine learning algorithms and drift detection methods. The model is experimentally validated producing promising results including an overall Matthews Correlation Coefficient (MCC) score of 0.999 and the Cohen’s Kappa (K) score of 0.9986 on limited variable single-type anomalous behaviour per data stream. Wide data streams achieve an MCC score of 0.981 and a K score of 0.9808 in the prevalence of multiple types of anomalous instances. Additionally, the thesis scrutinises the applicability of the learning models to support digital forensic readiness. The research study presents the concept of digital witness and digital chain of custody in ICS. Following that, a use case integrating blockchain technologies into the design of ICS to support digital forensic readiness is discussed. In conclusion, the contributions of this research thesis help towards developing the next generation of state-of-the-art methods for anomalous behaviour detection in ICS defence-in-depth
    corecore