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Abstract 
 

 The fusion of pervasive internet connectivity and emerging technologies in smart 

cities creates fragile cyber-physical-natural ecosystems. Industrial Control Systems 

(ICS) are intrinsic parts of smart cities and critical to modern societies. Not designed 

for interconnectivity or security, disruptor technologies enable ubiquitous computing 

in modern ICS. Aided by artificial intelligence and the industrial internet of things they 

transform the ICS environment towards better automation, process control and 

monitoring. However, investigations reveal that leveraging disruptive technologies in 

ICS creates security challenges exposing critical infrastructure to sophisticated threat 

actors including increasingly hostile, well-organised cybercrimes and Advanced 

Persistent Threats. Besides external factors, the prevalence of insider threats 

includes malicious intent, accidental hazards and professional errors. The sensing 

capabilities create opportunities to capture various data types. Apart from operational 

use, this data combined with artificial intelligence can be innovatively utilised to 

model anomalous behaviour as part of defence-in-depth strategies. As such, this 

research aims to investigate and develop a security mechanism to improve cyber 

defence in ICS.  

 

 Firstly, this thesis contributes a Systematic Literature Review (SLR), which helps 

analyse frameworks and systems that address CPS’ cyber resilience and digital 

forensic incident response in smart cities. The SLR uncovers emerging themes and 

concludes several key findings. For example, the chronological analysis reveals key 

influencing factors, whereas the data source analysis points to a lack of real CPS 

datasets with prevalent utilisation of software and infrastructure-based simulations. 
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Further in-depth analysis shows that cross-sector proposals or applications to 

improve digital forensics focusing on cyber resilience are addressed by a small 

number of research studies in some smart sectors. 

 

 Next, this research introduces a novel super learner ensemble anomaly detection 

and cyber risk quantification framework to profile anomalous behaviour in ICS and 

derive a cyber risk score. The proposed framework and associated learning models 

are experimentally validated. The produced results are promising and achieve an 

overall F1-score of 99.13%, and an anomalous recall score of 99% detecting 

anomalies lasting only 17 seconds ranging from 0.5% to 89% of the dataset. 

 

 Further, a one-class classification model is developed, leveraging stream 

rebalancing followed by adaptive machine learning algorithms and drift detection 

methods. The model is experimentally validated producing promising results 

including an overall Matthews Correlation Coefficient (MCC) score of 0.999 and the 

Cohen’s Kappa (K) score of 0.9986 on limited variable single-type anomalous 

behaviour per data stream. Wide data streams achieve an MCC score of 0.981 and 

a K score of 0.9808 in the prevalence of multiple types of anomalous instances.  

 

 Additionally, the thesis scrutinises the applicability of the learning models to 

support digital forensic readiness. The research study presents the concept of digital 

witness and digital chain of custody in ICS. Following that, a use case integrating 

blockchain technologies into the design of ICS to support digital forensic readiness 

is discussed. 
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 In conclusion, the contributions of this research thesis help towards developing 

the next generation of state-of-the-art methods for anomalous behaviour detection in 

ICS defence-in-depth.
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1.  Chapter: Introduction 
1.1 Introduction  
 

 Industry 4.0 has accelerated the systematic integration of the Internet of Things 

(IoT), Cyber-Physical Systems (CPS) and enabling technologies with aspects of 

smart cities, extending its initial vision beyond the production and manufacturing 

industries [1-5]. Smart cities have been enhanced by a fusion of ubiquitous internet 

connectivity with innovative applications of disruptive technologies creating highly 

fragile Cyber-Physical-Natural (CPN) ecosystems [6, 7]. CPS are a key component 

of smart cities that converge the physical and digital realms to achieve better value, 

innovation and sustainability [8-11]. Industrial Control Systems (ICS), a subset of 

CPS, are prevalent in critical infrastructures [12, 13]. The Industrial Internet of Things 

(IIoT) enable ICS to integrate disruptive technologies and innovative solutions to 

introduce process automation, monitoring and distributed control to support modern 

critical utility infrastructures in smart cities of the future [7, 14, 15]. Besides 

opportunities presented by enabling and emerging disruptive technologies such as 

5G, edge computing, and Artificial Intelligence (AI), they increase the attack surface 

in ICS due to introducing new attack vectors [5, 15-17].  

 

 Against the backdrop of ICS environments transformed for better automation, 

process control, flexible and efficient administration, challenges such as complex 

interconnectivity and disparate priorities between Information Communication 

Technologies (ICT) and Operational Technologies (OT) make ICS vulnerable to 

cyber-attacks [18-20]. Throughout this thesis, the terms ICT and Information 

Technology (IT) are used interchangeably. Likewise, human behaviour is a 

fundamental part of ICS with a potentially profound impact. For example, an insider 

who has authorised access exposes a difficult-to-detect attack vector. Additionally, 
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the risks associated with insiders extend the threat landscape beyond the human 

factor to include Cyber-Physical Objects (CPO) that act as smart cyber insiders [5-7, 

21, 22]. 

 

 This research thesis recognises the major impact and profound consequences of 

disruption from cyber-attacks against ICS. The thesis researches and empirically 

evaluates the employment of Machine Learning (ML) techniques to develop and 

optimise the security mechanism to improve the proactive cyber defence in ICS. This 

research leverages data from physical plant sensors to identify anomalies and 

quantify cyber risk as part of a layered defence-in-depth approach in ICS. 

Furthermore, this research investigates support for reactive defence such as Digital 

Forensics and Incident Response (DFIR) as part of Digital Forensic (DF) readiness 

towards improving cyber resilience in ICS.    

 

1.2 Context 
 

 CPS are vulnerable to many cybersecurity attacks due to the complexities 

introduced by growing networks of connected objects and human users. The 

integration of disruptive technologies creates fragile CPN ecosystems that expose 

the smart cities of the future to complex security challenges [5, 6, 23]. CPS should 

be secure-by-design to counter cybersecurity threats, resist cyber-attacks 

accurately, and function effectively under adverse conditions to minimise impact. 

 

 This is challenging to achieve in ICS due to the complexities posed by cyber 

components prevalent in OT such as Supervisory Control and Data Acquisition 

(SCADA), Human-Machine-Interface (HMI), Programmable Logic Controllers (PLC) 

and the quantum of sensors and actuators underpinned by communication networks 
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[24, 25]. The integration of insecure devices and disruptive technologies into ICS to 

achieve better automation, monitoring and distributed control increases the attack 

surface. 

 

 While traditionally ICS were isolated systems, modern ICS are complex, 

distributed and interdependent [19].  However, the cybersecurity measures that apply 

to Information Systems (IS) are not necessarily applicable to OT. Unlike ICT, 

operational infrastructure is typically highly automated with a focus on reliability, 

availability and safety. Whereas ICT is typically secure, centred around 

Confidentiality, Integrity and Availability (CIA) of the data [5]. 

 

1.3 Research Problem 
 

 ICS have a complex threat environment and are attractive targets vulnerable to 

sophisticated threat actors including organised cybercrime and Advanced Persistent 

Threats (APT) [5, 22, 26-31]. Besides external factors, ICS are vulnerable to insider 

threats including malicious intent, accidental hazards and professional errors. These 

threat actors have authorised access within the organisation and represent a difficult-

to-detect cybersecurity challenge. According to CERT Insider Threat Centre, insider 

threats include unintentional or malicious actors, originating within the organisation 

where the insider has authorised access [32, 33]. In addition, the insider threat model 

extends the human element to include CPO such as robots and drones executing 

activities alongside human employees, which we consider smart cyber insiders. 

Besides targeted attacks, ICS are susceptible to challenges that result from the 

disparity of organisation-influenced priorities between ICT and OT further 

complicating the protection mechanisms in ICS [18, 19].  
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 ICS were initially designed as isolated systems, with components not designed for 

security, combined with a decades-long lifecycle to support critical operations. With 

little security development, the continued reliance on security by obscurity is not a 

sustainable security defence mechanism [19, 34]. ICS are complex, interconnected 

and distributed networks that consist of segments including corporate networks, 

logical and physical control [24]. The complex interconnectivity and the prevalence 

of cyber components within these segments such as SCADA, HMI, PLC and the 

quantum of sensors underpinned by communication networks make ICS vulnerable 

to cyber-attacks [24, 25]. The increase in cybercrime in ICS is attributed to the fusion 

of devices, sensors and internet connectivity converging the physical and cyber 

domains [19, 30, 35-37].  

 

 ICS such as water treatment, water distribution plants, manufacturing, power 

grids, wind turbines, and transportation are critical to the functioning of industrial 

facilities and have emerged as integral parts of smart cities. ICS have a massive 

impact on the wider society which, if disrupted, could result in profoundly devastating 

consequences, real-world damage with a significant and hazardous impact on 

communities [6, 7, 25, 38, 39]. The impact could have a monetary impact on 

businesses, loss of Intellectual Property (IP), and threat to national security including 

socio-economic consequences on entire ecosystems [6, 23, 25, 39]. However, not 

every threat can be mitigated and not all cyber-attacks can be avoided, hence, DF 

readiness should be factored in as part of a defence-in-depth approach to ICS [5, 

40-43]. Reactive mechanisms alone do not effectively mitigate these threats. 

Therefore, due to the complex security landscape in ICS, proactive and reactive 

cyber defence mechanisms are required to improve the cyber resilience in ICS as 
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part of a defence-in-depth capability, pointing to the significance of research to 

develop protective mechanisms.  

 

 ICS sensor-generated data is used for operational monitoring. Besides utilising 

ICS physical plant sensor data for operational monitoring, control and automation of 

processes, this data can be used innovatively to improve the defence-in-depth thus 

increasing resilience to cyber-attacks. There is little or no research contributing to 

other aspects enabled by anomaly detection. This research attempts to address the 

problem of a security process-driven protective mechanism to profile anomalous 

behaviour in ICS from sensors generated data and quantify cyber risk in the 

prevalence of anomalous behaviour. Anomalous behaviour detection from sensor 

data has key advantages. Anomalous behaviour detection is attainable from sensor 

data hence previously unknown attacks are detectable including external threat 

actors and smart-cyber insiders. 

 

 Furthermore, the fusion of ICT and OT environments, quantum and sources of 

data from sensors, actuators and controllers continually produce streams of data. 

Data streams present unique characteristics, they are continuous, mainly contain 

normal instances, evolve and the entire stream cannot be processed and analysed 

as a whole. Due to these characteristics, data streams are not suitable for traditional 

ML techniques, also known as batch learning. Batch learning is a group of techniques 

used for the detection, classification and prediction of anomalies [44]. ML techniques 

are broadly grouped into supervised, semi-supervised and unsupervised ML 

algorithms [45, 46]. Supervised learning algorithms are widely used in scientific 

research to implement security models and solutions [47]. Summarily, supervised 

learning requires labelled data to train the model before making predictions on 
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unseen datasets. Semi-supervised learning algorithms utilise partially labelled data, 

where labels typically exist for data instances representing normal behaviour [45, 46, 

48]. Whereas unsupervised learning algorithms leverage unlabelled data to train the 

model by understanding the underlying dataset’s relationships and structures. ML 

techniques analyse static, finite datasets loaded into the computer’s active memory 

to train the ML model offline, relying on historical data [49]. However, a new model 

is needed when data distribution changes. This approach is computationally 

expensive and has profound disadvantages. Thus, batch learning approach is 

unsuitable for mining continuous data streams in near-real-time to sustain effective 

cyber defence mechanisms. Specialist algorithms are required that are capable to 

process data dynamically and adapt to changing and scaled data [19, 50-52]. Hence, 

to address anomalous behaviour detection from ICS data streams in near-real-time, 

the research also leverages an adaptive form of supervised learning against the 

evolving threat landscape in ICS as part of a layered defence-in-depth approach.  

 

1.4 Motivation 
 

 ICS are intrinsic elements of smart cities and critical to the operations of industrial 

facilities including water treatment systems, nuclear power plants, transport, 

electricity generation plants and gas pipelines. Due to the increase and sophistication 

of cybercrime, the countermeasures in ICS require a consistent and coordinated 

approach [28, 30, 40, 43]. Hence, modern ICS must adapt to emerging and evolving 

threats and develop defence measures with support for mission assurance.  

 

 A commitment to a more proactive approach to protecting operational 

infrastructure and the fact that ICS-related cyber defence is an active research area 
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is encouraging [5, 43, 53-55]. Besides automation, data from physical plant sensors 

coupled with ML techniques could help produce intelligence to develop 

countermeasures as part of a defence-in-depth approach to improve cyber resilience 

in ICS. Furthermore, the value of the data extracted from the sensors could contribute 

to post-incident investigations and reconstruction of events as part of DF readiness 

[6, 56]. 

 

 This thesis is motivated by the opportunity offered by ML techniques to develop 

protective concepts to address the emerging and increasing threats prevalent in ICS 

and contribute to improving ICS cyber resilience by advancing knowledge in this field.  

 

1.5 Research Aims and Objectives 
 

1.5.1 Aims 
 

 Cyber defence can be broadly classified into two main groups: reactive defence 

and proactive defence. Hence, the thesis has two directions sharing the main goal 

to improve cyber resilience in ICS. The study aims to investigate and develop a 

security mechanism to improve the proactive cyber defence in ICS to support its 

mission objectives. The mechanism seeks to be security process-driven, integrate 

novel ML techniques and utilise data generated from physical plant sensors. The 

mechanism intends to be testable, trustworthy and repeatable. Secondly, the study 

aims to investigate how the security mechanism addresses the reactive defence as 

part of DF readiness in ICS. 

 

1.5.2 Objectives 
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 To advance the aims, this research sets out to achieve the following objectives in 

this thesis as outlined: 

1) Conduct a Systematic Literature Review (SLR) of current cyber resilience and 

DFIR approaches in CPS in smart cities. 

2) Investigate the current ML approaches to improve proactive cyber defence of ICS. 

3) Develop an approach that leverages ML techniques to improve cyber resilience in 

ICS. 

4) Develop a novel ML-based anomaly detection and cyber risk quantification 

mechanism, evaluating and analysing the efficacy. 

5) Investigate the mechanism’s support for post-incident investigations as part of DF 

readiness. 

The Research Questions (RQs) outlined in Table 1 are mapped to the objectives and 

the relevant chapters. 

Table 1 Mapping of Research Objectives chapters and research questions of related key publications 

Research Questions (RQs) 
Objectives                                

1 2 3 4 5 

How do existing frameworks and systems that address CPSs in 
smart cities support cyber resilience and what empirical evidence 
has been reported? 

  
   

How do the identified frameworks and systems in smart cities 
address modern Digital Forensics and Incident Response (DFIR)? 

 
   

 

What are the current cross-sector proposals or applications in smart 
cities that attempt to utilise interactions in CPS for the purpose of 
improving DFIR? 

 
   

 

How can we form a framework which addresses anomaly detection 
in Cyber-Physical Systems (CPS) such that it is optimised and 
security-process driven? 

   

 

 

How can this framework be utilised to quantify the cyber risk in 
CPS? 

  
  

 

And how can this framework support Digital Forensic and Incident 
Response (DFIR)?      

How can we form a model which addresses anomalous behaviour 
detection in ICS from data streams in near-real-time and maintains 
effective performance? 

     

What is the effectiveness of an algorithm on anomalous behaviour 
detection in ICS utilising data streams?      

And how does the performance of such a model compare with the 
performance of batch learning-based defence mechanisms?      

Chapters: 2 2,4,6 3,4,6 5 2, 5,6 
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1.6 Related Publications 
 

The following publications are linked to the PhD thesis: 

• Gabriela Ahmadi-Assalemi, Haider M. al-Khateeb, Meryem Ammi, “Adaptive 

Learning Anomaly Detection and Classification Model for Cyber and Physical 

Threats in Industrial Control Systems” submitted, under review.  

 

• G. Ahmadi-Assalemi, and H. Al-Khateeb, “Blockchain technologies in the 

design of Industrial Control Systems for Smart Cities”, IEEE Blockchain 

Technical Briefs, vol. Q2 2022, 2022,[Online], Accessed: 04/09/2022, 

Available: https://blockchain.ieee.org/images/files/pdf/techbriefs-2022-

q2/blockchain-technologies-in-the-design-of-industrial-control-systems-for-

smart-cities.pdf    

 

• G. Ahmadi-Assalemi, H. Al-Khateeb, G. Epiphaniou, and A. Aggoun, “Super 

Learner Ensemble for Anomaly Detection and Cyber risk Quantification in 

Industrial Control Systems”, IEEE Internet of Things Journal, pp. 1-1, 

2022,[Online], https://doi.org/10.1109/JIOT.2022.3144127  

 

• G. Ahmadi-Assalemi, H. Al-Khateeb, G. Epiphaniou, and C. Maple, “Cyber 

Resilience and Incident Response in Smart Cities: A Systematic Literature 

Review”, MDPI Smart Cities, vol. 3, no. 3, pp. 894-927, Aug 2020,[Online], 

https://doi.org/10.3390/smartcities3030046  

 

The following publications are outputs from my broader PhD research and PhD-

related MSc teaching activities delivered during my PhD programme: 

https://blockchain.ieee.org/images/files/pdf/techbriefs-2022-q2/blockchain-technologies-in-the-design-of-industrial-control-systems-for-smart-cities.pdf
https://blockchain.ieee.org/images/files/pdf/techbriefs-2022-q2/blockchain-technologies-in-the-design-of-industrial-control-systems-for-smart-cities.pdf
https://blockchain.ieee.org/images/files/pdf/techbriefs-2022-q2/blockchain-technologies-in-the-design-of-industrial-control-systems-for-smart-cities.pdf
https://doi.org/10.1109/JIOT.2022.3144127
https://doi.org/10.3390/smartcities3030046
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• G. Ahmadi-Assalemi, H. Al-Khateeb, Amar Aggoun, “Privacy-enhancing 

technologies in the Design of Digital Twins for Smart Cities”, Elsevier Network 

Security, [Online], https://doi.org/10.12968/S1353-4858(22)70046-3 

 

• R. Singh, H. Al-Khateeb, G. Ahmadi-Assalemi, and G. Epiphaniou, "Towards 

an IoT Community-Cluster Model for Burglar Intrusion Detection and Real-

Time Reporting in Smart Homes", Challenges in the IoT and Smart 

Environments: A Practitioners' Guide to Security, Ethics and Criminal Threats, 

pp. 53-73, Cham: Springer International Publishing, 2021, 

https://doi.org/10.1007/978-3-030-87166-6_3    

 

• G. Ahmadi-Assalemi, H. M. Al-Khateeb, C. Maple, G. Epiphaniou, Z. A. 

Alhaboby, S. Alkaabi, and D. Alhaboby, “Digital Twins for Precision 

Healthcare”, Cyber Defence in the Age of AI, Smart Societies and Augmented 

Humanity, pp. 133,[Online], https://doi.org/10.1007/978-3-030-35746-7_8 

 

• S. Alkaabi, S. Yussof, H. M. Al-Khateeb, G. Ahmadi-Assalemi, and G. 

Epiphaniou, “Deep Convolutional Neural Networks for Forensic Age 

Estimation: A Review”, Cyber Defence in the Age of AI, Smart Societies and 

Augmented Humanity, pp. 375,[Online], https://doi.org/10.1007/978-3-030-

35746-7_17 

 

• G. Ahmadi-Assalemi, H. M. Al-Khateeb, G. Epiphaniou, J. Cosson, H. 

Jahankhani, and P. Pillai, "Federated Blockchain-Based Tracking and Liability 

Attribution Framework for Employees and Cyber-Physical Objects in a Smart 

https://doi.org/10.12968/S1353-4858(22)70046-3
https://doi.org/10.1007/978-3-030-87166-6_3
https://doi.org/10.1007/978-3-030-35746-7_8
https://doi.org/10.1007/978-3-030-35746-7_17
https://doi.org/10.1007/978-3-030-35746-7_17
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Workplace", in 2019 IEEE 12th ICGS3. London, UK,  pp. 1-9, 16-18 Jan. 

2019, https://doi.org/10.1109/ICGS3.2019.8688297 

 

• T. Makonese, G. Ahmadi-Assalemi, H. M. Al-Khateeb, S Khan, M Patwary, 

“Advanced feature-driven anomalous behaviour classification from sensor 

networks for improved cyber defence in Industrial Control Systems”, In 

preparation 

 

The following publications contribute to my PhD research and are based on my 

MSc thesis: 

• G. Ahmadi-Assalemi, H. M. al-Khateeb, C. Maple, G. Epiphaniou, M. 

Hammoudeh, H. Jahankhani, and P. Pillai, “Optimising driver profiling through 

behaviour modelling of in-car sensor and global positioning system data”, 

Computers & Electrical Engineering, vol. 91, pp. 107047, 2021,[Online], 

https://doi.org/10.1016/j.compeleceng.2021.107047 

 

• Project dataset online July 2018. DOI: 

https://doi.org/10.13140/RG.2.2.14505.49765  

 

1.7 Scope, Limitations and Assumptions  
 

1.7.1 Scope 
 

 The scope of this research covers ML model-driven security frameworks, systems, 

and data produced from CPS sensing technologies to address cyber resilience in 

smart cities, with a specific interest in ICS. Data generated from network traffic and 

data-driven models which require additional hardware to meet increased demand as 

a result of computational complexity are beyond the scope of the thesis. 

https://doi.org/10.1109/ICGS3.2019.8688297
https://doi.org/10.1016/j.compeleceng.2021.107047
https://doi.org/10.13140/RG.2.2.14505.49765
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 Publicly available datasets generated from ICS testbeds will be used to evaluate 

the efficacy of the framework and associated ML models. In addition, a range of 

technologies and tooling will be utilised for developing and evaluating the models 

including Anaconda, R-Studio, Waikato Environment for Knowledge Analysis 

(WEKA), Massive Online Analysis (MOA), Python and Jupyter Notebook. 

 

1.7.2 Limitations and Assumptions 
 

 The results produced throughout this thesis are based on laboratory studies 

generated from testbeds. While the dataset selection criteria reflect an environment 

of real-world characteristics, actual environment longitudinal field studies may 

challenge these results. Due to the time and cost constraints of the programme 

combined with access restrictions to datasets from ICS production environments, 

which often constitute critical infrastructure, it is not viable to carry out a longitudinal 

field-based case study. Hence, the applicability of the framework and models to the 

researched environment is evaluated in laboratory conditions using data from 

testbeds. 

 

 This thesis focuses on ML techniques in the generic IoT architecture [57] Sensing 

Layer, as shown in Figure 1, mapping to the Physical Control Layer in ICS as 

illustrated in Figure 2. This thesis does not focus on ML techniques applied at higher 

layers of the architecture. While attack vectors at the other layers are acknowledged, 

they are not addressed in detail by this thesis. In addition, the thesis develops 

mechanisms that are intended as improvements to existing models or presents new 

model concepts and therefore require further enhancements to be considered for 

production use. 
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Figure 1 Smart City IoT Architecture Layers 

 

 
Figure 2 ICS Architecture Layers 

 

 

1.8 Research Methodology 
 

 To achieve the aims and objectives of this research study, the following 

techniques are used systematically and iteratively: 

• Systematic Literature Review (SLR) 

An SLR approach is adopted that utilises the review protocol based on Kitchenham 

and Charters’ guidelines for the computer engineering discipline coupled with the 
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PICOC (Population, Intervention, Comparison, Outcomes and Context) criteria [58]. 

The guidelines are based on 3 key phases, namely planning, conduction and 

reporting involving several discreet activities. 

• Continuous research reviews and literature investigations 

Besides SLR, continuous exhaustive literature investigation is employed to make use 

of pertinent research in the field and to factor in evolving trends. Existing research 

could help understand a specific challenge from an alternative perspective, and aid 

the discussion of the strengths and weaknesses of the researched approach based 

on the available evidence. 

• Piloting 

Piloting helps test and evaluate concepts, the appropriate instruments, ML 

techniques and develop the procedures. 

• Case studies 

Experimentation employed through the use of case studies helps evaluate the ML 

approaches and subsequently analyse their applicability given different 

circumstances. The case studies utilise publicly accessible datasets produced from 

testbeds. Key characteristics of a testbed environment include reproducibility, 

consistency and predictability which are critical to the evaluation of ML techniques. 

 

1.9 Summary of Research Contributions 
 

The research contributions to the field of cybersecurity, particularly the cyber defence 

of ICS in smart cities of the future include: 

 

i. An SLR of primary studies that investigate empirical evidence reported for 

existing frameworks and systems that address the cyber resilience of CPS in 

smart cities (Chapter 2).  
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ii. An investigation of how current ML approaches applied to CPS in smart cities 

address modern DFIR (Chapter 2). 

iii. An investigation of current cross-sector proposals or applications that 

leverage interactions in CPS in smart cities to improve DF (Chapter 2). 

iv. Development of a novel super learner ensemble anomaly detection and cyber 

risk quantification (SPEAR) framework. The SPEAR framework provides ML-

driven models for resilient profiling of anomalous behaviour in ICS from 

sensors-generated data and a cyber risk quantification model to produce a 

cyber risk value in the prevalence of anomalous behaviour (Chapter 4, 

Chapter 5).  

v. A novel adaptive learning anomaly detection and classification (A-ADC) 

model for ICS physical plant sensor data streams (Chapter 6). 

vi. Investigation of applicability of the SPEAR framework and the A-ADC model 

to support DFIR in the context of DF readiness to improve defence-in-depth 

in ICS (Chapter3, Chapter 4). 

vii. Case studies demonstrating the applicability of the framework and the related 

models using ICS testbeds (Chapter 4, Chapter 6).  

viii. A performance benchmark criteria framework is proposed to quantify the 

performance of classifiers across different levels of cyber-physical 

experimental environments (Chapter 6). 

ix. Related published and cited research is outlined in detail in section 1.6.  

 

1.10 Thesis Overview 
 

The thesis is arranged into seven chapters. Beyond this chapter, the thesis is 

organised into six further chapters. Chapter 2 addresses Objective 1 and Objective 

2. The chapter addresses Objective 1 by systematically identifying peer-reviewed 
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empirical primary studies providing evidence-based summary of key themes and 

possible future research directions and Objective 2 by investigating anomalies and 

ML approaches. Chapter 3 contains the overarching goal of the thesis covering cyber 

resilience in ICS and related threat modelling. Following that, Chapter 4 holds part of 

Objective 3 and presents the SPEAR novel security process-driven super learner 

ensemble for anomaly detection framework and related ML models. Chapter 5 is 

dedicated to the cyber risk value quantification model fulfilling Objective 4. Chapter 

6 presents the A-ADC adaptive learning anomaly detection and classification model, 

the contribution required to achieve the second part of Objective 3.  Objective 5 is 

embedded throughout and addressed in Chapters 2, 5 and 6. This research is 

concluded in Chapter 7 with an evaluation of the contributions of this research and 

finally addresses future works.  
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2. Chapter: Systematic Literature Review 
 

 The world is experiencing a rapid growth of smart cities accelerated by Industry 

4.0, including the IoT, and enhanced by the application of emerging innovative 

technologies which in turn create highly fragile and complex CPN ecosystems. This 

chapter systematically identifies peer-reviewed literature. Then, it explicitly 

investigates empirical primary studies that address cyber resilience and DFIR 

aspects of CPS in smart cities. The findings show that CPS addressing cyber 

resilience and support for modern DFIR are a recent paradigm. Most of the primary 

studies are focused on a subset of the Incident Response (IR) process, the “detection 

and analysis” phase while attempts to address other parts of the DFIR process 

remain limited. Further analysis shows that research focused on smart healthcare 

and smart citizen were addressed only by a small number of primary studies. 

Additionally, the findings identify a lack of available real CPS-generated datasets 

limiting the experiments to mostly testbed-type environments or in some cases 

authors relied on simulation software. Therefore, contributing to this SLR, a search 

protocol is used to provide an evidence-based summary of the key themes and main 

focus domains investigating cyber resilience and DFIR addressed by CPS 

frameworks and systems. This SLR also provides scientific evidence of the gaps in 

the literature for possible future directions for research within the CPS’ cybersecurity 

realm. In total, 600 papers were surveyed from which 52 primary studies were 

included and analysed. 
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2.1 Introduction 
 

 Industry 4.0, synonymously known as Cyber-Physical-Production-Systems 

(CPPSs), is a concept formed in 2011 at the Hannover Fair to describe how CPS 

can be applied within production and manufacturing industries with enabled 

automation [1-4]. From the inception of the visionary notion specifically for factories 

and large-scale enterprises, CPS’ reach has extended beyond production 

enterprises linking the Industry 4.0 concept with aspects of smart city initiatives [3, 

4]. A key component of smart cities, CPS can be described as smart, embedded and 

networked systems within production systems [59]. CPS consist of a tangible 

element that is not completely controlled by an automated system and a cyber 

element that focuses on digital information. Together these elements form CPS 

entities capable of autonomous interaction regardless of human supervision [60]. 

Furthermore, these complex and growing networks of connected objects incorporate 

human users and form complex CPN ecosystems interrelating systems, software, 

people and services. As such, a problem within this complex cyberspace, including 

cybersecurity challenges, can have a cascading effect on the entirety of the 

ecosystem [6, 23]. 

 

 The motivation and tactics of the cyber threats landscape shifted from individuals' 

hobby hacking to gaining kudos amongst their peers toward well-organised 

cybercrime [28-30]. The motivations are often intensified by the possibility to gain 

sensitive information, which can be used in subsequent attacks including cyber-

attacks against ICS or Critical National Infrastructure (CNI). Verizon reported in their 

2016 Data Breach Investigation Report the outcome of the investigation of 500 

cybersecurity incidents in over 40 countries. In 89% of the cases, the key motives 



Page 31 of 226 
 

reported were described as “financial” and “espionage” fixated on targets including 

manufacturing, healthcare, utilities and public services by organised crime and state-

affiliated groups. Many of these attacks had a secondary motive to aid an intrusion 

of another target [61, 62]. This class of attacks known as APT characterise a well-

resourced group of attackers that carry out multi-stage and often multi-year persistent 

targeted campaigns. Traditional IR methods fail in mitigating APT because they 

assume successful intrusion before IR takes place. A kill chain model enables one 

to map such campaigns, identify patterns linking individual intrusions and through 

iterative intelligence gathering enables the development of a resilient intelligence-

driven mitigation approach [63]. In 2018, although the key motives remained largely 

unchanged, the most noteworthy attack vectors reported by the European Union 

Agency for Network and Information Security (ENISA) included malicious 

attachments, URLs in emails targeting the human element, web browser-based 

malicious scripts, malvertising, exploit kits and password reuse or weak service 

credentials in Internet exposed assets [28]. In 2019, law enforcement agencies 

responded to more attacks on CNI than ever before; this trend was highlighted as a 

key emerging threat by Europol [40]. CNI such as smart energy, water or transport 

are complex, large-scale interconnected CPS converging physical and cyber 

domains. They utilise geographically dispersed ubiquitous distribution networks, 

which extend beyond the boundary of a smart city, often across national borders and 

legal jurisdictions. 

 

 The rise of cybercrime has been greatly facilitated by the proliferation of modern 

advanced electronic communication technologies and the integration of IoT with 

physical systems [30, 35, 36]. High-profile cyber-attacks on ICS have been well 
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reported for some years, such as the Stuxnet malware targeting the Iranian nuclear 

plant [64], the attack on the Ukrainian power grid [65] or Norsk Hydro, a renewable 

energy supplier and the world’s largest aluminium producer, which was compromised 

by the LockerGoga ransomware [40]. In case of a successful cyberattack, the 

disruption of power, water or fuel supplies to these facilities could have a potentially 

serious socio-economic impact including civilian unrest; however, consequences 

could be more profound. For example, in the widely reported Kemuri Water Company 

attack, the mixture of chemicals used to treat a water plant was altered. In this attack, 

the sensors responsible for monitoring the water treatment plants were compromised 

[61]. Due to the distributed nature and heterogeneity of CPS, human interactions and 

the omnipresence of the underpinning technologies create hugely diverse attack 

vectors which increase the threat of cyber-attacks on critical systems. 

 

 Due to the attacks becoming more sophisticated and targeted, the 

countermeasures also need consistency and coordination [28, 30, 40, 66]. Therefore, 

a new paradigm must address cyber threats and cybercrime. Formulating cyber 

resilience to counter cybersecurity threats is required to resist cyber-attacks and 

continue to function effectively under adverse conditions [67]. Accepting that not all 

cyber-attacks are avoidable and computer-related crime is on the increase, the IR 

becomes an important component of CPS’ security management [40] including the 

need for Digital Evidence (DE). Forensic DE gathering must be carried out without 

compromising the integrity and authenticity of the DE to ensure admissibility in a 

court of law [56]. Therefore, the cybersecurity paradigm needs to shift to withstand 

cyber-attacks, function effectively under adverse conditions and support DF 

investigations by producing DE that is admissible in a court of law. Collaborative 
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practice and interdisciplinary approaches across smart sectors based on threat 

information sharing could increase situational awareness and help deal with potential 

threats or incidents more effectively. 

 

 Although CPS-related research is an active area, there seems to be substantially 

less empirical research available on frameworks and systems that address CPS in 

smart cities. Therefore, to make a meaningful contribution, this study uses a broad 

definition of frameworks as a common carefully designed organising structure of 

multiple approaches [68-70]. To help discover contributions in the literature of the 

specific research area this study includes systems to gain a deeper understanding 

of addressing support for cyber resilience across the physical, cyber and people 

dimensions in cross-sector applications within smart cities [71, 72]. Specifically, 

concerning frameworks and systems that address cyber resilience and modern 

DFIR, there appears to be a lack of available SLR based on recognised methodology, 

comprehensive protocols and quality assessment. For instance, to identify how CPS-

related frameworks and systems support cyber resilience and to determine the 

support for modern DFIR in smart cities it is important to conclude what research has 

been published and systematically review relevant and available studies. Therefore, 

one of the key objectives of this chapter is to identify the current gaps in this research 

area. Overarchingly, the focus of this chapter is on reported empirical evidence in 

existing literature concerning cyber resilience and DFIR support in CPS across smart 

city sectors. Traditionally, “resilience” in a mechanical context was the materials’ 

resistance to shock, in the conventional networking context resilience focused on 

fault tolerance; however, the scope of this term extends to the cybersecurity 

discipline. This SLR considers cyber resilience as the ability of the frameworks 
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addressing smart cities to resist cyber-attacks across the physical and digital 

domains regardless of an external or insider attack [67, 73-75]. 

 

 A small number of SLR studies in the realm of CPS have been published. These 

are outlined to examine the difference between the authors’ focus on topics and this 

research. The author of [76] performed an SLR focusing on a smart grid and related 

cybersecurity. In this chapter, the presented results are aimed at addressing 

cybersecurity by identifying all standards which define cybersecurity requirements 

for smart grids and reviewing applicable standards and guidelines. In reference [77], 

the authors provide analysis to address cybersecurity issues in an Industry 4.0 

context and focus on the physical Internet-connected systems. The authors 

concentrated on four areas, the definition of concepts relevant to Industry 4.0 and 

cybersecurity, the industrial focus, the characterization of cybersecurity and the 

management of cybersecurity issues. Authors in reference [78] presented their SLR 

findings concerning smart cities focusing on instrumented, interconnected and 

intelligent systems investigating four areas including security. One of the authors’ 

conclusions was that little was mentioned in the newly emerging security and privacy 

challenges. Although the studies into this growing area of research provide valuable 

knowledge consolidation, they answer questions about the wider use of CPS and 

related cybersecurity. No other SLR on this research topic was found during the 

preparation of the thesis. The focus of this SLR remains specifically on CPS-related 

cyber resilience and modern DFIR informed by Cyber Threat Intelligence (CTI) to 

strengthen and accelerate cyber defence in smart cities. 
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 Narrative reviews, such as [79-82], were found to focus on various IoT aspects 

and applications addressing challenges, threats and solutions. However, these 

studies address broader aspects related to the IoT but do not specifically investigate 

CPS with a focus on improving cyber resilience, or the value of CTI- or CPS-specific 

DFIR support in smart cities. The field of research related to CPS is still emerging, 

but the advancement is accelerating. Therefore, a comprehensive SLR is required 

focusing on ways that current CPS deal with cyber resilience and DFIR to guide 

future research. 

 

 This chapter critically examines existing research and uses the insights to 

conclude with suggestions for future research. The remainder of this chapter covers 

the Related Works in Section 2.2 follow by Methodology in Section 2.3. Section 2.4 

contains the results, analysis and key findings from the included primary studies 

followed by a discussion in Section 2.5.  

 

2.2 Related Work 
 

2.2.1 Anomalous Behaviour Detection in ICS 
  

 Anomalous behaviour detection can be articulated as solving a problem of a group 

of data points that do not conform to the expected norm [48]. Several challenges 

impact anomaly detection including consideration of what is regarded as normal in a 

given domain, the evolving nature of normal behaviours and the prevalence of noise 

in datasets. This complexity is exasperated by threat actors who attempt to make 

anomalies appear as normal observations. Hence, anomaly detection is a complex 

problem and factoring in the different types of anomalies is important when applying 
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anomaly detection techniques. The following paragraphs identify and describe the 

types of anomalies in further detail. 

• Point-based anomalies, as illustrated in Figure 3, contain anomalous instances 

that are few and different from the rest of the dataset [48]. The way ML techniques 

address point-based anomalies varies. Some approaches rely on defining the 

normal behaviour profile in the first instance by utilising clustering, statistical or 

classification techniques while other approaches use isolation methods. For 

example, as illustrated in Figure 3, a point-based anomaly is generated utilising 

Random Forest (RF) supervised learning ensemble in driver profiling where the 

driver performs an emergency brake as shown in Figure 3 a) [83] and a blocked 

sensor in ICS liquid distribution testbed as shown in Figure 3 b) [84]. 

• Collective anomalies are illustrated in Figure 4. The data point on its own is not 

considered anomalous, it is the collection of the data points together concerning 

the entire dataset that amounts to anomalous behaviour [48]. For example, Figure 

4, illustrates a DoS attack in ICS liquid distribution testbed [84]. The highlighted 

area denotes the anomaly because the change in the data points values follows 

an abnormal pattern. However, the data point in itself is not an anomaly. 

• Conditional anomalies also referred to as contextual anomalies, consider the 

data point within the context. The data points are anomalous within a given 

context, however, the data point itself is not anomalous, see highlighted area in 

Figure 5, [48]. Context requires contextual and behavioural attributes. For 

example, in Figure 5 the contextual attributes would be the longitude, latitude and 

speed limit in the given route section whereas the behavioural attribute would be 

the recorded speed. An identical data point in a different context may not be 

considered an anomaly. 
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Figure 3 Point-based anomaly. Figure (a)  shows an emergency break from a driver classification 
dataset [83]. Figure (b) shows an industrial control system blocked sensor from an ICS anomalous 

behaviour classification dataset [84]. 

 
Figure 4 An example of a collective anomaly, a denial-of-service (DoS) attack from an ICS anomalous 

behaviour classification dataset [225]. 
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Figure 5 An example of a contextual anomaly, a speeding driver from a driver classification dataset [83].  

 

2.2.2 Application of Learning Techniques 
 

 ML techniques utilised by domains including social media, medical analysis, 

computer vision and gaming are applied in cyber defence measures in smart city 

sectors such as transportation, healthcare, buildings and ICS [6, 85-89]. For 

example, ML techniques are utilised as cyber defence measures for anomalous 

behaviour detection. Figure 6 illustrates the data collection process from the recent 

research on the innovative use of in-car sensors data that aimed to profile drivers 

based on their behaviour using [83]. The gained insights can contribute to a range of 

applications such as authentication, authorisation and accounting models including 

the emergence of transferable solutions across smart environments [6, 90].  
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Figure 6 The driver profiling data collection process 

 

Such an example from another recent research is illustrated in Figure 7. The figure 

shows the data collection process that innovatively leveraged sensors-based data in 

a smart workplace. The study proposed a tracking and liability attribution framework 

as part of a cyber defence mechanism [6]. The gained insights could contribute to 

the authorisation and detection of anomalies in near-real-time of employees and 

cyber-physical objects in a smart workplace. 

 

Figure 7 Tracking and liability attribution in a smart workplace. 

Therefore, besides data produced at the network layer, from device and applications 

logs, ICS physical plant sensor data can be used to detect anomalous behaviour to 

increase resilience to cyber-attacks. One of the advantages of ML techniques over 

the signature, statistical or rule-based approaches is the detection of previously 

unseen attacks. According to [88], ML is frequently applied in intrusion detection, 

malware analysis, phishing and spam detection. The utilised ML approaches are 
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categorised into two main domains, shallow and deep learning. They both include 

supervised, unsupervised, and semi-supervised learning models, see Figure 8.  

• Supervised Learning 

In supervised learning, each instance has a pre-assigned class. The classifier is 

trained to apply the labelling of the target feature to new unseen data [45, 46].  

• Semi-Supervised Learning 

Semi-supervised learning algorithms utilise partially labelled data, where labels 

typically exist for data instances representing normal behaviour [45, 46, 48]. 

• Unsupervised Learning 

In unsupervised learning, the classifier is looking for the presence of patterns [45, 

46]. The algorithms leverage unlabelled data to train the model by understanding the 

underlying dataset’s relationships and structures. 

 

Figure 8 Machine Learning approaches based on dataset labels 

 

 This poses an important question; which one is the most suitable learning 

method? There is no ultimate de facto classifier, the choice depends on several 

factors not least the problem being solved. Other factors include distinct types of 
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classifiers that perform differently [45, 46], the types of datasets available, and 

organisational business and risk models. The following study [91] proposes a 

statistical testing procedure for algorithm comparison. Repeated training and testing 

are asserted in other scientific literature [46]. Another study [92] proposed an 

ensemble anomaly detection generic framework using Rolling Windows (RW) for 

energy consumption in buildings. To protect IoT network traffic, [93] utilised an 

ensemble learning method. The proposed method consisted of three ML techniques; 

Naïve Bayes (NB), Decision Tree (DT) and Artificial Neural Network (ANN) NB based 

on the AdaBoost classifier with majority voting. Furthermore, consideration should 

be given to the type of classifier for the scale and range of the investigated cyber-

attacks, the classifier’s performance in detecting the anomaly [88], and the 

algorithm’s generalisation ability [45]. Different approaches were proposed for 

anomalous behaviour detection.  Algorithms were utilised individually or as part of an 

ensemble such as Support Vector Machine (SVM) [92, 94-97], Principal Component 

Analysis (PCA) [92], Random Forest (RF) [92, 98-102], Autoencoder (AC) [92], ANN 

[93], DT [93, 103-105], NB [93], Isolation Forest (IF) [53, 106]. It is not the aim of this 

thesis to solve the classifier problem but to apply a robust model to the research 

problem outlined in this thesis and present a direction for future research.  

 

 Consideration is given to ML approaches leveraged for classification in SCADA 

systems including distance, density, isolation and ensemble approaches. These 

approaches are outlined in further detail in the following paragraphs. 

 

• Distance-based algorithm: SVM 
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 As proposed by Vapnik [107], the SVM algorithm is extensively applied in 

classification and regression problems [108]. Most SCADA system operations can 

be reduced and represented as a binary classification problem thus making the use 

of the SVM algorithm suitable for these tasks. Existing literature attests to the 

effective use of SVM for such problems [95-97].  

 

 While several hyperplanes can be used to separate the data points (vectors), the 

SVM algorithm operates by choosing the optimal hyperplane in an N-dimensional 

space with distinct data points, see Figure 9. The hyperplane is a decision boundary 

that is placed at the centre of the support vectors where the distance is the maximum 

from the closest points of either class giving the least test errors. Support vectors are 

the subset of data points closest to the hyperplane that impact its position and 

orientation. This shortest distance between the hyperplane and the support vector 

with weight w and bias b at either side is referred to as a margin. Hard margins see 

Figure 10 (a), typically leveraged by linearly separable data points can result in 

overfitting. Whereas soft margins as shown in Figure 10 (b), typical in non-linearly 

separable data points are robust to outliers and overfitting, allowing for 

misclassification, however, could result in underfitting.  

 

Figure 9 Simplified SVM structure 
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Figure 10 SVM algorithm Hyperplane hard-margin (a) and soft margin (b) 

 

 The equation of the optimal hyperplane equation is given by: 

H: w𝑇𝑇(x)  +  b =  0      (3.1) 

where b is the intercept and bias term of the hyperplane equation in N-dimensional 

space. SVM segregates the data points to minimise the misclassification errors by 

computing the distance between data points and the hyperplane. The distance of a 

hyperplane equation w𝑻𝑻Φ (x) + b = 0 from a given point vector Φ(x𝟎𝟎) is given as: 

d𝐻𝐻�Φ(x0)� =  �w
𝑇𝑇�Φ(x0)�+b�
‖w‖2

     (3.2) 

where ‖𝒘𝒘‖𝟐𝟐 is the Euclidean norm for the length of w given by: 

‖w‖2 =∶ �𝑤𝑤12 + 𝑤𝑤22 + ⋯ . +𝑤𝑤𝑛𝑛2     (3.3) 

In linearly separable data points, the hyperplane is distinct, separating the classes. 

Solving this type of problem requires a linear ML classifier such as Logistic 

Regression (LR). Non-linear data points use Kernel functions such as Polynomial 

and Gaussian Radial Basis Function (RBF) functions in a higher-dimensional space 

to identify the optimal hyperplane. The polynomial function is given by 

𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = 〈𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗〉𝑝𝑝     (3.4) 
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where xi, xj represent the classes of observations, p  is the polynomial degree and K 

is the polynomial coefficient. The RBF function is given by 

𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = exp �−
�𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�

2

2σ2
� ,σ > 0     (3.5) 

where σ is the Gaussian width parameter [45].  

 

• Distance-based algorithm: k- Nearest Neighbour (kNN) 

 As illustrated in Figure 11, k-NN is a distance-based supervised ML algorithm, 

which is simple to design, easy to interpret and incurs low computation time [47]. K-

NN classifies unknown data points based on their distance from the neighbouring, 

known data points [109]. Known as a lazy learning algorithm, it classifies data points 

and computes the class label based on the k nearest points. Instead of approximating 

the target function f(x) = y globally, during each prediction, the k-NN algorithm 

approximates the target function locally using the datasets closest in proximity as it 

is easier to learn to approximate a function locally than globally. To classify the data 

into either normal or attacked mode, the Euclidean Norm is used to calculate the 

distances between the datasets and the neighbours. The Euclidean Distance d is 

given by 

d(𝑝𝑝, 𝑞𝑞) =  �∑ (𝑞𝑞𝑖𝑖 − 𝑝𝑝𝑖𝑖)2 n
i=1     (3.6)  

where p,q are two points in Euclidean n-space n and qi, pi are the Euclidean vectors. 

This technique has been used for modelling intrusion detection on the SCADA 

dataset in [47, 110]. 



Page 45 of 226 
 

 

Figure 11 Simplified k-NN algorithm 

 

• Decision Trees 

 DT, as illustrated in Figure 12, is a popular classification method in supervised 

learning [47], including SCADA studies [103-105]. The tree-node indicates a feature 

and the tree-branches a test outcome. Each non-leaf node is linked with a split, also 

called a feature test. The tree-leaves, also called leaf nodes signify a class label. A 

set of decision rules inferred from the data features are used to predict the target 

variable starting at the root node with the results produced at the leaf node [45, 111]. 

DT is a recursive process, where the dataset is split at each level and divided into 

data subsets that form the next split’s input dataset. The split selection varies across 

DT algorithms, the Classification and Regression Trees (CART) algorithm uses the 

Gini index to select the split maximising the Gini [45, 46] given by: 

𝐺𝐺𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (𝐷𝐷;𝐷𝐷1. .𝐷𝐷𝑛𝑛) = 𝐼𝐼(𝐷𝐷) − ∑ |𝐷𝐷𝑛𝑛|
|𝐷𝐷| 𝐼𝐼(𝐷𝐷𝑛𝑛)𝑛𝑛

𝑖𝑖−1      (3.7) 

where 

𝐼𝐼(𝐷𝐷) = 1 − ∑ 𝑃𝑃(𝑦𝑦|𝐷𝐷)2𝑦𝑦∈𝑌𝑌      (3.8) 

Where I(D) is the Gini impurity, D is the training dataset, D1…Dn the training data 

subsets is the data. 
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Figure 12 Simplified Decision Trees algorithm. A, B and C represent the features and ‘x’ is the threshold on 
which the tree splits into branches 

 DT is non-parametric, hence outliers do not impact the model and it is expected 

to perform well on linearly inseparable data [47, 112]. However, DT can struggle with 

high-dimensional data and can become computationally demanding while without 

adequate pruning it can overfit. Hence, ensembles of DT such as RF are employed 

[47]. 

 

• Ensembles 

 Ensembles are ML methods that consist of multiple learners trained to solve the 

same problem to obtain better predictive performance [32, 45, 46, 113]. An ensemble 

consists of several learners referred to as base learners with their individual 

decisions combined to classify new data points based on voting [45, 46, 113]. 

Ensembles have a comparable computational cost to constructing a single learner 

and often generalise better than an individual learner [45].   

 

 As illustrated in Figure 13, CART’s extension, RF developed by Breiman [114] is 

a popular ensemble classifier including SCADA studies [98-102]. It is constructed 

from several DT base classifiers often linked with imbalanced learning, robust and 

scalable to large datasets [46, 47, 88, 89, 115].  
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Figure 13 Simplified Random Forest Classification structure consisting of two trees. 

 

 Extra Tree Classifier (ETC), also called an extremely randomised tree classifier is 

similar to RF, however, in ETC the features and splits are selected randomly whereas 

RF uses a greedy algorithm [116].  

 

 AdaBoost is an iterative ensemble meta-algorithm combining weak learners  

[117]. It is considered adaptive as the succeeding learners focus on the previous 

learner’s misclassified instances [46, 112]. While simple to implement and resistant 

to overfitting, AdaBoost is sensitive to noise.  

 

 Bagging is an ensemble meta-estimator fitting the base classifier on a random 

subset of the original dataset followed by aggregating the individual predictions to 

produce a final prediction [118]. While bagging can improve the model’s accuracy 

without substantially compromising the variance, it requires more training data than 

some other techniques. 

 

• Isolation-based classifier 

∑

vote

Level 0

Level 1

Level 2

Level 3

Level 4

Feature (f)Feature (f)

Root node

Decision node

Leaf node



Page 48 of 226 
 

 Besides distance and density, isolation is another indicator of anomalies. The IF 

classifier detects anomalies by isolating instances [119]. Anomalies could have high 

density being clustered in smaller groups, as illustrated in Figure 14a, and low density 

at the border of normal instances, see Figure 14b.  

 

Figure 14 Simplified Isolation Forest algorithm 

 The IF algorithm is based on the characteristic that anomalies are few and 

different from normal observations within datasets, hence sensitive to isolation from 

normal instances [119]. According to [119], fewer partitions are required to isolate 

the anomalous point, hence a shorter path length from the root node to the leaf node, 

where the average path length of a tree with n nodes is given by 

𝑐𝑐(𝑛𝑛) = 2𝐻𝐻(𝑛𝑛 − 1) − �2 (𝑛𝑛−1)
𝑛𝑛

�      (3.9) 

Where H(z) is the harmonic number estimated as ln(z) + 0.5772156649 (Euler’s 

constant), c(n) is the average of h(x) (the external node termination given n). Then, 

the anomaly score is given by 

𝑠𝑠(𝑥𝑥,𝑛𝑛) = 2 − 𝐸𝐸�ℎ(𝑥𝑥)�
𝑐𝑐(𝑛𝑛)       (3.10) 

Where E(h(x)) is the average of h(x) from a set of iTrees. To scale, to large datasets, 

the random trees as created from smaller data subsets rather than the original 

dataset [119]. 
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• Statistical Classifier 

 Logistic Regression (LR) is one of the simplest statistical ML algorithms for 

predicting binary classes, also known as Logit Regression and Maximum Entropy 

Classification. LR is suitable as a baseline method in binary classification problems, 

where the target variable is dichotomous. As illustrated in Figure 15, LR is a special 

case of linear regression using log-odds where y is the dependent variable and 

X1...Xn are the explanatory variables:   

𝑦𝑦 =  β0 + β1𝑋𝑋1 + β2𝑋𝑋2 + ⋯+ β𝑛𝑛𝑋𝑋𝑛𝑛    (3.11). 

The probabilities of the outcome are modelled using a logistic function also called 

the sigmoid curve:  

Sigmoid function 𝑓𝑓(𝑥𝑥) =  1
1+𝑒𝑒−𝑥𝑥

     (3.12) 

where e is the base of natural logarithms. With the sigmoid equation applied to the 

linear regression is expressed as 

Sigmoid function 𝑓𝑓(𝑥𝑥) =  1
1+𝑒𝑒−(β0+β1𝑋𝑋1+β2𝑋𝑋2+⋯+β𝑛𝑛𝑋𝑋𝑛𝑛)   (3.13) 

mapping to values between 0 and 1 with positive infinity being 1 and negative infinity 

becoming 0. 

 

Figure 15 Simplified Logistic Regression algorithm 
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• Shallow Neural Network 

 The ANN algorithm imitates biological neurons by using interconnected basic 

processing units, also known as neurons, and nodes [45, 120, 121]. ANN is similar 

to the SVM in its ability to handle multi-dimensional data with sound generalisation. 

As illustrated in Figure 16, in its simplest form, ANN uses perceptrons for identifying 

linearly separable patterns [47]. The binary nature is the key feature of a perceptron. 

Classification models with proven effectiveness for SCADA systems have been 

developed and validated [122-124]. 

 
Figure 16 Simplified ANN algorithm 

 The ANN architecture consists of an input layer, a hidden layer and an output 

layer. ANN creates a fully connected network given that the neurons in each layer 

are interconnected with each other. The input layer typically corresponds to a feature, 

where the input activation function is expressed as 

f(z) = z       (3.14) 

In a linear operation, each neuron performs a weighted sum of the inputs adding a 

bias term. However, as real-life applications are non-linear, the weighted sum 

requires an activation function expressed as 

𝑧𝑧 = 𝑓𝑓�∑ 𝑋𝑋𝑖𝑖𝑊𝑊𝑖𝑖
𝑘𝑘
𝑖𝑖=0 �      (3.15) 
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where z, is the output for a neuron, and k are the inputs. In the output layer, the 

neuron typically represents a label. The hidden and output layers are functional units 

that require an activation function such as  

Sigmoid function 𝑓𝑓(𝑧𝑧) =  1
1+𝑒𝑒−𝑧𝑧

     (3.16) 

Tanh function f(z) =  𝑒𝑒
𝑧𝑧−𝑒𝑒−𝑧𝑧

𝑒𝑒𝑧𝑧+𝑒𝑒−𝑧𝑧
     (3.17) 

Rectified Linear Unit (ReLu) function f(𝑧𝑧) =  max (0,𝑦𝑦)    (3.18) 

The choice of the activation function impacts the performance, convergence while 

training and computational cost of the ANN [45, 121]. The output of the sigmoid 

function, also called the threshold function, is 0 to 1 and is considered differentiable. 

Tanh is a hyperbolic tangent function with an output of -1 to 1. It centres the data with 

zero Means. The vanishing gradient is prevalent in both the sigmoid and tanh 

functions. The ReLu function solves the vanishing gradient problem present in the 

sigmoid and the tanh functions, the training is more efficient and simpler to compute. 

 

• Density-based algorithms 

 An example of a density-based algorithm is the Local Outlier Factor (LOF), which 

is an unsupervised anomaly detection algorithm applied as an outlier or novelty 

detection [48, 119]. For outlier detection, LOF computes the local density deviation 

of a given data point from its neighbours where the outliers are considered to have a 

lower density than the neighbour [48, 125], see Figure 17.  
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Figure 17 Simplified LOF algorithm and reachability distance where k=2 

Firstly, the kNN is found for each data point, x, followed by the local density for a data 

point estimated by computing the Local Reachability Density (LRD) using the k-

nearest neighbours, N_k, finally producing the LOF score by comparison of the LRD 

of the record and that of its k-neighbour [32, 125]. The LOF score is given by: 

𝐿𝐿𝐿𝐿𝐿𝐿 (𝑥𝑥) =  
∑

𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘(𝑜𝑜)
𝐿𝐿𝑅𝑅𝑅𝑅𝑘𝑘(𝑥𝑥)𝑜𝑜∈𝑁𝑁𝑘𝑘(𝑥𝑥)

|𝑁𝑁𝑘𝑘(𝑥𝑥)|      (3.19)  

 

2.2.3 Data Stream Paradigm 
 

 ML has evolved over the last two decades as a practical technology with 

commercial use. It is a relatively young scientific discipline that continues to expand 

being driven by new applications of ML techniques, data availability and decreasing 

computational cost [85]. As an active research area, ML methods outperform rule-

based algorithms and human operators in several domains leading to the adoption 

of ML in fields including computer vision, transport, gaming, healthcare and 

cybersecurity [88].  
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 Traditionally, ML algorithms subdivide large datasets into smaller subsets that are 

processed separately [115]. However, real-world applications such as ubiquitous 

sensor networks, traffic control and financial prediction do not deal with finite datasets 

and continuously generate large volumes of data sequentially. Continuously 

generated data has a substantial demand for storage and computational power for 

processing. Hence, it is not viable to store the data in the main computer memory all 

at once. Stored data may not reflect the current data distribution and can exceed the 

available computer memory [126, 127]. Furthermore, data streams can evolve and 

alter the normal distribution of attributes. Such changes can be sudden, referred to 

in the literature as concept shifts, while gradual or incremental changes are known 

as the concept of drift [128, 129]. Batch learning cannot learn from continuous data 

streams incrementally or deal with the concept of changes. The model’s performance 

could be adversely impacted, and the model has to be updated, replaced or 

retrained. Therefore, dealing with ubiquitous data streams requires new or adapted 

ML methods [115, 129]. Adaptive learning is a technique consisting of algorithms that 

are capable of processing data streams, and require a limited amount of memory 

and time with an ability to adapt to changes in data distribution [130]. However, 

besides analysing big data for knowledge gain [128], according to Gartner 2021 

technology trends, learning methods should include small and wide data to produce 

value and impact [131].  

 

2.2.4 Application of Online Learning Techniques 
 

 
 Recent research has focused on the application of algorithms for streaming data 

including in ICS. Although the use of data streaming is an emerging area in the field 

of cybersecurity, several research studies apply online learning to data streams for 
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anomaly detection [37, 132-134] while other studies focused on ICS in particular [16, 

19, 50, 52, 123, 126, 129, 135].  

 

 The problem of large volume and high-frequency data from heterogeneous 

sources streamed in real-time is investigated by [126] who acknowledges that not all 

observations can be loaded into active memory in real-time to process. The study 

standardises the kappa architecture and develops a multi-task learning model for 

real-time and large-scale data combined with tasks overlapping processing. They 

proposed an architecture that utilised k-NN classifier with Self Adjusting Memory 

(SAM) and sliding windows to produce data stream chunks to identify deviations in 

ICS. The choice of the k-NNSAM algorithm factored in the new data relevant to the 

current forecast and prior knowledge that is required for accurate classification. The 

concept of the approach is similar to the short-term-long-term memory model [126]. 

The aim of combining the two algorithms was to minimise the error and increase the 

classification precision. As illustrated in Figure 11, k-NN is a distance-based 

supervised ML algorithm that can be applied without parametrization to deal with 

heterogeneous concept drift of various types and rates [136]. 

 

 While k-NN is conceptually simple, easy to interpret and incurs low computation 

time [47, 137, 138], scientific literature highlights this technique could suffer from 

increased CPU, time and memory consumption [130, 132]. K-NN computes an 

observation in the dataset by computing all other observations considering data with 

similar features to have the same classification [37]. K-NN has been extensively 

applied in batch learning to model the detection of anomalies for SCADA systems 

and APT detection [47, 112, 139]. K-NN is popular in data stream classification of 
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faults, detection in the underlying data distribution and intrusion detection [37, 130, 

140].  

 

 Another study [129] combined the volume and velocity sensor data from power 

systems with the cyber segment of the power system for cyber-power events and 

intrusion detection. The study proposed an online learning method utilising HAT 

augmented with the Drift Detection Method (DDM) and Adaptive Windowing 

(ADWIN) mechanism. HAT was evaluated on synthetic datasets and extended to 

power systems [129, 141] to distinguish between faults with different characteristics, 

cyber-attacks and normal operations using data from heterogeneous sources. The 

HAT algorithm was proposed by [142], evolving from the Hoeffding Window Tree 

(HWT) to adaptively learn from data streams. Hoeffding Trees (HT) are incremental 

DT algorithms, see Figure 12. HAT is resilient to change with the ability to utilise 

change detectors including Linear Incremental Estimator (LIE), Exponential Weight 

Moving Average (EWMA), ADWIN and DDM [129, 141, 142].   

 

 Drift detection methods such as Cumulative Sum (CUSUM), Page-Hinkley Test 

(PHT), DDM [143], ADWIN [142], Early Drift Detection Method (EDDM) [144] and 

Exponentially weighted moving average Concept Drift Detector (ECDD) [140] are 

utilised to detect changes in data streams. The CUSUM and PHT are based on one-

sided tests and only raise alarms when the mean increases. Whereas DDM relies on 

the data distribution being stationary where an increase in the prediction error is 

taken as evidence of change. ADWIN is a change detector and an estimation 

algorithm based on an exponential histogram. ADWIN manages the trade-off 

between the window length to produce robust results with low FP values and short 
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window length to detect the change efficiently by checking the change at many scales 

simultaneously. This approach makes it computationally costly compared to simpler 

methods such as EWMA or CUSUM. HDDM is an online method based on Hoeffding 

bounds coupled with two sided test that monitors error increments and decrements 

leveraging the average as the estimator [145]. HDDM receives data stream inputs 

monitoring its performance change estimating the stream value to be stable, warning 

or drift. The A-Test consists of the two-sample statistical test of moving averages for 

abrupt changes which monitors error increments and decrements.  

 

 The challenges of class imbalance are characteristic of real-world problems where 

the majority of the data belongs to the normal class and the minority class instances 

are rare [115]. This imbalance between classes can introduce a bias and skew the 

ML algorithms’ performance. Sampling, ensembles and cost-sensitive methods 

address the problem of class imbalance [115, 146]. As illustrated in Figure 18, to 

balance datasets, sampling techniques are employed to change the balance of the 

data classes. To achieve sampling, the dataset needs to be cached in the memory, 

which does not satisfy the data stream paradigm [146] whereas cost-sensitive 

methods factor in the cost of misclassifying instances [45, 146, 147]. For example, 

[19] presents a method to solve the class-imbalance problem prevalent in ICS. The 

study focuses on an adaptive regularised cost-sensitive online learning method for 

multiclass classification. It asserts the technique demonstrating precise and efficient 

attack discrimination. Another study [115] introduces an approach to deal with 

imbalanced data streams utilising ARF with resampling to improve the performance 

of the minority class.  
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Figure 18 Simplified concept of dataset oversampling and undersampling 

 Recent research suggests that ensemble methods are effective in addressing the 

problem of concept drift. RF is a popular batch learning ensemble classifier 

constructed from several DT often linked with imbalanced learning [115], see Figure 

13. RF has been adapted for stationary data streams [148] and dynamic streaming 

with entropy-based DDM [149]. Ensemble-based online learning is utilised in network 

intrusion detection by [37] who explored online homogeneous and heterogeneous 

ensembles. Their research concluded that an ensemble comprising an ARF of HT 

combined with HAT was best suited for the concept drift phenomena. The study 

achieved better run-time compared with other tested ensembles. The authors 

asserted their approach was more suited to the constraints of online training.  ARF 

is not bound to a specific DDM, the following study [127] evaluated ARF with ADWIN 

and PHT while [115] presented ARF with resampling to factor in imbalanced class 

distribution. 

 

 Other studies include [135], which applied a combination of a k-NN and ARF 

combined with a Primal Estimated SubGradient Solver (PESGS) for SVM. Whereas 
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[52, 123] proposed a hybrid approach consisting of a spiking neural network and 

Restricted Boltzmann Machines (RBM). Another study proposed an attack detection 

framework utilising multimodal data and adaptive learning for critical water 

infrastructure [16]. The authors asserted that the model’s performance was 

correlated with the data modalities combining red-green-blue fusion with thermal, Wi-

Fi reflection data and ICS sensing information. The authors proposed a model that 

consisted of an adaptive Tapped Delay Line Convolutional Neural Network (TDL-

CNN) combining deep learning with autoregressive and moving-average attributes. 

Whereas the following research study [50] focused on controlling network traffic 

utilising Online Sequential Extreme Learning Machines (OS-ELM) and RBM in a 

hybrid mode with a final aim of vulnerabilities detection for APT attacks. 

 

2.3 Methodology 
 

 The aim of this chapter is achieved with an evidence-based SLR as the means to 

objectively address the RQs. The protocol is based on the SLR guidelines for the 

computer engineering discipline proposed by Kitchenham and Charters [58]. These 

guidelines, which aim to present a rigorous and credible methodology, are based on 

three key phases: planning, conducting and reporting, as demonstrated in Figure 19. 

The discreet activities in each phase are detailed in the Appendix in section 9.4 to 

allow replication of findings. Summarily, the core aspects of the systematic review 

protocol, the key contributions and the RQs are identified within the planning phase. 

The conducting phase consists of identifying the search strategy including the 

selection criteria for the primary studies, the selection procedure, the search strings 

and the quality assessment criteria. This phase involves the development of the data 
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extraction strategy, data synthesis and critical analysis. Finally, the information 

dissemination strategy is considered in the reporting phase. Each phase of the SLR 

is conducted iteratively to ensure a comprehensive evaluation. To maintain 

objectivity and mitigate bias, each phase was subject to a review and an approval 

process between the team before moving. 

 

Figure 19 Phases conducted in this systematic literature review (SLR). 

 

 The main aim of the SLR in this chapter is to identify and present scientific 

evidence of gaps in current research and help inform the direction for further 

research. The aim can be achieved by answering the following three RQ: 

 RQ1: How do existing frameworks and systems that address CPS in smart cities 

support cyber resilience and what empirical evidence has been reported? Use cases 

and applications of CPS have diversified, and the complexities of these ecosystems 

have evolved. In addition to frameworks, the investigation focuses on how complex 

systems support cyber resilience by identifying commonalities. Within the many 

diverse definitions used in existing studies addressing smart cities [150-155] and the 

numerous terminologies used in literature to describe frameworks and systems [25, 
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72, 73, 156, 157], providing an answer to RQ1 helps us conclude a list of all existing 

and relevant frameworks and systems that address CPS in smart cities supporting 

cyber resilience as defined by the scope of this SLR.  

 RQ2: How do the identified frameworks and systems in smart cities address 

modern DFIR? The application of DFIR in the context of a smart city is a new field of 

study [41]. Whilst the research focuses on the applications of IoT-enabled CPS, 

smart cities are found to be vulnerable to cyber-attacks [158]. It is acknowledged that 

DFIR methodologies are lacking in smart city sectors  [35, 42] and research suggests 

that DFIR faces more challenges in smart cities than other forms of digital breach 

investigations [159]. However, apart from the complexity of cyberspace, the IoT 

enabled CPS to create opportunities to facilitate modern DFIR [56]. RQ2 investigates 

how the components of the CPS frameworks help address modern DFIR. 

 RQ3: What are the current cross-sector proposals or applications in smart cities 

that attempt to utilise interactions in CPS for the purpose of improving DFIR? This 

RQ explores the transferable solutions and cross-sector interactions between smart 

buildings, smart homes, smart healthcare, smart energy and others as illustrated in 

Figure 20. Despite digitalisation in smart cities, information security strategies are 

limited to the sector boundary with little evidence of cross-sector information security 

practice sharing [30]. This study draws on the use of the term cross-sector 

partnerships in reference [160], as intensive and long-term interactions between 

organisations from at least two sectors such as business and healthcare. Throughout 

this chapter, cross-sector collaborations are used as interactions to adopt, share or 

coordinate cyber defence practices between at least two different smart city sectors. 

To address the existing and emerging cyber-attacks, transferable and innovative 

solutions should emerge from individual sectors within a smart environment to 
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support modern DF [30, 160]. RQ1, RQ2 and RQ3 help uncover key themes and 

gaps in current literature and suggestions for future research direction.  

 

Figure 20 Core smart city sectors. 

 

2.4 Results Analysis 
 

2.4.1 Primary Studies 

 

 Applying the protocol revealed that no primary studies were published before 

2011, suggesting that cyber resilience and DFIR addressed by CPS frameworks and 

systems in smart cities is a recent paradigm. Nevertheless, as Figure 21 shows, there 

is an upward trend in CPS-related research within smart cities addressing cyber 

resilience and modern DFIR, which indicates that this has emerged as an active 

research area. This trend will likely continue as the First Quarter (Q1) of 2019 is just 

over half of the studies published in 2018, as demonstrated in Table 2. 
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Figure 21 Smart sectors addressed by the primary studies time series. 

 

Table 2 Primary studies’ distribution by type. Journal—J or conference—C and publication year. 
Year  11 14 15 16 17 18 Q1/19 Total Studies 

%/year 2% 2% 2% 10% 23% 40% 21% 52 

J     1     13 10 24 

C 1 1  5 12 8 1 28 

 

2.4.2 Keyword Analysis 
 

 To help establish common themes amongst the primary studies, a keyword 

analysis including all 52 primary studies was carried out. The frequency of specific 

keywords appearing in the primary studies is shown in Table 3. As the table captures, 

the second most frequently used keyword in the dataset is “System”, closely followed 

by “Security”, “Internet of Things” and “Cyber-Physical Systems”. This shows an 

increasing research interest in the security of CPS in the context of the IoT. 

Furthermore, the keyword “framework” indicates that it is an active but still emerging 

area of research interest in the context of CPS cyber resilience and support for DFIR. 

The dataset also demonstrates that there is a significant disparity in the research 

interests in “detection” compared to other aspects of CPS security. The keywords 

used in established investigation models and frameworks to define these 
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investigation phases including “Response”, “Recovery” or “Prevention” rank lowest 

in the dataset. In addition, “Forensics” and “Cyber Resilience” rank also low in the 

dataset indicating potential areas for further research requirements. 

Table 3 Primary studies’ keyword analysis. 
Keyword Occurrence In Studies 
Attacks 4165 50 

System(s) 3650 52 
Security 2272 51 

Internet of Things/IoT 2024 36 
Model(s)(ing) 2002 52 

Cyber-Physical Systems 1857 52 
Smart 1750 52 

Device(s) 1610 50 
Detection 1193 47 

Approach(es) 589 50 
Method(s) 579 49 
Analysis 579 52 

Framework(s) 491 44 
Technique(s) 461 44 

Cyber * resilience/resilience 251 26 
Processing 242 38 
Architecture 239 43 
Forensic(s) 214 16 

Cyber * security 179 37 
Response 156 33 
Incident(s) 41 15 
Prevention 38 20 
Recovery 32 10 

1 The asterisk (*) in this table is used to represent the variants considered during the 

keyword search: space, dash or continuous word without any space i.e., ‘cyber 

resilience’, ‘cyber-resilience’, ‘cyber resilience’ and ‘cyber security’, ‘cyber-security’, 

‘cybersecurity’. 

 

2.4.3 Key Themes 
 

 Our analysis of the primary studies shows several emerging themes and main 

focus domains, each of which is discussed within sections a - g. 

a. Chronological Analysis of Key Events 
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 The purpose of the chronological analysis is to examine the main determinants 

and the time correlation for the research distribution addressing CPS cyber resilience 

and modern DFIR in smart cities concerning the defined scope. To achieve this, the 

primary studies were organised in chronological order and classified depending on 

the year published and the type of publication, as shown in Table 2. The trend shows 

that the first empirical study concerning this topic is dated from 2011 from a 

conference proceeding. It is not until 2016 that there is an 8% increase in research 

for this subject area through conference proceedings as the main outlet for research 

publications. By 2017, the number of articles doubled and increased again in 2018. 

The differentiating factor was the high proportion of journal articles over publications 

from conference proceedings whilst by the first calendar quarter (Q1) of 2019 and 

the articles published in journals reached over 75% of studies published throughout 

the entire of 2018. 

 

 Further investigating the results from the chronological analysis, the following key 

years were highlighted as potential influencing factors concerning the investigated 

CPS-related research developments: 2011, 2016, and 2018. 

 

 2011. This year was defined by the Hannover Messe Fair, where the term 

“Industry 4.0” was born to describe the next industrial revolution, a vision of three 

German engineers. While the first industrial revolution dates back to the end of the 

18th century introducing water and steam power, the second industrial revolution at 

the turn of the 20th century was centred around mass production using electricity 

and the third industrial revolution integrated IT and electronics into production 

systems, the 4th industrial revolution introduces digital processing and 
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implementation of the IoT into production. In this context, the concept and the vision 

have been established for CPS for production systems. Industrie 4.0, a German 

origin of the Industry 4.0 term, is used synonymously with cyber-physical production 

systems [1, 161]. In the post-recession output fall, the vision of Industry 4.0 elevated 

the German manufacturers and economy back into the spotlight [162, 163]. 

 

 2016. The creation of the UK’s National Cyber Security Centre (NCSC) as the 

technical cybersecurity lead was a feature of this year. Furthermore, the investment 

and economic infrastructure plans announced in the National Infrastructure Delivery 

Plan in the UK [164] and the announcement of the significant cybersecurity fund as 

part of the USA’s Cybersecurity National Action Plan also took place in 2016 [165]. 

The World Economic Forum (WEF) was also held in Davos. The WEF used the 

motto: “Mastering the Fourth Industrial Revolution” [166]. The event was attended by 

2500 participants and 40 heads of states from 140 different countries discussing 

ideas to tackle global challenges sustainably with the aid of technology and the 

economic impact of Industry 4.0. 

 

 2018. In the USA, there was the notable creation of the Cybersecurity and 

Infrastructure Security Agency (CISA) responsible for national critical infrastructure 

from physical and cyber threats. Australia released an update for its cybersecurity 

sector competitiveness plan outlining Australia’s significant economic opportunities 

to become a “global cybersecurity powerhouse” [167]. Despite Industry 4.0 being a 

global phenomenon, the acceleration of efforts by countries in the race of Industry 

4.0 is local to lead the change and be the face of the new digital transformation. This 

era is characterized by high-capacity and low-latency 5G networks that will catapult 
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digitalisation, which is predicted to create significant opportunities in many economic 

sectors. Furthermore, in terms of cybersecurity, the NCSC reported on the growing 

cybercrime threat, recording 34 significant cyber-attacks that typically required cross-

government responses over two years [168]. The government has explicitly 

acknowledged the need to improve the resilience of the UK’s CNI [169]. The 

consequence of the transformation not having peaked yet results in a continued 

increase in investment, grants and financial incentives; therefore, research efforts 

continue [170, 171]. 

 

 Relating the primary studies’ trends with the key events, this study identifies a link 

between the technological and economic landscape and cyber-resilience-centric 

research that addresses CPS in smart cities. From the primary studies, it emerges 

that the trend in the increase of papers has been influenced by a strategic focus on 

cybersecurity; improving the cybersecurity defence landscape, including the creation 

of NCSC and CISA; significant investment in improvements and strengthening of the 

national critical infrastructures. Coupled with efforts and initiatives exclusively 

focused on digital transformations to gain economic advantage could explain the 

surge in research studies published from 2016 onwards. 

 

b. Cyber Resilience Analysis 

 To address the question of how existing frameworks and systems that address 

CPS in smart cities support cyber resilience, this study considers the scope of 

resilience within the cybersecurity discipline and the evidence reported in the primary 

studies. To achieve this, the primary studies were organised in order of the reported 
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evidence of how the cyber-attacks across the physical and digital domains were 

addressed and how the external or insider threats were approached. 

 

 Cyber resilience is widely acknowledged by governments including the UK’s 

National Cyber Security Strategy 2016–2021. Although NCSC promotes cyberspace 

resilience by shaping technical standards that govern emerging technologies and 

promotes best practices [66], the Joint Committee on National Security and Strategy 

in their report acknowledged that the UK Government must do more to improve the 

cyber resilience of the CNI [169]. Cyber resilience has been acknowledged as a 

challenge in the IoT; President Obama issued Executive Order (EO) 13636 to 

strengthen critical infrastructure cybersecurity resilience. Likewise, improving cyber 

resilience is at the forefront of the Australian Government [167]. 

 

 CPS resilience is accepted as an important aspect by the scientific community, 

governments and industry, it is a multi-dimensional and multi-disciplinary facet. 

However, despite many efforts to define the term “resilience”, it has no clear and 

uniform definition or performance metrics [172, 173]. The term resilience is described 

by the National Institute of Standards and Technology (NIST) as “the ability to quickly 

adapt and recover from any known or unknown changes to the environment through 

a holistic implementation of risk management, contingency, and continuity planning” 

[174]. Furthermore, to evaluate CPS resilience, several areas of CPS resilience were 

studied including policy [175], the correlation of resilience on probability and impact 

of performance under adverse conditions [176] and risk and resilience correlation 

[173]. 
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 The nature of CPS is multi-dimensional, converging physical and cyber domains 

in a highly complex ecosystem integrating systems, software, people and services. 

In this study’s approach to establishing how CPS in smart cities support cyber 

resilience, this research investigated the primary studies according to specific layers 

within the TCP/IP model—a standard model used in computer networks, based on 

modern DFIR general-purpose frameworks, adversary type and by the smart sector 

covered by each study. 

Layers were identified concerning the TCP/IP (Transmission Control 

Protocol/Internet Protocol) model described in RFC 1122 [177]. The TCP/IP model 

consists of four layers, which, from the lowest to the highest, are the link layer, the 

internet layer (network), the transport layer, and the application layer. The primary 

studies can be categorised into three layers: physical, communication (aligns to the 

Internet and transport layers of the TCP/IP model) and application. A similar 

categorization approach was taken by authors [172] to define CPS resilience. For 

example, the physical layer includes physical faults, component failure and the 

delivery of the attacks through access within the security perimeter including attacks 

on CPS controllers, sensors and actuators. The communication category includes 

communication-environment-based disruptions and attacks such as Denial of 

Service (DoS), Man-in-the-Middle (MiM), the user to root type buffer overflow or 

remote to user ftp write. The application category included False Data Injection (FDI), 

malware and other services such as cloud storage and web application-based 

attacks. Some incidents can fit into more than one category [178]. 

DFIR Support was investigated concerning the phases that form the basic 

foundation of an IR plan from preparation to post-incident activities to identify how 

the primary studies address this process. The DFIR support was studied accordingly 
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to general-purpose DFIR frameworks and standards such as the Digital Forensic 

Research Workshop (DFRWS), Abstract Digital Forensic Model (ADFM), NIST 800-

61 and International Organization for Standardization and International 

Electrotechnical Commission ISO/IEC 27050.   

Adversary Type was identified within each layer, where the threat can be caused 

by external or internal factors. This study considers an internal threat to be a threat 

by an adversary initiated inside the security perimeter. In this thesis, the terms 

internal and insider threat are used interchangeably. Such an entity is authorised to 

access the systems or resources within the security perimeter but acts in a way that 

is not authorised. Examples include malicious or disgruntled employees or 

contractors who have direct access and sufficient knowledge of the system or the 

resource. In contrast, an external threat is initiated by an adversary from outside the 

security perimeter. Such an entity is not authorised to access or use the systems or 

resources and gains access through unauthorised or illegitimate attack vectors. This 

study investigates how the primary studies address this aspect; a similar emphasis 

on this approach was followed by reference [172]. 

Smart Sectors will leverage CPS performance and resilience differently. CPS 

operate across different smart sectors, therefore this SLR identifies the smart sectors 

as reported in the primary studies. Several studies specifically focus on the 

applicability of resilience in terms of the CPS’s ability to withstand disruptions, 

recover from and adapt to known and unknown threats, as shown in Table 4. For 

example, in their approach, reference [158] argued that optimisation between 

smartness and cyber resilience in a CPS is required for a balance between 

functionality and cybersecurity without compromising the systems’ resilience. In this 

study, the percolation theory was used as the basis for evaluating the stress caused 
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by disruptions. The authors in reference [179] argued that the absence of common 

security standards and flexible methods to assess IoT security requires dedicated 

testbeds to systematically evaluate the devices’ resilience under various conditions. 

The study developed a security testbed framework for the IoT. The testbed consists 

of standard security testing predominantly based on well-established vulnerability 

scans and penetration testing methodologies including port scanning, process 

enumeration, fuzzing and fingerprinting. The advanced testing capabilities of the 

testbed are based on techniques and tools including ML, traffic-based IoT device 

type identification, automatic anomaly detection and environment simulations. The 

number of test scenarios demonstrated the effectiveness of the testbed in detecting 

the IoT devices’ resilience against attacks including DoS. Another study [180] 

focused on CPS resilience mechanisms that can be applied during runtime to sustain 

resilience utilising self-healing structural adaptation. In the following study [181], the 

authors argued the importance of an interdisciplinary integrated approach between 

the cyber and physical layers. They asserted that cyber resilience-by-design must 

address two scopes to achieve overall resilience, the security controls, 

communication scope and the power engineers’ scope to reinforce the weak points 

during the design. The study proposed an integrated cyber-physical sustainability 

metric framework to assess CPS cyber resilience. 

Table 4 Primary studies focusing on aspects of cyber resilience(-by-design). 
Year Primary Study Smart Sector 
2011 [182] Infrastructure  
2012 

 
 

2013 
 

 

2014 [73] Energy 
2015 [183] Mobility-Automotive  
2016 

 
 

2017 [184] Infrastructure 
2018 [181, 185] Energy, Mobility-Aviation  

Q1 2019 [158, 179, 180] Security, Mobility-Aviation  
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 Further analysis investigating possible correlations with the emerging key themes 

discussed in this chapter shows no clear geographical correlation. The studies, 

categorised in Table 4, except for [181], acknowledged grant funding. Time 

correlation was observed with a continued trend in the increase of primary studies 

focusing on cyber resilience in 2018 and Q1 2019. This trend could indicate a 

response to the emergence of new and diverse types of security-related incidents 

that have the potential to be damaging and disruptive. 

  

 The author in reference [182] argued that the key difference between control and 

IT systems is the control systems’ interaction with the physical world and concludes 

that to withstand cyber-attacks, systems should be resilient by design. The author 

asserts that the risk to control systems is higher due to the exposure and availability 

of vulnerabilities combined with the increasing motivations and capabilities of the 

attackers. The paper focuses on sensor attacks and addresses ways of prioritising 

sensors. Attack types were studied using the Tennessee-Eastman process control 

system (TE_PCS) model [186]. An automatic response mechanism was introduced 

based on various system states taking into consideration a false alarm response. 

The author’s main conclusion was the strength of the TE-PCS’s design resilience. 

Although the proposed principles and techniques could be applied to other physical 

processes and the false positive rate at 1000 simulation cycles was 0%, the 

automated response may not be appropriate for all control systems. The author 

cautions of a likely lack of resilience by design in large-scale control systems which 

could remain vulnerable to several attack vectors. Further, the author in reference 

[184] defined a trustworthy service as one which secures against cyber-attacks and 

operates normally despite faults or attacks. The authors proposed an IoT framework 
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to integrate Smart Water Systems (SWS) with the IoT using a multilayer architecture 

trustworthy service and proposed that security issues should be addressed 

systematically by developers during the design and development of each IoT layer. 

Anomaly Behaviour Analysis (ABA) Intrusion Detection System (IDS) methodology 

was applied to protect the secure gateway from attacks utilising the SWS Testbed. 

The secure gateway is part of the communication layer. The general detection rate 

of the ABA-IDS approach was over 90% for 600 packets/second intensity, with less 

than 3.5% recorded false alarm rate, with the fastest detection of 1 s and the slowest 

detection of a 4 s interval. 

 

 Other studies [73, 181] focused on CNI such as power grids whilst urban systems 

were investigated by reference [158]. In reference [73], the resilience of five classical 

routing protocols applied in distributed large-scale networks was studied through 

simulation. Resilient techniques using route diversification were introduced to 

enhance the protocols’ resilience against cyber-attacks. The resilience was 

evaluated based on metrics consisting of five performance parameters which 

showed promising results. The communication layer was also the focus of the [181] 

study, which proposed a new metric system framework to assess the reliability of 

large-scale distributed power systems. The author asserts the importance of 

combining the communication layer’s cyber vulnerabilities with the physical layers’ 

resilience for a meaningful assessment of the system's sustainability. The following 

study [158] developed a network efficiency and resilience evaluation method for 

Intelligent Transportation Systems (ITS) in response to random and targeted attacks 

in urban areas. The author maintains that although the use of sensors is beneficial 

for automation, the infrastructure through their use becomes complex and liable to 
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unknown and little understood vulnerabilities. The article concludes that the system’s 

relative resilience was not sensitive to the levels of disruption. Integrity attacks were 

investigated by reference [185] who proposed a global attack detection system for 

resilience against attacks on the railway traction systems. Resilience mechanisms 

that can be applied during runtime and are adaptable to the changing environment 

were studied by reference [179]. It is argued by reference [158] that the rate of 

integration of smartness in many systems proliferates at a greater rate than the ability 

to develop resilience. Whereas reference [180] identified resilience in the IoT as a 

significant challenge with research often focused only on one aspect or a single 

attribute of resilience. Our results, as shown in Table 5, support this notion, for 

example, 46% of the primary studies considered the communication layer, while only 

5% considered all three layers. This SLR found that the communication layer had the 

most significant incremental trend in 2018, as presented in Figure 5, generally with 

an utmost focus across the smart industry and smart mobility sectors, Figure 6. 

Table 5 Primary studies categorisation by the reference model layers. 
Threat Layers Primary Studies 

Physical, Communication and Application [68, 69, 185] 
Physical and Communication [2, 72, 125, 156, 157, 181, 183, 184, 187-194] 

Physical [41, 159, 195-197]  

 
Communication [36, 41, 73, 158, 179, 180, 196, 198-213] 

Application [70, 195, 214-217] 

 

 

Figure 22 Time series categorization of the threat layers addressed by the primary studies. 
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Figure 23 Reference model layers categorization of smart sectors addressed by the primary studies. In this 

graph, multiple sectors addressed in a single study are reported individually to preserve sector visibility. 

  

When investigating the adversary type, the results show that 19% of the primary 

studies considered internal and external threats in their research, as presented in 

Table 6. In 45% of the studies, the threat type was not sufficiently clarified. However, 

this research observed a continued increase in studies focused on a combination of 

external and internal threats, as presented in Figure 24, generally with the greatest 

aggregation of studies in the smart infrastructure and smart mobility sectors, as 

illustrated in Figure 25. 

 

Figure 24 Time series categorization of adversary type threat factor of smart sectors addressed by the primary 
studies. 

 Some studies [73] addressed insider threats on smart devices such as smart 

meters, which can be compromised by an active attacker to disrupt network 
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communication. The study in addition to considering the compromise of the physical 

nodes addresses the ability of the protocol to absorb the degradation following an 

insider attack. In [191], the focus of the study are large-scale distributed CPS 

proposing a quantitative cyber-physical security assessment methodology, the 

following research study [218] provides an overview and discusses related risk 

assessment methods. Another study [179] investigated external threats and 

articulated that the challenges of IoT devices provide means for hackers to access 

such devices. Therefore, the proposed testbed aimed to facilitate the analysis of 

various types of IoT devices either by using the conventional penetration testing 

methodology or advanced security testing utilising an ML approach. Internal and 

external faults including malicious activity were addressed by other studies [180, 

219]. In reference [212, 219], the focus of the paper is on a Multiple Characteristic 

Association (MCA) approach to address cyber-attacks and faults in electrical CPS 

and reference [212] utilised an attribute-based time-sensitive and location-centric 

access control model consisting of an administrative and an operational component 

with applicability to remote and local operations.  

 

Figure 25 Adversary type threat factor categorization of smart sectors addressed by the primary studies. In 
this graph, multiple sectors addressed in a single study are reported individually to preserve sector visibility. 



Page 76 of 226 
 

Table 6 Primary studies categorisation by adversary threat type 
Threat Type Primary Studies 

Internal and External Threats [36, 72, 125, 156, 180, 190, 194, 196, 202, 212] 

External Threat [157, 179, 184, 187, 189, 191, 193, 197, 198, 201, 203] 

Internal Threat [59, 82, 157, 182, 184, 213, 217, 220] 

 

c. DFIR Analysis 

 Digital forensics forms a substantial part of IR in the cybersecurity sector;  it is a 

recognised scientific methodology with a key focus on the process and verifiable 

conclusions. Although several published digital investigation models outline the steps 

for investigation by forensic teams, there is no single uniform IR model. The simplest 

lifecycle for an investigation model consists of three stages, “acquisition”, “analysis” 

and “reporting”. However, with the increased penetration of digital technologies into 

modern lives, there were several revisions to the investigation stages.  The U.S. 

Department of Justice (DoJ) proposed a four-stage process consisting of 

“acquisition”, “identification”, “evaluation” and “admission as evidence” [221]; the 

DFRWS model consists of six phases namely “identification”, “preservation”, 

“collection”, “examination”, “analysis” and “presentation” [222]. The ADFM has 

expanded the process by three more stages: “preparation”, “approach strategy” and 

“returning evidence” [223]. Due to the evolving sources of DE, the digital and physical 

environments are closely converged where physical artefacts contain the DE, which 

is reflected in the Integrated Digital Investigation Process (IDIP) consisting of five 

stages defined as “readiness”, “deployment”, “physical crime scene”, “digital crime 

scene” and “review” [224]. Similar to the DFRWS model, the ISO/IEC 27050-3:2017, 

a general-purpose framework for Electronically Stored Information (ESI) was 

developed for digital investigations containing seven stages: “identification”, 

“preservation”, “collection”, “processing”,  “analysis”, “review” and “production”. The 
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NIST published an IR procedure NIST 800-61 in response to the frequency of 

emerging incidents consisting of four stages: “preparation”, “detection and analysis”, 

“containment, eradication and recovery” and finally “post-incident activity”. In CPS, 

IR is a complex, multifaceted problem crossing the physical and cybersecurity 

boundaries.  

 

 The primary studies were classified by their key themes into groups according to 

the NIST 800-61 IR stages [178]. The studies were determined to have focused 

predominantly on the detection and analysis stage, as shown in Table 7. 

Table 7 DFIR key stages categorisation of primary studies. 

Key Stage Primary Studies 

Preparation [69, 180, 191, 225] 

Detection and Analysis 
[2, 25, 36, 41, 68, 72, 125, 156-159, 179-185, 187-191, 195-202, 204-208, 

210, 211, 213-215, 220] 

Containment, Eradication and 

Recovery 
[68, 70, 73, 158, 180, 183, 184, 194, 203, 209, 211, 212, 215, 217] 

Post-Incident Activities none 

 

 Preparation is an important part of the IR. Apart from compiling assets, creating a 

communication plan, setting metrics or creating an incident plan for each type of 

incident, security event simulation is also a valuable part of this stage. Simulation 

or modelling helps identify gaps, determine and optimise which security events and 

at what trigger should be investigated; therefore, they provide a controlled 

opportunity to strengthen weaker areas and improve cyber resilience, which was 

discussed in the previous section. For example, the author in reference  [225] 

proposed a novel framework using the Fuzzy Analytic Hierarchy Process to evaluate 

and rank the cybersecurity challenges in smart cities. Amongst the 9 identified smart 
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sectors (factors) and 32 sub-factors, smart security was rated highest for being 

influenced by cybersecurity challenges in smart cities. The results of the study 

placed the sub-factors identified as part of smart security in the highest priority 

areas influenced by cybersecurity challenges which were identified as “surveillance 

and biometrics” followed by “simulation and modelling” and “intelligent threat 

detection”. The results show that smart security sector studies do not have a specific 

focus on cyber resilience aspects, see Table 4. and the research focus relates 

predominantly to the communication layer threats, see Figure 23. A security-by-

design approach was proposed by reference [69] articulated as a framework to 

develop a highly secure and trustworthy smart car service and protect them from 

cyber-attacks. The authors argue ABA is a more suitable approach because of the 

sensors’ low computational power and therefore a lack of encryption techniques 

applicability. The sensor profiling was accomplished by using the Discrete Wavelet 

Transform (DWT) coefficients and the Euclidean distance was utilised for sensor 

classification. The presented results demonstrated up to 95% accuracy for unknown 

and 98% for known attacks with a low false-positive rate. 

 

 Incident Detection and Analysis (IDA) is a key phase in IR because the 

response cannot be manifested without accurate detection. Although incident 

detection is considered a reactive approach, there are detectable events that precede 

an incident. The results from the primary studies show that the highest distribution in 

the detection and analysis stage of the IR model is in the smart infrastructure sector 

as shown in Figure 26, and overall 67% of the sampled primary studies focus 

exclusively on cyber-attacks detection, as shown in Figure 27. The author in 

reference [68] presents a framework for smart homes and smart buildings 
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addressing multiple layers and threat types. The study utilised ABA-IDS to 

continuously monitor, detect and classify cyber-attacks against sensors with high 

accuracy. The study aimed to extend the methodology to other IoT security 

frameworks, such as smart water systems [184] and smart grid systems [189]. Both 

studies rely on ABA-IDS utilising JRip classification algorithm achieving up to 99.8% 

and 97.18% accuracy on their respective datasets. The ABA-IDS detection and the 

classification results for reference [68] were similar and in some instances exceeded 

the results of other state-of-the-art protection systems for smart grids. Different 

approaches were proposed to enhance the detection of cyber-attacks in ICS. For 

example, a secure water treatment plant often consists of distributed cyber 

infrastructures that control physical processes. The author in reference [201] 

proposed a Time Automata (TA) approach, whilst another study [25] focused on a 

hybrid of machine learning combined with specification-based detection. An 

orthogonal defence mechanism consisting of several intelligent checkers was used 

by the author in reference [72]. 

 

Figure 26 DFIR stages categorisation across smart sectors addressed by the primary studies. In this graph, 
multiple sectors addressed in a single study are reported individually to preserve sector visibility. 
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Figure 27 DFIR stages addressed by the primary studies. 

 

 Containment, Eradication and Recovery (CER) is the part of the process where 

models and standards differ. Whilst NIST views the CER as a single step, SANS 

(SysAdmin, Audit, Network, and Security), DFRWS and ISO/IEC 27050-3:2017 view 

them as separate segments. Furthermore, the terminology used by different 

frameworks and standards to identify similar steps can vary. The terminology used 

by NIST 800-61 refers to containment as an aim to stop the attack or threat, 

eradication removes it stopping cross-systems proliferation and recovery aims to get 

the system operation returning to business as usual. The figures show that only 13% 

of the primary studies investigate the CER segment of the IR procedure, as shown 

in Figure 27. For example, the focus of the following study [158] is on increasing 

resilience rather than lowering risks to demonstrate system recovery from disruption. 

The author argues that smart development over resilience may benefit some smart 

systems to achieve recovery through automation by redistributing the traffic by 

using alternative routes. This is part of the investigated model’s algorithm. 

However, the limitation of the study is its consideration of large and very large urban 

areas; therefore, the model’s applicability was not tested on smaller urban areas. 
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Furthermore, the modelled scenario captured only a limited set of ITS disruptions, 

therefore, the effect of disruptions from different cyber-attacks compared to those 

which were tested, and their method of recovery may vary. The author in reference 

[73] presents an interesting notion of extending the concept of resilience in 

networking to survivability, fault tolerance and security, however, acknowledges 

difficulties in defining quantitative metrics. Focusing on the internal threat, the 

reliance is on the protocol’s capacity to absorb the attack under some failure 

behaviour and the resilient technique provides dynamicity to improve the self-healing 

capabilities of smart meters. Another study with a focus on resilience mechanisms 

[180] proposes achieving self-healing through a structural adaptation approach by 

substituting failed components as a method of recovery for compromised CPS. The 

author asserts that this is achievable provided the compromised component is 

redundant and can be isolated. The author in reference [68] proposed an IoT 

security framework and based on the detection of abnormal behaviour, recovery 

actions can be taken. Other studies acknowledge the elapsed period before IR starts 

after the attack occurs. For example, the study in reference [217] presents a hybrid 

solution of distributed and centralised continuously evolving trust-based intrusion 

detection model aggregating multiple trust data sources to enable an effective in-

flight network defence. The study claims, that following an abnormal pattern's 

emergence, trust-value triggered IR with active defence is possible. Comparable to 

the results in Section 2.3.3 c, the results from the primary studies show that research 

often focused on one aspect of DFIR, see Figure 27. 

 

 Post-Incident Activity (PIA) is one of the most important phases of the IR 

process, but it is most often omitted [226]. This phase provides an opportunity to 
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contribute to continuous learning, an evidence-based body-of-knowledge and to 

form a robust CTI. The IR can be accelerated by having an effective and specific 

CTI context around an initial indicator [227]. Therefore, a review of what occurred 

and defining actionable advice that can be used to inform decisions in the IR’s 

preparation phase is important to achieve a closure of the IR process. The PIA has 

not been addressed by the primary studies. 

 

d. Data Source Analysis 

 Through this research, a lack of available real datasets from CPS systems was 

identified. Although experimentation was carried out, predominantly this was limited 

to software-based simulations (46%) and simulation infrastructure (42%) by the 

primary studies, as shown in Figure 28. The infrastructure-based simulations 

typically relied on testbeds to replicate real-life CPS device settings such as secure 

water treatment (SWaT) or water treatment plant (WTreat) testbeds [190, 196]. 

However, in 12% of the studies published between 2018 and early 2019, public 

scientific datasets like BATADAL [125] or CAIDA [207] were used either solely or in 

conjunction with software-based simulation. Carrying out experimentation in an 

isolated environment limits testing in several ways. For example, the unavailability of 

a current real dataset limits the reflection of the current threat types and limits the full 

contextualisation of the actual CPS devices’ constraining factors such as resources 

or connectivity disruptions. 

 

e. Analysis of Primary Studies Cross-Sector Proposals or Applications to 

Improve Digital Forensics 
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 The purpose of analysing the cross-sector proposals or applications in smart cities 

is to explore transferable solutions that emerge from individual smart sectors to 

investigate possible trends and attempts to improve DF investigations. To achieve 

this, the primary studies were organised accordingly to the smart sector’s 

distribution according to the scope of our research, as shown in Figure 29. 

 

Figure 28 Data source referenced by the primary studies. 

 

Figure 29 Smart sectors addressed by the primary studies. 

  

The scientific community focused the research on smart infrastructure, followed by 

smart mobility and smart security sectors whilst smart healthcare and smart citizen 

were addressed only by a small number of studies, see Figure 29. Some of the 

studies address more than one themes, which is taken into consideration. This trend 

could be explained by the influences of key events such as Industry 4.0 and the 
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maturity of the research of the design principles and enabling technologies in these 

areas [1] whereas the lack of research within the smart healthcare and smart citizen 

sector could be impacted by regulatory restrictions, ethical challenges, lack of 

relevant usable datasets and the current health care models or pathways [195]. 

 

 The results show that some studies address more than one smart sector [184, 

195, 202, 206, 208, 215] or aim to diversify their future research [25, 72, 156, 157, 

180, 182, 188, 191, 213, 216]. For example, reference [195] explores smart support 

for independent living of the elderly within the community to maximise their 

independence whilst maintaining the ability to deal with their complex medical needs 

across multiple smart sectors including healthcare, homes and infrastructure. 

Furthermore, several studies consider developing their research to generalise 

applicability to other smart sectors and acknowledge the need for framework 

adaptability as a result of the complexity and constant change of interconnected 

devices [215]. For example, the principles and techniques applied by reference [182] 

could be applied to other physical processes than the one covered by the study, 

whilst reference [213] suggests their methods can be applied in several CPS 

domains such as power networks, transportation, oil and natural gas systems. 

  

 Although the cyber threat landscape is changing from hobby-hacking to organised 

cybercrime, the cyber-attacks are becoming more sophisticated, organised and 

targeted; there is little scientific evidence of attempts for supporting modern DF, 

cross-organisational information security sharing or coordination [30]. Security 

practices remain in silos lacking collaborative cyber defences to deal with the 

increased sophistication and coordination of cyber-attacks including APT [4, 29]. 
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This assertion is supported by our analysis of primary studies thus far. The transition 

from more traditional to IoT-enabled CPS creates highly complex ecosystems, 

however, the focus of research is often limited to the boundary of the individual 

organisation or smart sector. 

 

f. Typology Analysis 

 The purpose of the typology analysis is to separate the non-empirical and the 

empirical studies and to examine their chronological distribution. This analysis helps 

to better understand if the CPS frameworks and systems supporting cyber resilience 

or modern DFIR are predominantly academic ideas built on theory or do they emerge 

based on identified needs or as a result of relevant events. 

 

 Cyber-attacks are a natural progression of physical attacks; they are more 

economical, reduce the risk for the attacker and have fewer geographical constraints. 

Studies from the sample recognised the cybersecurity risk factors that the integration 

of connected devices, sensors and automation helped by AI has on smart 

ecosystems. In 2011, the focus of an [182] empirical study was attacks on sensor 

networks and their impact on the process control system. The research study 

referred to the example of targeted ICS-based attacks such as the Maroochy Shire 

Council sewage attacks in Queensland, Australia in 2000; Ohio’s 2003 Davis-Besse 

Slammer worm private network attack and the 2007 Iranian nuclear plant Stuxnet 

worm attack. The control systems’ vulnerabilities such as Stuxnet and urban 

migration are also referred to by reference [68]. In 2007, the disruption and 

economic consequences of a large-scale cyberattack on the USA power grid were 

studied by [108]. Several non-empirical studies investigated the theoretical concepts 
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or potential challenges to be addressed for different aspects of the cyber defences 

against targeted attacks related to the increased interconnectivity and heterogeneity 

of the physical and cyber convergence. In 2014, the following study [90] investigated 

a federated building information system as a method of preventing hostile 

reconnaissance, managing intellectual property and enabling operational security. 

The study refers to a 2013 incident in Hackney, London in which a piling rig 

penetrated the roof of a Network Rail tunnel. 

  

 Therefore, the proliferation of digital technologies and the integration of IoT with 

physical systems expands the scope of forensic science creating a need for new 

specialised forensic techniques to reduce the backlog, workload and cost of the 

forensic investigation process [228]. DF has developed as a branch of forensic 

science alongside the conventional forensic disciplines covering diverse digital 

technologies that can be exploited by criminals. The results presented in Figure 30 

demonstrate the chronological trend between surveys, non-empirical and empirical 

studies. The focus of this SLR is on primary empirical studies. The total of the studies 

shows that non-empirical studies including the survey-type studies amounted to 64% 

compared with 36% of the empirical studies of the reviewed samples. Although the 

number of survey studies consistently increased, a sharp increase in empirical 

research is observed during 2017 and a similar surge in the non-empirical studies is 

observed in 2018. Depending on this evidence, it is possible to argue that this 

dynamic could be influenced by the key events discussed in Section 2.3.3 a. 

Furthermore, from the empirical studies, it emerges that the focus of the research 

was informed by the threats of specific events, driven by the need for defence-in-
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depth mechanisms and influenced by the implementation of technological innovation 

and application within smart sectors. 

 

Figure 30 Comparison chart between empirical, non-empirical and survey studies. Non-empirical studies 
passed the systematic Phase0, Phase1 and Phase2 selection process’ stages. Survey-type studies were 

considered, based on the original search string, in Phase0 an 

 

g. Geographic Analysis 

 The purpose of the geographic analysis is to support the analysis in previous 

sections and gain a better understanding of where the research is concentrated, 

which geographical sectors have interest and opportunities for research addressing 

CPS-related cyber resilience and DFIR in smart cities. To achieve this, from the 

primary studies’ authorship list, each unique country was recorded and assigned to 

the continent, as demonstrated in Figure 31. The colour hue represents the 

frequency of research carried out within the geographic region. The geographic 

analysis shows that the USA with 23% has the highest number of contributions of 

reviewed studies, followed by Singapore with 10%, the UK with 8% and Australia with 

7% of contributions in the reviewed studies. In terms of continents, Figure 32 shows 

that Asia is the continent with the highest concentration of the relevant CPS research 

at 37%, closely followed by Europe at 30% and North America at 26%. Central and 

South Americas, Australia and Africa are the continents with the lowest number of 

published studies within the scope of our research. 
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Figure 31 Geolocation by primary studies 2011-Q1/2019. (Microsoft product screenshot(s) reprinted with 
permission from Microsoft Corporation. https://www.microsoft.com/en-us/maps/ product/print-rights).  

 

 

Figure 32 Continental distribution of primary studies. 

 

2.5 Discussion 
 

 The analysis revealed that in the last decade, CPS have emerged as a new 

paradigm. As a result of the increased growth, complexity and heterogeneity of 

these infrastructures [161, 219], the volume and the variety of vulnerabilities and 

attacks have evolved highlighting the need for defence mechanisms [229], the need 

for cyber resilience and the capability to support DFIR [28, 36, 61, 62]. In this SLR, 

https://www.microsoft.com/en-us/maps/product/print-rights
https://www.microsoft.com/en-us/maps/product/print-rights
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the analysis of the primary studies supports the assertion that CPS-related cyber 

resilience and DFIR are active research domains. As has been noted in the analysis 

of the results, several empirical research studies have focused on CPS-related cyber 

resilience and DFIR. For example, Table 4 summarises primary studies which 

focused on aspects of cyber resilience across several different smart sectors, while 

a summary of primary studies with a focus on DFIR’s key stages in smart cities is 

shown in Table 7. However, despite the importance of cyber resilience and support 

for DFIR in smart cities, these aspects have not been extensively considered by 

researchers in the context of CPS. As was already noted, Figure 24 demonstrates 

a different level of scientific interest in adversary type research while Figure 25 further 

analyses the phenomena and presents the gaps across specific smart sectors. 

Furthermore, summarised in Figure 26 and Figure 27, the analysis revealed 

differences in scientific interest in the DFIR stages with further variations across smart 

sectors. This poses an important question as to the reason for those differences. 

However, it is not the aim of this SLR to provide the answer but to identify the gaps 

and present some open challenges and findings that can be used in future research 

directions [68, 230]. 

 

 Concerning RQ1, during the primary studies’ selection process, the researcher 

observed the availability of studies related to CPS applications. Within those 

studies, aspects of security may have been mentioned but they were not the focus 

of the study and often cyber defence was omitted altogether [231]. Moreover, 

although CPS proliferate many aspects of modern lives and the demand and need for 

resilience in CPS increases [232], the analysis revealed a distinct lack of available 

empirical research focused on cyber resilience in the smart healthcare and smart 
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citizen sectors Figure 23. Apart from the complex and diverse ethical challenges 

including privacy and confidentiality concerns [233], possible reasons for disparity 

include the maturity of the Industry 4.0 technology compared with the smart sectors 

summarised in Figure 21 [163, 164]. Moreover, the scale of media coverage of 

attacks on CNI like the cyberattack on the Ukrainian power grid [65] or Stuxnet [64] 

could also contribute to the prominence of the research in those sectors. Despite this 

prominence, validation of the proposed solutions requires carrying out cyber-attacks 

or otherwise adversely impacting the infrastructure. Therefore, any validation 

requires a strictly controlled environment to avoid accidental disruption or damage. 

Particularly in ICS, building this kind of industrial capability can be economically 

demanding. Beyond reproducibility of research, suitably controlled environments are 

required to deal with the unpredictability of real-world challenges. This requires a 

realistic environment often involving physical infrastructure that represents prevalent 

adversary challenges  [25, 68, 72, 190, 196, 197, 213, 220]. In their current state, 

mainstream systems may not be equipped with the infrastructure to facilitate such 

testing and would require significant change. Without such capability, it is difficult to 

understand new cyber risks and find effective methods to defend against modern 

adversaries.  

 

 In addition to challenges accessing infrastructure-based simulators or testing in 

a production environment, there is a lack of publicly accessible up-to-date datasets, 

as illustrated in Figure 28. The following study [231]  stressed the need for access to 

public data to enable the successful adoption of technological innovations. To 

validate Industry 4.0-based proposals, the following study [2] relied on a combination 

of datasets. The limitation of the dataset used by reference [207] covering malicious 
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IoT devices is the use of the CAIDA darknet datasets which predominantly contain 

malicious material. Based on the results, the research community appears to lean 

on software-based simulation using established platforms, predominantly Matlab  

[181, 188, 200, 201, 214], but researchers also utilise UPPAAL [201] and ProModel 

Process [188] simulators. Therefore, software-based simulations are a frequent 

choice to test experimental concepts. However, using software-based simulations 

may not be most suitable in some cases. For example, in smart mobility scenarios 

involving driving where reactions could be very different in a simulated environment 

knowing that a simulator can be restarted with a click of a button compared to a non-

simulated experiment. This may have profound consequences for the required 

acceleration of research on cyber defence of CPS within smart cities since there is 

reliance on simulators for sufficient presentation of threats compared to reliable 

decision-making in a real-world environment. Therefore, up-to-date real-world 

datasets are vital for researchers. They are valuable since they include nuances 

generated from real-world applications including exposure to current adversary 

challenges. They help researchers validate security processes and ML techniques 

against challenges based on current cyber threat intelligence for detection and 

classification of threats in CPS. Availability of real-world data, particularly concerning 

ICS, is challenging and a barrier for the research community to advance security 

research. 

 

 Infrastructure in smart cities consists of a growing number of highly integrated 

CPS including traditional devices or entire cities retrofitted with new technologies to 

facilitate IoT connectivity [4, 150, 152]. Concerning RQ2, these devices contribute 

very little to support a systematic DFIR process in smart cities. Therefore, there is a 
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need to develop a process-driven DFIR to deal with the evolving cyber threat 

landscape, the expanded attack surface and the attack vector introduced through IoT 

connectivity [30, 35]. Furthermore, as the sources of evidence evolve, DE is 

contained within the physical artefacts [56]. For example, image-based evidence 

can be gained through Closed-Circuit Television (CCTV) surveillance or from social 

media. Behavioural anomaly detection can be used to detect unauthorised vehicle 

use through driver profiling [234], detect attacks on smart water systems [184] or 

unauthorised access within smart workplaces [6]. 

 

 DE, similar to physical evidence, seized at a crime scene or following a security 

incident, is relevant during DF investigations [159]. The majority of the primary 

studies have researched a subset of an IR process, predominantly focusing on the 

“detection and analysis” phase Figure 27 of an incident utilising different approaches 

including profile detection, behavioural anomaly, system monitoring or audit analysis 

[68, 69, 157, 179, 180, 183, 184, 189, 202, 205, 206, 209]. While incidents detection 

is a reactive activity by nature, it is a key enabler for subsequent DF processes, which 

cannot occur without detection and identification of an incident. However, leaning on 

Locard’s theory, contact between items causes an exchange. Without CPS-specific 

support for modern DFIR, a forensic investigation from a complex interconnected 

cyber-physical environment may not extract DE appropriately. Therefore, the 

important artefacts gathered during the acquisition stage may not be admissible in 

a court of law because the validity and integrity of the DE are not appropriately 

maintained. Best practice guides are published—within the UK jurisdiction, the 

Association of Chief Police Officers (ACPO) [235] and, in the US, with the Best 

Practices for Seizing Electronic Evidence [236] to support incident practitioners. 
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 The authors of the following study [41] argue that in some smart sectors such as 

smart homes, the application of digital forensics is an emerging field of study and 

asserts that there is a distinct lack of formal methodologies addressing the 

application of digital forensics in incident responses. Furthermore, recent studies 

show that the integration of CPS in smart cities would significantly benefit from a 

specific forensic methodology as part of forensic preparedness to deal with security 

incidents [41, 42]. However, a lack of consensus and formal process models in the 

DF field that can be used to determine the reliability of DE in courts is argued by 

reference [237]. Finally, the increasing integration of technology into modern lives 

and the breadth of digital technologies exploitable by criminals requires extensive 

research to develop appropriate frameworks. 

 

 Concerning RQ3, the significance of the primary studies investigated is that 

despite the transition from traditional to IoT-enabled environments, the research 

findings show limited evidence of cross-sector proposals or applications for 

improving DF. The authors of [30] claim that there is little evidence of cross-

organisational information security sharing, structure and coordination. Considering 

this assertion within the context of CPS, although researchers recognise the lack 

of shared practice, efforts are made to expand and improve cyber defence often as 

part of their future research direction. However, the various attempts to improve 

the ability to withstand targeted attacks [182] remain within a smart sector; for 

example, discussions are initiated between groups such as the control and security 

practitioners but very few studies exploit the idea of cross-sector efforts to improve 

digital forensics. For example, the authors of [25] consider their underlying idea 
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applicable to multiple smart sectors which indicates recognition of more integrated 

approaches. The proposal of the authors of [72, 215] was to increase the flexibility 

and application of their system in several different environments. Generally, the 

explored research focused on developing and improving cyber defences within a 

single smart sector. Embedded throughout this thesis is a fundamental motivation to 

explore transferrable solutions that emerge from smart sectors and other disciplines 

contributing to the scientific community to improve cyber defence in CPS. Likewise, 

this research acknowledges the significance of generalisation and applicability of the 

framework and related models to contribute to advance research across other smart 

sectors.  

 

 In summary, this research draws on the results of the extensive SLR process, 

presents and discusses the outcomes of the findings. The extensive review 

uncovered several gaps which could provide the basis and create opportunities for 

future research. These include a lack of industrial capability to produce real-world 

datasets to develop and validate cyber defence techniques to defend against modern 

adversaries and a lack of up-to-date publicly accessible datasets. 
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3. Chapter: Cyber Resilience in Industrial Control 
Systems 

 

3.1 Industrial Control Systems Architecture Components 
 

 As illustrated in Figure 33, ICS consist of collections of PLC, HMI and SCADA 

subsystems that control field devices or equipment through the monitoring and 

processing of data associated with industrial processes [238, 239]. Centralised data 

acquisition and control are vital for maintaining the operational efficiency of the ICS 

[14]. Utilities such as electric grids, power plants and water systems, chemical plants, 

pipelines, manufacturing, transportation, and other physical processes are 

supervised and controlled by SCADA systems [240]. They are commonly used in 

critical industrial infrastructures. While ICS encapsulates heterogeneous hardware 

and software tools to support industrial operations, ICS were not traditionally 

designed to sustain networking-enabled applications [241]. SCADA systems have 

evolved from first-generation large systems to dispersed systems of the second 

generation that are based on exclusive network technologies. This evolution guided 

the development of the third-generation, fully networked modern systems that 

leverage the use of internet technologies [242]. In modern environments, most of the 

ICS components are connected to telecommunications networks and interact with 

the internet [243]. Today’s ICS are fully integrated with the fourth industrial revolution 

technologies such as big data analytics, IoT, cloud computing, robotics, mobile 

computing and AI to fulfil industry requirements.  

 

 Figure 33 shows the basic hierarchy and ICS architecture components, which are 

classified into three layers and five distinct levels. The Physical Control Layer 
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consists of the Field and Control Levels. The Field Level contains the field 

instruments and is the lowest level of the control stack hierarchy. This level includes 

sensors, pumps and actuators that are directly connected to the plant or equipment. 

They generate the data that will be used by the other levels to supervise and control 

the processes. The Control Level uses PLCs. They are adapted industrial digital 

computers that control the manufacturing processes. PLCs link the field instruments 

with the SCADA host software using a communication network. SCADA operates at 

the Logical Control Layer which consists of the Supervision and Management layers. 

SCADA monitors, maintains and engineers processes and instruments whereas the 

Manufacturing Execution System (MES) is responsible for process scheduling, 

material handling, maintenance, and inventory. The Corporate Network Layer and 

the corresponding Enterprise Level is the top level of industrial automation which 

manages the whole control or automation system. This level utilises Enterprise 

Resource Planning (ERP) systems for commercial activities including production 

planning, customer and market analysis, orders and sales. Furthermore, as 

illustrated in Figure 33, ICS are automated, they require expert engineering 

knowledge, real-time processing and dealing with deterministic data patterns. These 

systems are designed for safety, reliability and availability. They have not been 

developed around the traditional CIA cybersecurity pillars [5]. 
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Figure 33 Components and architecture of Industrial Control Systems 

 

3.2 Inherent and Emerging Threats 
 

 Ubiquitous sensor networks are transformational to the operations of ICS.  They 

are integral segments of smart cities due to the level of control and intelligence 

gained from their sensing, processing, and communication capabilities. Broadly, 

CPS are subject to cyber-attacks such as targeting authentication through 

compromised key attacks [244],  compromising the confidentiality and integrity of 

CPS data by targeting the CPS data storage, communication channels, actuators’ 

controls and end-points [245]. Threats specific to ICS are often more basic such as 

outdated security measures. For example, in brownfield implementations where 

legacy systems coexist with innovative sensing technology, equipment is exposed 

through vulnerabilities resulting from outdated security updates. A false sense of 

security is provided by securing physical aspects of CPS while wireless and remote 

connectivity surpasses the physical boundaries. Poor configuration, lack of 

appropriate network segregation, compromised credentials targeting cloud-based 

ICS systems, backdoors, remote access channels, software vulnerabilities and 

smart-cyber insiders are attractive attack vectors for threat actors [7]. However, 
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compared with the well-established field of IS, ICS security is a less well-understood 

discipline and the attacks remain poorly described [18].  

 

3.3 Critical Infrastructure and Major Attacks on ICS 
 

 Notably, the number of widely acknowledged and reported high-profile attacks on 

CNI is limited, see Figure 34 and related Table 37. For example, Solar Sunrise 1998 

was one of the earliest multi-stage cyber-attacks against critical infrastructure which 

systematically exploited a vulnerability in the Sun Solaris operating systems targeting 

the United States (US) Department of Defence (DoD) networks [39, 246]. Another 

substantial incident was Stuxnet [64] where a malware attack targeted an Iranian 

nuclear plant. Norsk Hydro a renewable energy supplier was targeted by the 

LockerGoga ransomware [40]. The attack on the Ukrainian power grid compromised 

the SCADA system [65]. The attack on the Kemuri Water Company compromised 

the sensors monitoring the plant and the levels of chemicals in the water treatment 

plant were altered [61]. In the recent attack against Florida’s Oldsmar water treatment 

facility, the attackers briefly increased the amount of sodium hydroxide a 

hundredfold. The chemical is the main ingredient in drain cleaners. The facility 

supplies water to commercial establishments and about fifteen thousand residents. 

This attack could have had profound consequences on the community [247].  

Interconnected systems are subject to attacks and it may not be possible to establish 

the source or the motive [39, 248]. Thus, it is critical to establish an intelligence-

based defence-in-depth mechanism and understand the threat models posed 

against ICS. 
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Figure 34 Timeline of reported high-profile attacks on ICS for a period between 1990 and February 2021. 

 

3.4 Threat Modelling 
 

 This research study considers ICS-related cybersecurity attacks discussed in the 

literature and covered in the previous section [5, 26-31, 39, 40, 61, 64, 65, 246, 247] 

in addition to those listed in Table 15. This research asserts that ICS are integral 

components of smart cities and fundamental to the operation of industrial facilities. 

As acknowledged throughout this thesis that although ICS were originally designed 



Page 100 of 226 
 

as isolated systems with separation of the ICT and OT environments, modern ICS 

are complex, distributed and interdependent [19]. The integration of disruptive 

technologies makes ICS an attractive target for adversaries with a substantial attack 

surface and attack vectors. Against this backdrop, the number of widely 

acknowledged attacks against ICS and CNI remains limited. Besides the prevalence 

of attacks, research highlights the differences between the security and operational 

priorities of OT and ICT systems with increasing challenges to protecting ICS [18, 

19]. Furthermore, existing literature acknowledges that ICS are vulnerable to 

conventional IT and specific OT threats with potentially devastating consequences 

to the wider society [18, 19, 249]. Thus, effective countermeasures and incident 

response methods are required as part of layered security. 

 

 Besides threats from external adversaries, the literature indicates the prevalence 

of insider threats [249]. Social challenges such as accidental insiders, disgruntled 

employees and social engineering are underestimated and difficult to detect. These 

challenges fall outside of traditional cyber defence measures such as firewalls, 

access control, network, and host security. This research study outlined the threats 

and consideration for the attack vectors, for example: 

• An attacker could gain access to the logic and the physical control layers. 

Code injection could alter the sensor values creating discrepancies between 

the PLC registered values and the actual state of the physical process. 

Likewise, command injection could compromise the actuators and create 

discrepancies between the expected and registered state. This thesis 

considers attacks on the operational infrastructure at the physical control 

layer.  
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• An employee or a supply chain contractor with legitimate and unmonitored 

access, knowledge of the industrial equipment, related software systems and 

data configurations. A scenario could evolve where access to the computer 

systems could result in intended or accidental manipulation leading to critical 

service disruption or physical damage. The attack vector is exploitable locally 

or remotely. Moreover, physical access to operational infrastructure and 

tampering with the physical process in the system could lead to physical 

damage and alteration to the expected functioning of the operational 

infrastructure. 

• Emerging attack vectors due to introducing open standards and 

interconnectivity with enterprise and public networks in ICS create new 

opportunities for attackers [7, 24, 25, 244, 245]. Hostile and sophisticated 

threat actors such as APT will adapt their tactics, techniques and procedures 

to exploit these opportunities [5].  

• A compromised device on the enterprise network or an ICS component 

exposed to the internet could be exploited as an initial attack vector by an 

attacker [24]. Apart from unpatched or zero-day vulnerabilities, attackers 

could gain access to operational infrastructure by exploiting legitimate 

account credentials and poor security controls [250]. 

• Likewise, open standards and interconnectivity with corporate and public 

networks in ICS create new attack vectors [7, 24, 25, 244, 245]. Resourceful 

attack actors such as APT will adapt their tactics, techniques and procedures 

to exploit these opportunities [5]. The initial attack vectors could include the 

attacker’s ability to compromise a device on the corporate network or an 

internet-exposed ICS component leveraging unpatched or a zero-day 
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vulnerability [24]. Exploiting legitimate account credentials coupled with poorly 

designed or bypassed security controls, could enable the attacker to gain 

access to the ICS operational infrastructure [250].  

 

 Modern APT actors strategically and persistently adapt and evolve their tactics 

techniques and procedures to compromise technology and exploit new opportunities 

to achieve their aims. APT attacks follow a multi-stage and multipath attack process 

ranging from reconnaissance to achieving the attackers’ strategic goal. This research 

assumes an attack vector where the attacker gains access to the logical control and 

the physical control layers. Thus, pertinent to this thesis is to consider attacks on the 

operational infrastructure at the physical control layer listed in Table 15 and Table 

26.  The datasets comprise operational scenarios of anomalies and malicious acts 

such as accident, sabotage, breakdown and cyber-attack of variable duration 

affecting sensors, the network and the subsystem. They highlight consequences of 

attacks affecting the network and the physical processes. And therefore, while APTs 

could exploit any of the layers illustrated in Figure 33 as an entry attack vector, the 

datasets utilised by this thesis represent attacks the could be exploited as part of a 

multi-stage attack such as by an APT adversary to impair process controls, prevent 

response and otherwise disrupt ICS environments.
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4. Chapter: SPEAR - Super Learner Ensemble for 
Anomaly Detection Framework  

 

 ICS are integral parts of smart cities and critical to modern societies. Despite 

indisputable opportunities introduced by disruptor technologies, they proliferate the 

cybersecurity threat landscape, which is increasingly more hostile. The quantum of 

sensors utilised by ICS aided by AI enables data collection capabilities to facilitate 

automation, process streamlining and cost reduction. However, apart from 

operational use, the sensors-generated data combined with AI can be innovatively 

utilised to model anomalous behaviour as part of layered security to increase 

resilience to cyber-attacks. This chapter introduces a framework to profile anomalous 

behaviour in ICS and derive a cyber risk score. Firstly, in this chapter, the research 

focuses on anomalous behaviour detection methodology. Following that, the 

approach is experimentally validated by utilising an ICS liquid distribution case study. 

Finally, Chapter 5 is dedicated to the cyber risk quantification model. 

 

4.1 Data Mining Methodology 
 

 The Cross-Industry Standard Process for Data Mining, generally known as the 

CRISP-DM process model Figure 35 inspires the approach for the framework’s 

methodology introduced in this chapter. CRISP-DM is an open standard providing a 

clear model for analysis. The authors [251] highlight that CRISP-DM is the de-facto 

standard and an industry-independent process model applicable to data mining 

projects.  The CRIPS-DM process model consists of 6 distinct stages, as illustrated 

in Figure 35.  
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Figure 35 Schematic diagram representation of the CRISP-DM process model 

 

4.2 The SPEAR Framework Overview  
 

 This chapter presents the SPEAR Framework shown in Figure 36, to facilitate 

proactive anomalous behaviour detection in ICS. The approach is motivated by a 

study in the field of genetics and molecular biology [252]. The authors construct a 

fast learner using a weighted combination of several candidates and utilise V-fold 

cross-validation to avoid overfitting. Their approach is aimed to generalise to any 

parameter. As part of the framework in this chapter, leveraging supervised learning 

a super learner ensemble is constructed. Using overlapping RW, this research 

derives the best predictor for anomalous behaviour detection for the datasets. In this 

study, the approach differs from other studies such as [92, 93, 252]. This study does 

not rely on a single classification model for the base learners [46], it uses a stack of 

base learners, overlapping RW and apply stratified k-fold n-repeat Cross-Validation 

(CV) to each base learner [45] at the time of training the model. The choice of the 

best learner in the stack is based on majority voting. 
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Figure 36 SPEAR Framework, which consists of the data pre-processing, model training, model fitting and 

decision function stages. 

4.3 Procedure Design 
 

 Firstly, during the pre-processing phase, the temporal dataset is transformed, and 

features are extracted to solve the problem as a supervised model as shown in 

Figure 37. Contextual features contained within the date and timestamp are 

introduced including a feature to represent the elapsed time from the beginning of 

the event. This research thesis does not seek to establish the date and time of the 

events. Its interest is to uncover a behavioural anomaly as a temporal event in a 

sequence of events. Next, irrelevant, missing, or duplicated feature values or 

instances could skew the learning algorithm's performance. Such features are 

addressed during the data cleaning phase utilising several data cleaning techniques. 
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Feature engineering introduces additional features which contribute to the learning 

model’s performance.  

 
Figure 37 Supervised ML, super learner ensemble model. 

 

 To evaluate the performance of the ML model, consideration was given to the 

train, test and validation data subsets. The anomalous behaviour varies from a few 

seconds to several minutes as presented in Table 15. Therefore, consideration to 

handle imbalanced datasets is factored in. For the one-class binary classification for 

the outlier detection, the normal and anomalous datasets are combined into a single 

dataset. The base learners are trained on random subsets of the total training data 
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and are fitted with test data. The same approach is applied to individual attacks, 

creating a set of imbalanced datasets. The stratify parameter is used to retain the 

train-test split ratio for the train and test sets, setting aside 30% of the dataset for 

testing. Grid search is utilised for hyperparameter optimisation. To avoid overfitting 

or significantly reducing the number of samples in the train or test sets, repeated 

stratified 10-fold, 3-repeat CV is applied to the base learners during the model 

training. The meta-learner is trained from the outputs of the sub-models utilising a 

list of defined estimators from the stack as input arguments. Majority voting ensemble 

ỷ = mode{ λb1(x), … λb1n(x)} is applied before the final prediction is produced as 

illustrated in Figure 37 [45, 46]. The performance scores are derived from the 

confusion matrix, see Figure 38. 

 
Figure 38 Confusion Matrix 

4.4 Pilot Experimentation 
 

 Pilot experimental work focused on a small subset of the individual attack 

scenarios. Pilot experimentation helped to test and evaluate the instruments, the 

procedure and the formal experiment’s optimal time window. 

 

4.5 The SPEAR Framework Data Preparation 
 

4.5.1 Feature Extraction 
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 The timestamp feature is rearranged to the ‘Date’ format [dd/mm/yyyy 

hh:mm:ss.sss]. The single ‘Register’ feature has all sensor types as the feature’s 

values. The dataset features are rearranged according to the algorithm in Table 8, 

such that each sensor type is represented as an individual register feature fv1...fvn 

labelled R1…Ri in time series. Feature extraction by sensor type separates sensors 

by their functions while their time segments are unchanged. Furthermore, this feature 

extraction enables the grouping of different sensor types into learning sub-models 

which is an interesting approach, similar to another study [25].   

Table 8 Algorithm 1: SPEAR Framework Feature Extraction Algorithm 

Input raw dataset of instances i1...in with features fr1...frn, of values [v1….vn]  
Output labelled dataset of instances i1...in and class (normal data [0], anomalous data [1]), with features fv1...fvn of value 
[v1….vn] 
Step 1: Load raw dataset into dataframe 
            for fr identify unique values  
               extract v into fv using index ‘Date’ 
               label Class for i1….in 

           end for 

 

4.5.2 Data  Cleaning 
 

 Recording of sensor readings may become corrupted or erroneous for several 

reasons during the data collection process such as malfunctioning sensors, 

malicious activity, disruptions in network connectivity or the data collection 

infrastructure. This could result in noisy, missing, or duplicated observations within 

the dataset, in real-world data and large datasets the likelihood of erroneous data 

increases. Therefore, data cleaning is essential for a meaningful analysis of the 

dataset which is handled according to the algorithm in Table 9. This process identifies 

missing values, duplicate instances, unique feature values, single-value and low-

variance features. In this dataset, features that have a single value or very few unique 

values, and have zero or low variance of <=0.001% are not likely to contribute to the 

predictive model’s performance. Therefore, such features are removed from the 
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dataset. Missing values are often marked with a placeholder such as ‘NaN’ or left 

blank. However, not all algorithms have the resilience to deal with missing values, 

particularly predictive techniques [253]. To minimise the loss of data, missing values 

are marked. Instances are dropped where missing values <=0.5% of the dataset, 

otherwise, values would be imputed using the forward-fill method propagating the 

last observed non-null value forward until the next non-null value is reached.  

Table 9 Algorithm 2: SPEAR Framework Data Cleaning and Feature Reduction 

Input raw dataset of features fv1...fvn, values [v1….vn] and instances i1...in 
Output cleaned dataset with feature-set fvc1...fvcn of value [v1….vn] and instances ic1...icn 
Step 1: identify missing fv 

for i replace missing fv[v==NaN] 
 count fv[v==NaN] 
 print summary of missing fv 
 if missing fv[v <0.5%] 
     remove missing instances 
 else 
     impute missing fv[v, impute method == ffill] 
                      verify missing fv[v] 
 then go to step 2 
            end for 
Step2: identify duplicate instances id 
           for i: 
 calculate id 
 remove id 
 then go to step 3 
           end for 
Step 3: Identify features with single value, few values and near-zero variance predictors: 
            for i in range fv[v]: 
 print fv[v], len==unique 
 if len==unique where (unique fv[v]/total i*100)<=0.001%) 
     drop fv 
                  else 

cleaned dataset of feature-set fvc1...fvcn of value [v1….vn]    and instances ic1...icn 

            end for 

 

4.5.3 Feature Engineering and Visualisation 
 

 This part of the pre-processing phase introduces additional features to the 

dataset, according to the algorithm in Table 10. To apply an ML algorithm to train the 

dataset, the time-series dataset is transformed, so that it can be modelled as a 

supervised problem. Contextual features based on the date and timestamp are 

introduced. While information about business hours, public holidays, years’ seasons, 
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part of the week could be extracted and enhance the performance of a learning 

algorithm, in this dataset using the date would not likely help the learning algorithm 

and could result in inferior performance. The dataset is resampled using seconds as 

the smallest time unit, and the mean values for each sensor using the default label 

bucket and bin interval values. Furthermore, the seasonality and the trend 

characteristics of the discrete, pumps and ultrasound sensors in the dataset were 

established. The normal dataset’s repeatable patterns are shown in Figure 39.  

Table 10 Algorithm 3: Feature Engineering for the SPEAR Framework 
Input:  cleaned dataset of features fvc1...fvcn of value [v1….vn] and instances ic1...icn, index [Date] 
Output: pre-processed dataset with features f1...fn, values [v1….vn] and instances i1...in 
for i  
       set index fvc==datetime ['%d/%m/%Y%H:%M:%S.%f']  
       transform fvc datetime to new features where ‘second’[v==%S], ‘minute’[v==%M], ‘hour’[v==%H] 
       then resample ic1….icn, f index (v==datetime [%d/%m/%Y %H:%M:%S’]), f1..fn ([v==mean]) 
end for 
for i of sensors fvc 
      do kpss stationarity test 
end for  
Apply Algorithm 2 Step1 
for i  
       apply rolling window (interval[s], min_periods, win_type, mean) 
end for  
reset index 
drop fvc ‘datetime’  

 

 
Figure 39 Sensors' temporal distribution – normal dataset. 
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The test for a null hypothesis whether the dataset is stationary, the statistical 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test [254] for stationarity around a 

deterministic trend is applied to the sensors. The probability score, the p-value of the 

test is >0.05 (significance level), the KPSS null hypotheses not rejected, and showing 

the sensors’ stationarity around a constant as shown in Table 11. The equation  

(3.20) is used to calculate the lags [254], where ‘n’ represents the length of the series: 

int �12 ∗ � 𝑛𝑛
100

∗∗ �1
4
���     (3.20) 

No other environmental information is introduced. Further analysis of the dataset 

uses the seasonal data decomposition function to verify the stationarity around a 

deterministic trend and decomposes the data into four components: level, trend, 

seasonality, and noise. The components are structured as outlined in equation 

(3.21), where ‘y(t)’ is the time series dataset over time, Level (L), Trend (T), 

Seasonality (S), Noise (N):  

     y(t) = L+ T + S + N              (3.21) 

Furthermore, 3s, 5s, and 10s size rolling mean windows and parameters including 

minimum period and window types are utilised to test and evaluate the model’s 

performance. 

Table 11 KPSS test output stationarity test – normal dataset 

Test Output Sensor Output Values 
Sensors  Discreet Pumps Ultrasound 

Test 
Statistics:  

0.1421241
19400179
58 

0.21469603
458547087 

0.136864525
09501715 

p-value: 0.1 
Critical 
Values: 

'10%': 0.347, '5%': 0.463, '2.5%': 0.574, 
'1%': 0.739 

num lags:  36 
Stationarity Series is Stationary 

 

4.6 The SPEAR Framework Learning Algorithms Modelling 
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 This section introduces the proposed detection scheme presenting two ML 

algorithms for the framework.  

 

4.6.1 Supervised Learning Modelling 
  

 In supervised learning, the model uses the concept of a super-learner ensemble 

for classification algorithms for anomalous behaviour identification in CPS. This 

model consists of nine stacked base learners. The base learners are typically 

investigated independently to gain the best performance based on the optimal set of 

features and classifiers. The aim is to avoid selecting a suboptimal classifier to solve 

the problem, improve the predictive performance and increase the generalisation 

performance of the algorithm.  The learning algorithm, as shown in Table 12, is based 

on the general framework of several ensemble algorithms [45]. Scientific studies 

accept that meta-learners may not produce better results than any of the classifiers 

used individually, nonetheless, their use mitigates the risk of using an inefficient 

classifier  [46, 113].   

 

 The learning model is trained and tuned using resampling and resampling with 

rolling windows techniques. The stacked base learners are trained on random 

subsets of the total training data, they are fitted with test data and produce accuracy 

scores. The meta-learner is a heterogenous ensemble derived from the base 

learners consisting of different algorithms. The meta-learner is trained from the base 

learners’ outputs, utilising a list of defined estimators from the stack as input 

arguments. The meta-learner applies the majority voting method before the final 

prediction is produced, see  Figure 37 [45, 46]. The labelled dataset uses the stratify 

parameter to retain the train-test split ratio and is split into train-test sets, setting aside 
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30% of the dataset for testing. A dictionary of parameter values is defined for 

hyperparameter optimisation and uses a grid-search technique to determine the best 

parameter set. To avoid overfitting or significantly reducing the number of samples 

in the train or test sets, repeated stratified 10-fold, 3-repeat CV is applied. The two 

models are trained independently, applying 1s resampling and a 10s rolling window 

to the dataset, as shown in Figure 37. 

Table 12 Algorithm 4: Supervised Learning Ensemble Super Learner for the SPEAR Framework based on the 
general framework of ensemble algorithms [45]. 

Input:  Pre-processed dataset D = {(x1, y1), …., (xn, yn)}, 
base learners algorithm λt1,… λtn, meta-learner algorithm λ 
Output: H(x) 
Other Definitions: ht =base learner, T = Number of learning algorithms, h’ = meta-learner 
#Train the base learners by applying the base learner learning   #algorithms to the pre-processed original training 
dataset  
for t in (t1...tT): 

  ht = λt (D); 
end for 
#Produce a new dataset for training the meta-learner, 
#The output of the base learners is the input for the meta-learner 
#Original labels are retained 
D’ = ϴ;        
for i in (i1...in): 
      for t in (t1...tT):  
           zit = ht (xi); 
      end for  

#The new dataset is produced from the cross-validated the total  
#number of base learners. The meta-learner is applied where h’ will #become the function of zit1,…. zitT for y. 

         D’ = D’ ∪ ((zit1,…. zitT), yi)in
i=1; 

end for 
#train the meta-learner h’ by applying the meta learner algorithm λ to #the newly generated dataset D’. 
     h’=λ(D’); 
Output: H(x) = h’(ht1 (x), ….., htT(x)) 

 

4.6.2 Unsupervised Learning Modelling 
 

 In unsupervised learning, the model covered in Figure 37 and Figure 40, uses the 

concept of outlier detection to identify anomalous behaviour in CPS as its main 

algorithm. This model uses IF which is an unsupervised ML ensemble. ML methods 

such as statistical, clustering or classification-based algorithms require the normal 

behaviour profile established first. Unlike other unsupervised ML methods, IF defines 

anomalies as few and different [45, 119] and uses isolation to determine anomalous 
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behaviour. It does not require a profile of the normal behaviour first [119] making it a 

fast algorithm with low demand on memory. The IF creates an ensemble of isolation 

trees trained on a random data subset ‘dmax-samples’ from the main dataset ‘dmax-samples’ 

⸦ D of the maximum number of features ‘fmax-features’, as shown in Table 13. The IF, 

with several randomly created partitions, isolates the anomalies through recursive 

binary splitting completed by each of the created iTrees and randomly selects a split 

feature ‘qf’ and a split value ‘pv’ from the input dataset D’ generating a left Dl’ node 

and a right Dr’ node until all the samples are isolated, as presented in Table 14. The 

splitting required for sample isolation starts at the internal root node and terminates 

at the external leaf node with several internal interim nodes produced if there is a 

possible split remaining until the maximum path depth is reached. Accepting that the 

anomalies are few and different, they can be isolated such that they have a shorter 

path. Therefore, anomalies are isolated nearer the root of the tree while normal 

measurements are isolated near the leaf nodes of the formed iTree. Left and right 

interim nodes are created at each point that a split occurs until the final external node 

is reached at the point which cannot create any further nodes. A density-based 

approach utilising Local Outlier Factor (LOF) and a distance-based approach using 

SVM were added to the IF algorithm to investigate performance variations of an 

unsupervised multi-learner ensemble model. 

Table 13 Algorithm 5: IF Forest training phase of the unsupervised learning ensemble for SPEAR Framework, 
based on the [119] 

Input:  Pre-processed Dataset D = {x1, …., xn}, 
Number of tree estimators εn-estimators, data sub-set dmax-samples data sub-set features fmax-features 
Output: new dataset iTree D’ 
Initialise Forest 
#for the number of trees 
for i=1 to εn-estimators: 

#The maximum number of samples which represent the data sub-set and the maximum number of features in the data 
sub-set to train the tree 

     dmax-samples   ← sample (D, dmax-samples , fmax-features) 
    Forest ← Forest ∪ iTree(D’) 
end for 
return Forest 
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In this thesis, although setting the contamination level can be achieved by utilising 

subject matter expert knowledge, the labels for the dataset are known and they are 

used to set the contamination level ‘Co’ given the anomalous instances iα {1, …., α}, 

and normal instances in{1, …., n} in the dataset for the ground truth and validation of 

results as given by equation (3.22): 

𝐶𝐶𝑜𝑜 = 𝑖𝑖α
𝑖𝑖𝑛𝑛

      (3.22) 

The labels are removed and not used by the algorithm for anomalous behaviour 

detection. 

 
Figure 40 Unsupervised ML, multi-learner ensemble model. 

 

Table 14 Algorithm 6: IF iTree training phase of the unsupervised learning ensemble for SPEAR Framework 
based on the [119] 

Input:  D’ 
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Output: iTree 
If D’ cannot be split: 
       external leaf node; 
elif: 
     let Q be D’ features 
     randomly select qf ∈ Q 
    randomly select a split pv between the min and max of qf in D’ 
   D’l ← filter (D’, qf > pv) 
   D’r ← filter (D’, qf ≤ pv) 
  return interim node {Left ← iTree(Dl), Right← iTree(Dr),     feature split ← qf, value split ← pv } 
end     

 

4.7 Case Study: ICS Liquid Distribution Experiment Design for 
Piloting the SPEAR Framework  

 

 The experimental environment consisted of two liquid containers, two pumps, an 

ultrasound sensor, four discreet liquid level sensors, automated controls, and 

infrastructure for the data acquisition, as presented in Figure 41. The schematic 

diagram shows the main tank, the positioning of the sensors and their corresponding 

liquid levels. Each liquid level is coupled with the decimal representation of the value 

that each sensor assumes based on the PLC register’s binary state. The secondary 

tank shows the ultrasound sensor and the depth of the liquid. The liquid depth is 

divided into 10,000 equal segments with 0 representing a full tank and 10,000 an 

empty tank. Based on the discreet and the ultrasound triggers the pumps assumed 

ON or OFF states alternatively or in combination. This was reflected by the values 

recorded in the dataset. The diagram shows the registers’ Least Significant Bit (LSB), 

the PLC registers [R2-R7] and the dataset features allocated to the bit segment [0-

15] within each PLC register. The testbed functions in manual or automated modes 

using a touch-screen command and remote network connectivity. The pumps were 

activated and deactivated depending on the liquid reaching a pre-determined level. 

The activation of the pump which fills the main tank depended on the ultrasound 

sensor values. The pumps and the registers indicate the binary state of the sensors 

assuming two states; an ON state represented as 1.0 and an OFF state represented 
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as 0.0. The dataset contains the corresponding decimal value of the sensors’ binary 

state in the PLC register. 

 

Figure 41 The ‘aNomalies’ testbed schematic diagram and the structure of the data log registers. 

  

The instruments utilised in this case study for experimentation to process and 

analyse the collected data, and train the ML models consisted of a Jupyter Notebook 

scikit-learn ML library [255] and a Hewlett-Packard Envy x360 x64-based Intel® 

Core™ i7-8565U CPU, 4 Cores 8 logical processors  1.8Ghz, 16GB Physical and 

40GB of virtual memory. 

 

4.8 The ICS Liquid Distribution Dataset 
 

 The data used in this experiment was produced from the ‘aNomalies’ testbed [84]. 

The dataset covered five operational scenarios: normal, accident, sabotage, 

breakdown and cyber-attack, as shown in Table 15. The timestamp was presented 
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in the format of dd/mm/yyyy hh:mm:ss.sss. A read request was sent to the PLC every 

100ms. The bit segment of each PLC register according to the position of the LSB 

held the specific sensors’ values. From the total of ten registers, three PLC registers 

corresponded with the values recorded in the dataset. Registers one, eight, nine and 

ten represented no values. Register two provided the binary state of the discreet 

sensors, using the first four bits of the PLC register. Register three provided the 

binary state for the pump using the last two bits of the PLC register. Register four 

recorded the value of the ultrasonic sensor as a 16-bit integer. Registers 5-7 record 

values but it was not clear from the dataset’s description what values of these 

registers represented. 

Table 15 Files that make up the temporal dataset [84]. 
File  Scenario - Type Sensors affected Duration 

[hh:mm:ss] 
1 Normal None 02:01:47 
2 Plastic Bag ultrasonic 00:33:20 
3 Blocked measure 1 ultrasonic 00:00:25 
4 Blocked measure 2 ultrasonic 00:00:17 
5 2 floating objects in the main tan ultrasonic 00:01:35 
6 7 floating objects in the main tan ultrasonic 00:01:22 
7 Humidity ultrasonic 00:00:18 
8 Failure of a discreet sensor Discreet 1 00:13:55 
9 Failure of a discreet sensor Discreet 2 00:03:40 
10 Denial of Service attack Network 00:01:37 
11 Spoofing Network 00:34:33 
12 Wrong Connection Network 00:15:33 
13 Tank hit – with low intensity The entire system 00:00:39 
14 Tank hit – with medium intensity The entire system 00:00:32 
15 Tank hit – with high intensity The entire system 00:00:33 

 

4.9 Experimental Results 
 

4.9.1 Performance Metrics 
  

 To determine the best-performing classifier for anomaly detection this study 

derives several statistical metrics including accuracy, precision, recall and F1-score 

from the confusion matrix, see Figure 38 [256, 257]. These values are calculated 

using the True Positive (TP), True Negative (TN), False Positive (FP) and False 

Negative (FN) values from the classification model. The TP metric is the number of 
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anomalous instances in the dataset classified as anomalous. The TN metric is the 

number of normal instances classified as normal. These are the correctly identified 

instances which do not belong to the TP class. The FP are the instances that were 

incorrectly allocated to the class and FN are instances not recognised as part of the 

class, they are values of the incorrectly classified instances. Two types of errors can 

occur in a binary classification problem. Type I error or False Positive Rate (FPR) 

occurs when the model predicts a sample as anomalous when it was normal. A Type 

II error occurs when the model predicts anomalous instances to be normal, also 

known as False Negative Rate (FNR).  

 

 Accuracy is the ratio of the number of correct predictions made by the model to 

the total number of predictions made. Although the most instinctive measure of 

performance, as a ratio of correctly predicted observations to the overall 

observations, accuracy is not the most suitable performance measure for evaluating 

imbalanced datasets. Accuracy is given by the equation (4.1), 

Accuracy = TP+TN
TP+FP+TN+FN

     (4.1). 

 

 In anomalous behaviour detection, determining the number of anomalies detected 

is not a sufficient measure of the performance of the classifiers due to the existence 

of falsely predicted values. Therefore, this study utilises Precision, also known as the 

Positive Predicted Value, which can be expressed as  

Precision =  TP
TP+FP

      (4.2). 

Precision is the measure of how accurately the classifier detects an attack. This 

metric relates to the class agreement of the number of correctly predicted positive 
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instances over the number of instances labelled as positive [257]. In the case of high 

precision, there is a low false-positive rate.  

 

 The recall measure, also known as Sensitivity, is given by (4.3),  

Recall =  TP
TP+FN

      (4.3). 

Recall calculates the number of attacks detected. This metric is also referred to as 

the TPR and relates to the classifier’s effectiveness to identify the correctly predicted 

positive classes over the total number of positive observations [257]. 

 

 The F-measure or F1-score is a weighted average of precision and recall, 

providing a holistic performance evaluation measurement of the ML algorithms [257]. 

F1-score, given by (4.4), is an indicator of how accurately the model identifies the 

anomalous instances in the dataset. 

F1 =  2×(Recall ×Precision)
(Recall+Precision)

     (4.4). 

  

 The Receiver Operating Characteristic Area Under the Curve (ROC AUC) metric 

refers to the classifier's ability to avoid misclassification, useful to evaluate the ML 

algorithm’s performance when class distribution is unknown [257]. The AUC is 

defined by the area under the ROC curve and can be expressed as 

AUC =  𝟏𝟏
𝟐𝟐
� TP
TP+FN

+ TN
TN+FP

�     (4.5). 

 

4.9.2 Supevised Learner Ensemble 
 

 Before training the models, Spearman’s correlation coefficient was used to 

produce a summary of the strength between the features in the combined dataset. 
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Before training the model, highly correlated variables of at least 80% positive or 

negative correlation were removed from the dataset. Before model fitting, robust 

scaling standardisation was applied to tune the model. Robust scaling was a justified 

approach to avoid skewing the result due to the presence of instances of normal and 

anomalous classes in the dataset. 

 

 Despite the base learners being trained on the same training dataset, the results 

were produced independently. Despite a lack of a widely accepted definition of 

diversity [45, 257] in classifier ensembles, ensemble base learners are often complex 

making different assumptions about the prediction. A range of base learner 

classifiers was used in forming the super learner including k-NN, RF, LR, DT, Support 

Vector Classifier (SVC), AdaBoost Classifier (ABC), ETC, Gaussian Naïve Bayes 

(GNB) and Bagging Classifier (BC). The base learner algorithms were trained with 

the default parameters and with parameter optimisation, see Figure 42. The 

individual base learners do not produce a weak result, which would weaken the 

overall ensemble’s performance. The base learners’ results vary, which is likely to 

improve the ensemble generalisation and produce high-accuracy predictions. 

However, further optimisation is required, which could be an appropriate future 

direction to develop the model. 

 

Figure 42 Individual base learners algorithms comparison at 1s intervals and 10s rolling window. 
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 The overall performance of the models trained with a 1s resampled interval and a 

10s rolling window utilising the combined dataset is covered in Figure 43. The details 

of the two best-performing models are presented in Figure 44.  

 
Figure 43 Overall performance of the models trained with 1s resampling and 10s rolling window. 

 
Figure 44 The overall best performing super learner models. 

 The difference in the performance between the two models is illustrated in Table 

16. The optimisation improvement between the weakest and the best-performing 

model is demonstrated in Table 17. The optimisation achieved a consistent 

improvement in the overall F1-scores of 99.13%, an increase of 12.13% compared 

with the default 1s resampling rate. The most significant improvement was observed 

in the normal behaviour recall value by an increase of 23.46% and the anomalous 

behaviour precision value by an increase of 21.95% to achieve 100% in both cases, 
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as shown in Figure 44 The overall best performing super learner models. covers the 

two best-performing models. Firstly, the training time of the dataset utilising the 10s 

rolling window with the base learner default values was 3m 43s. Next, the training 

time increased to 13m 41s with additional parameters optimisation applied to the 

base learners. There are further notable differences in the testing time. Utilising the 

default base learner parameters, a testing time of 605ms, and an attack prediction 

time of 9.65s were achieved. The attack prediction of individual attacks ranged from 

694ms to 4.19s. Whereas following optimisation of the base learner parameters, a 

testing time of 703ms, the attack prediction time of 12.8s was achieved. 

 

Table 16 Overall performance details of the two best performing super learners and their percentage 
difference. 

Super learner Optimised parameters 10s 
Rolling Window [%] 

Default parameters 10s 
Rolling Window [%] 

Optimised to default 
parameters change [%] 

Overall Performance [%] 
Accuracy 98.79 99.18 0.39 

F1-score 98.77 99.13 0.36 

ROC AUC 99.00 99.00 0.00 

Normal behaviour performance [%] 
Precision  99.00 99.00 0.00 

Recall  99.00 100.00 1.01 

F1-score 99.00 99.00 0.00 

Anomalous behaviour performance [%] 
Precision  99.00 100.00 1.01 

Recall  98.00 99.00 1.02 

F1-score 99.00 99.00 0.00 

 

Table 17 Overall performance details of the weakest and best performing super learners and their percentage 
difference. 

Super learner Default parameters 
resampled at 1s [%] 

Default parameters 10s 
Rolling Window [%] 

Optimised to default 
parameters change [%] 

Overall Performance [%] 
Accuracy 88.14 99.18 12.53 

F1-score 88.41 99.13 12.13 
ROC AUC 89.00 99.00 11.24 

Normal behaviour performance [%] 
Precision  96.00 99.00 3.13 

Recall  81.00 100.00 23.46 
F1-score 88.00 99.00 12.50 
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Anomalous behaviour performance [%] 
Precision  82.00 100.00 21.95 
Recall  96.00 99.00 3.13 

F1-score 88.00 99.00 12.50 

  

 Further tuning was applied to the model for the individual attacks taking into 

consideration the imbalanced datasets. Therefore, resampling rates of 100ms, 

300ms, 500ms and 1s, and 30% and 40% subsets of the normal behaviour dataset 

in addition to the full normal behaviour dataset were applied. The performance details 

of the specific attacks trained with the best-performing super learner are presented 

in Table 18 and Table 19. The supervised ML super learner’s overall performance 

has been maintained consistently for a range of anomalies lasting between 17s and 

over 30m, as shown in Table 15 and Table 18. The model using the 10s rolling 

window achieved an overall F1-score of 99.13% and in the specific anomaly cases, 

the model’s overall F1-score remained above 97.92%. However, it was noted to be 

below 95%, therefore a rate of >5% misclassification, in attacks 2, 3 and 6 as covered 

in Table 15. The corresponding results are recorded in Table 18 which presents the 

values of the overall ROC AUC and Table 19 shows the corresponding values of the 

Anomaly Recall and F1-scores. 

 

4.9.3 Unsupervised Learners 
 

 Comparatively, the unsupervised ML model was fitted using Python’s scikit-learn 

library [255]. As part of the dataset preparation, Spearman’s correlation coefficient 

was applied, and highly correlated features were removed. According to the 

framework, before fitting the model, the features were standardised by utilising robust 

scaling applied to the 10s rolling window dataset. The comparison between the 

supervised and unsupervised models is based on the 10s rolling window. The one-
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class binary classification to detect outliers in the combined dataset and the individual 

attacks were trained on random subsets of the dataset. A stratified 5-fold CV was 

applied during the model training.  

 

 A novel IF unsupervised learning approach to outlier detection was utilised. IF 

detects anomalies by isolating instances, as shown in Table 13 and Table 14, and 

not by using distance or density measures [119]. A comparison was produced by 

applying a density-based approach utilising LOF [258] and a distance-based 

approach using SVM [259, 260]. The IF algorithm is based on the characteristic that 

anomalies are few and different from normal observations within datasets, therefore 

sensitive to isolating anomalies from the typical observations [119]. The authors [119] 

focused on unsupervised learning and continuous values in a non-parametric 

approach of multivariate data detection of anomalies only. Whereas in this thesis, IF 

was applied to parametric discreet data values of one-class binary classification for 

outlier detection. According to [119], IF scales up to extremely large datasets with a 

high number of irrelevant features to solve high-dimensional problems. Noteworthy 

about this dataset is the application of the IF learning algorithm to a dataset 

containing a few features and short periods of recorded anomalies, see Table 15.   

4.10 Discussion 
 

4.10.1 Comparison of Learners 
  

 As the outcomes are predicted based on input data, the ML models are dependent 

on the quality of the datasets. This case study compared the proposed ML 

supervised super learner method with other ML approaches proposed in the scientific 

literature [45, 46, 88, 119, 252]. While compared to data-driven approaches, model-
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based learning performs more effectively with lower computational overhead, 

particularly in larger datasets. However, in supervised learning, some of the 

efficiency is offset by the cost of the dataset preparation in feature labelling. This 

case study demonstrated that supervised learning performs comparably in training 

and testing to the unsupervised ML algorithms in computational complexity and 

performance scores based on the same dataset [88].  The experiments produced 

promising results which are presented in Table 18 and Table 19. The performance 

metrics include the anomalous precision, recall, and F1-score values, and the 

Confusion Matrix for the TP (the correctly identified normal behaviour instances) and 

TN (the correctly identified anomalous instances) values for the combined and 

specific anomalies datasets [45, 46, 257]. The performance of each classifier is 

measured by using metrics that apply to multiple classifiers. The most commonly 

relied upon metrics are Precision measuring the likelihood of the classifier providing 

the correct result, Recall indicating the detection rate and F1-score [88, 257]. 

 

 Variations were observed in results between the algorithms, including their 

performance consistency based on the level of anomalies in the datasets as shown 

in Figure 45, Figure 46 and in the algorithms’ total running time which is presented 

in Figure 47. The analysis revealed that both models have a good anomaly detection 

ability. The supervised super learner achieved an overall F1-score of 99.13% and an 

anomalous recall score of 99% compared with the IF anomalous recall score of 98%. 

The IF anomalous recall score values achieved above 60% in datasets 8, 9, and 13. 

SVM showed stronger performance where low levels of anomalous behaviour were 

present over a shorter period including datasets 3-7,10, 13-15 as labelled in Table 

15. The respective results are presented in Table 19 and Figure 45. The lower IF 

precision scores compared with the supervised ML super learner could be due to the 
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behaviour during an attack being resemblant of normal operation hence resulting in 

a higher rate of FP behaviour during some of the analysed attacks. 

Table 18  The Area Under ROC Curve of the individual attacks trained utilising the supervised ML super 
learner and the unsupervised ML algorithms with a 10s rolling window. 

Dataset AUC 
Components Anomaly 

[%] 
Super learner IF SVM LOF 

All anomalies 89 0.99 0.59 0.54 0.5 
Plastic_bag 27 0.88 0.58 0.54 0.5 
Spoofing 28 0.96 0.52 0.54 0.5 
High_blocked 3 0.98 0.92 0.91 0.5 
Second_blocked 11 0.99 0.77 0.61 0.5 
Bad_connection 13 0.96 0.57 0.60 0.5 
DoS_attack 1 1.00 0.74 0.98 0.5 
Hits_3 0.5 1.00 1.00 0.98 0.5 
Wet_sensor 2 1.00 0.50 0.98 0.5 
Poly_2 1.3 0.98 0.78 0.98 0.5 
Poly_7 1.1 1.00 0.69 0.98 0.5 
Hits_2 4 1.00 0.50 0.98 0.5 
Hits_1 5 1.00 0.50 0.98 0.5 
Blocked_1 4 1.00 0.50 0.98 0.5 
Blocked_2 2 1.00 0.50 0.98 0.5 

 

Table 19 The anomalous behaviour performance metrics of the individual attacks for the supervised ML super 
learner and the unsupervised ML algorithms. 

Main & subset dataset 

 
Algorithm Anomaly Confusion Matrix 

Precision Recall F1 TP TN 

All anomalies 
SVM: 0.92 0.1 0.18 0.99 0.1 

IF 5: 0.52 0.98 0.68 0.20 0.98 

Super: 0.99 0.99 0.99 0.99 0.99 

Plastic bag 
SVM: 0.50 0.12 0.19 0.97 0.12 

IF 25: 0.31 0.39 0.34 0.76 0.39 

Super: 0.94 0.77 0.85 0.99 0.77 

Spoofing 
SVM: 0.50 0.11 0.18 0.97 0.11 

IF 25: 0.24 0.31 0.27 0.72 0.31 

Super: 0.97 0.92 0.95 0.99 0.92 

High blocked 
SVM: 0.50 0.85 0.63 0.97 0.85 

IF 25: 0.81 0.84 0.82 0.99 0.84 

Super: 0.95 0.95 0.95 1.00 0.95 

Second blocked 
SVM: 0.50 0.24 0.33 0.97 0.24 

IF 25: 0.55 0.61 0.57 0.94 0.61 

Super: 0.99 0.99 0.99 1.00 0.99 

Bad connection IF 5: 0.22 0.25 0.24 0.89 0.25 

Super: 0.95 0.94 0.94 0.99 0.94 

DoS attack 
SVM: 0.26 1.00 0.42 0.96 1.00 

IF 45: 0.48 0.49 0.49 0.99 0.49 

Super: 1.00 1.00 1.00 1.00 1.00 

Hits_3 
SVM: 0.09 1.00 0.16 0.95 1.00 

IF 200 0.97 1.00 0.99 1.00 1.00 

Super: 1.00 1.00 1.00 1.00 1.00 
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Wet sensor SVM: 0.05 1.00 0.09 0.95 1.00 

Super: 1.00 1.00 1.00 1.00 1.00 

Poly_2 
SVM: 0.26 1.00 0.41 0.96 1.00 

IF 35: 0.56 0.57 0.56 0.99 0.57 

Super: 0.93 0.97 0.95 1.00 0.97 

Poly_7 
SVM: 0.22 1.00 0.36 0.96 1.00 

IF 15: 0.46 0.39 0.42 0.99 0.39 

Super: 1.00 1.00 1.00 1.00 1.00 

Hits_2 SVM: 0.09 1.00 0.16 0.95 1.00 

Super: 1.00 1.00 1.00 1.00 1.00 

Hits_1 SVM: 0.11 1.00 0.19 0.95 1.00 

Super: 1.00 1.00 1.00 1.00 1.00 

Blocked_1 SVM: 0.07 1.00 0.13 0.95 1.00 

Super: 1.00 1.00 1.00 1.00 1.00 

Blocked_2 SVM: 0.05 1.00 0.09 0.95 1.00 

Super: 1.00 1.00 1.00 1.00 1.00 

 

4.10.2 Computational Complexity 
 

 The experiment results indicate that computational complexity and the cost of the 

supervised super learners is significantly higher in the combined dataset and in the 

individual datasets where the level of anomalies is above 25%. This complexity 

remains higher in datasets with anomalies’ proportion of above 10% compared with 

the lower computational complexity and cost of the unsupervised multi-learners. The 

computational complexity was lower in supervised learning where fewer anomalies 

were prevalent and attacks lasted shorter. While the unsupervised multi-learners 

detected the attacks, IF did not detect all attacks, as illustrated in Figure 45 and 

Figure 46, particularly where a very low occurrence of anomalies was prevalent and 

over a short period. In those cases, SVM produced a consistently better performance 

utilising the polynomial kernel which considers the input samples, their similarity, and 

combinations, unlike IF. This could be explained by the behaviour in those datasets 

being similar to normal operations and not detected as outliers without resulting in 

false positives.  
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Figure 45 Comparison of the learning algorithms' confusion matrices TN values and anomalies in the 
combined and specific anomalies datasets. 

 
Figure 46 AUC comparison of anomalies and algorithms in the combined and specific anomalies datasets. 

 
Figure 47 Comparison of algorithms performance based on the total time to run. 



Page 130 of 226 
 

 It is important to note that no specific data sanitisation was applied [53] such as 

removing part of the anomalous dataset which could be considered normal behaviour 

while flagged as anomalous. This could be typical during the post-attack recovery 

phase back to normal operation.  This study asserts that the model should remain 

resilient to such behaviour and reflective of a typical operational pattern including a 

period of return to normal operation. Therefore, a future research direction could 

focus on the unsupervised model to further tune the hyperparameters constructing 

an unsupervised super learner. This could lead to simplified pre-processing, achieve 

lower model learning computational complexity and cost while consistently achieving 

performance at least similar to the super learner presented in our framework.  

 

 Our proposed approach produced encouraging attack prediction times ranging 

from 694ms to 4.19s for specific attacks and 9.65s for the combined dataset for the 

default base learner parameters. The findings indicate that several factors influence 

the model's performance. Such facets include the model structure, parameter tuning 

and the computational environment. However, another important challenge is the 

model’s resilience when the data distribution evolves. Adapting to changes while 

maintaining the model efficacy in near-real-time utilising continuous data streams is 

critical in dealing with the time-critical nature of ICS. How to integrate effective near-

real-time prediction and the trade-off in maintaining the model efficacy is a 

challenging problem that merits further research.  

 

 Addressing the first research question, it is noted in the analysis of the results, the 

models’ resilience to detect anomalous behaviour in datasets increases by 

combining the learners. For example, as shown in Table 18 and Table 19, the 
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unsupervised learning model’s resilience does detect anomalies improved when 

multiple algorithms in addition to IF hyperparameter tuning were utilised. Similar 

behaviour was observed in the supervised super learner model. An individual learner 

within a model is not likely to outperform other learners in the stack. That said, the 

aim of utilising a super learner is to solve the problem of selecting a suboptimal 

classifier, increase the model’s resilience of attack detection, improve predictive 

ability, and generalise the performance of the algorithm. Although the authors of the 

following study [5] assert a lack of agreed definition or performance metrics of the 

term “resilience”[172, 173], the importance of cyber resilience is acknowledged by 

the scientific community and governments. It is acknowledged that more must be 

done to improve the cyber resilience of the CNI, accepting that cyber resilience is a 

particular challenge in IoT [66, 167, 169]. Therefore, it is argued that in this study the 

approach of constructing a resilient model as a key part of the framework to detect 

anomalous behaviour in ICS CPS is security process-driven, the model’s resilience 

improves the CPS’ defence mechanism, security situational awareness and support 

for DFIR. 
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5. Chapter: Cyber risk Quantification in ICS 
 

 Chapter 4 introduced the SPEAR framework and presented the methodology to 

profile anomalous behaviour in ICS. The approach was experimentally demonstrated 

on an ICS liquid distribution case study. This chapter presents the cyber risk 

quantification model. 

 

5.1 Introduction 
 

 According to [43], cyber risk is defined as the potential that a given cyber threat 

will exploit the vulnerabilities of an IS and cause harm. Modern interconnected ICS 

are human-made environments profoundly influenced by human behaviours. Due to 

how ICS technologies advance and are consumed, the threat landscape evolves, 

trends change and diversify. Attack actors will have new opportunities with likely new 

attack vectors. Hence, an intelligence-driven approach toward understanding the 

impact of these changes on the ICS cyber risk posture is an implicit need to improve 

cyber resilience. This chapter considers cyber resilience as the ability to resist cyber-

attacks across the physical and digital realms regardless of an external or insider 

attack [67, 73-75]. We can innovatively use disruptive technologies, and leverage 

data generated from sensors coupled with AI technologies to improve cyber 

resilience as part of an effective defence-in-depth strategy. 

 

 Chapter 5 investigates and addresses the problems and limitations of existing 

cyber risk management in ICS. The chapter presents an approach to objectively 

quantify cyber risk in the prevalence of anomalous behaviour in ICS by developing a 
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model as part of the SPEAR framework. A Bayesian Belief Network (BBN) model for 

Cyber risk Value Quantification (CRVQ) leveraging ICS sensor data is proposed. The 

model is then demonstrated to derive a CRVQ estimate. Further, following a 

discussion of the SPEAR Framework’s applicability to objectively quantify the cyber 

risk value in the prevalence of anomalous behaviour, the model’s support for post-

incident investigations as part of DFIR is discussed.  The two RQs addressed in this 

chapter can be expressed as: 

• How can the SPEAR framework be utilised to quantify the cyber risk in CPS?  

• How can the SPEAR framework support DFIR?  

  

 The reviewed scientific literature suggests that although cyber risk management 

is an area of scientific interest, research focusing on a quantification of cyber risk 

value based on anomalous behaviour detection in CPS remains limited. To the best 

of the researcher’s knowledge, this research is the first study to combine attempts to 

address quantifying cyber risk value when anomalous behaviour is prevalent and to 

support DFIR.  

 

5.2 Insights into cyber risk quantification in ICS 
 

 The CIA triad has been considered fundamental to good security practice. The 

CIA triad has been adopted and driven by the IS community; however, it does not 

sufficiently address the security aspects of ICS. For example, understanding control 

and safety facets are important in ICS due to their complexity, fragmentation and 

real-time interactions. Likewise, ICS can be geographically dispersed and potentially 

owned by multiple legal entities and jurisdictions. To overcome the limitations of the 
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traditional CIA approach and address the challenges in ICS this study investigates 

the use of the Parkerian Hexad (PH) as a forward-looking alternative to converge 

engineering and IS good practices [6, 90, 261]. Safety is considered a seventh 

dimension by the authors of the following study [90] who assert that the creation and 

use of the data should not be harmful. Furthermore, the authors emphasize that the 

safety dimension provides context for cybersecurity risk assessment and impacts 

situational awareness. This study does not challenge the approach and considers 

the safety aspect of significance in quantifying the cyber risk value in CPN 

ecosystems [6].  

 

 Scientific literature shows little evidence of deviation from the conventional risk 

formula. Only a few studies propose enhancements such as the architectural 

perspective of risk [262]. Studies such as those listed in Table 20 and others [263-

265] focus on estimating the risk in control systems. For example, the following study 

[265] predicts the risk level at a particular time whereas other studies [263, 264] 

dynamically and timely calculate the risk. Another study [266] investigates ways to 

enhance the resilience of power systems against cyber-attacks. The method of 

assessing cyber risk remains a significant shortcoming in CPS. As illustrated in the 

previous chapter in Figure 33, ICS are highly automated and designed for safety, 

reliability and availability. Therefore, ICS have limited consideration to understanding 

the cyber risk value, the scale of the impact caused by cyber-attacks [20] or support 

for DFIR as shown in Table 20. Most empirical studies including [267-271] address 

static risk without necessarily quantifying the cyber risks. Throughout this thesis, the 

terms “cybersecurity risk” and “cyber risk” are used interchangeably.  
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 Furthermore, this research acknowledges the scientific efforts to improve the 

cybersecurity posture of ICS including through frameworks such as the NIST 

voluntary Framework for Improving Infrastructure Cybersecurity [272]. It is not the 

intention of this study to challenge existing approaches. However, the study leans on 

the characteristics outlined in this chapter, which quantifies the cyber risk value and 

contextualises situational awareness comprehensively for CPS. This research seeks 

to address the cyber risk value quantitatively from CPS datasets in the prevalence of 

detected anomalies. 

Table 20 Comparison of Risk Assessment (RA) approaches of similar studies in ICS and support for DFIR. 

Studies Address ICS Dynamic RA Support for 
DFIR 

Empirical 
Study addressing RA 

This Study     
[263]     
[264]     
[273]     
[270]     
[267]     
[271]     
[269]     
[268]     
[274]     
[275]     
[182]     
[276]     
[250]     
[266]     
[20]     

 

5.3 The Cyber risk Value Quantification (CRVQ) Model 
 

 The CRVQ model aims to objectively quantify the cyber risk value utilising 

intelligence learnt from CPS datasets in the prevalence of anomalous behaviour such 

that it is trustworthy, testable, and repeatable. Our approach to quantifying the overall 

Cyber risk Value (CRVt) is inspired by the Common Vulnerability Scoring Systems 

(CVSS) [277]. CVSS is an open framework for communicating the severity and 



Page 136 of 226 
 

attributes of vulnerabilities in software that consists of the base, temporal and 

environmental metrics.  

 

 In this chapter, this research introduces the concept of quantifying the CRVt for a 

materialised cyber risk. This is achieved by producing initial scores for risk 

occurrence and risk severity impact combined with an updated score derived from 

the performance metrics of the detected anomalous behaviour. The metrics in the 

CRVQ model consist of three phases. The constant base metric group of attributes, 

the temporal metrics group which is expected to change over time and the 

environmental metrics group which is anticipated to vary between organisations and 

smart sectors. The attributes in the three metric groups are utilised to derive the risk 

occurrence score, the risk severity impact, and the safety scores.  

 

5.3.1 Performance Scores 
 

 In phase one, the anomalous behaviour is identified using ML techniques which 

produce a set of performance scores based on the ML’s predictions. Two confidence 

scores are derived, the Report Confidence Accuracy (RC_As) and the Report 

Confidence Anomalous Behaviour Detection (RC_ABDs) which are linked to the 

outcome of the ML models’ prediction ‘Y’, as shown in Figure 37 and Figure 40. Each 

base learner, y1-yn, detects anomalies independently using base learners followed 

by a meta-learner for the final prediction. The RC_As is expressed as: 

Anomalies in dataset + overall accuracy - (1 – anomalies accuracy) 

   Ad + At - (1 – Aa)      (5.1) 

The RC_ABDs is expressed as: 

Anomalies in dataset + weighted F1-score - (1- anomalies F1-score) 
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Ad + F1w - (1 - F1a)      (5.2) 

where contamination level of anomalies Ad is derived as: 

Anomalous instance in the dataset / Normal instance in the dataset 

iAd
iNd

        (5.3) 

and the anomalies’ F1-score ‘F1A’ is derived as: 

2*(Anomalies’ Recall * Anomalies’ Precision) / (Anomalies’ Recall + Anomalies’ 

Precision) 

2 ∗ (RA ∗PA)
(RA +PA)      (5.4) 

 

5.3.2 Metric Groups 
 

 Phase two utilises the concept of the CVSS framework.  In addition to a subset of 

CVSS attributes, [277] adds traits specific to the CRVQ model in the environmental 

and temporal metric groups, as shown in Figure 48. New attributes are introduced to 

express an actual value derived quantitatively based on the ML predictions of 

detected anomalies. This study produces confidence scores of the occurring 

anomaly in combination with the prior knowledge set by the base score. The update 

factor is based on the actual occurrence of the cyber risk derived from anomalous 

behaviour detection. The safety factor is combined with the Initial Risk Occurrence 

(IRO) to produce the overall risk occurrence value. The two temporal metric 

attributes, RC_ABDs and RC_As are mandatory, their values are shown in Table 21. 

The Attack Vector (AVb) uses Network (Ne) and Physical (Phy) annotations. The 

Attack Complexity (ACb) and Privilege (Prb) base metrics use Low (Lo) and High (H) 

annotation. The Scope utilises Unchanged (Uch) and Changed (Ch) annotation. The 

User Interaction (UIb) base metric uses the None (Nn) and Required (R) annotations. 
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The temporal metrics group replaces the 'Report Confidence' metric with the RC_As 

and the RC_ABDs metrics, generated by the ML predictions, using the Confirmed 

(Co) and Unknown (U) annotation. The values could be expressed as a combined 

report confidence metric; however, the aim is to report their values independently. In 

addition, the Collateral Damage (CDe) uses the None (Nn) and Confirmed (Co) 

annotation. The attributes in the base metrics are mandatory and not expected to 

change. Whereas the temporal metrics are expected to change over time across 

environments and are therefore used as an update factor. The metrics’ 

dependencies between the variables are presented in Figure 49. 

 
Figure 48 The metrics used in the CRVQ model. 

 The research in this chapter introduces the PH attributes of Possession, Utility 

and Authenticity in addition to the CIA as shown in Figure 48 to derive the risk severity 

impact. A binary state is utilised for authenticity, possession, and utility metrics are 

covered in Table 22 with the following considerations: 

• The Base and Environmental Metric Groups in this model use the Low (Lo), 

High (H) binary annotation. The ‘Required’ column in Table 22 shows the 

CVSS mandatory setting for the metric and the one in this model, respectively. 

The setting of zero (0) means that the rating is not present. The setting is 

annotated to Nn when it is not mandatory and annotated to Y if it is mandatory.  
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• The authenticity score (Auer) is related to the expected normal state of 

operation and attribution to the source of the data. As anomalies are detected, 

the authenticity cannot be attributed, and the operation is not considered to 

be in a normal state.  

• The possession score (Per) is related to the control of the CPS or their 

components producing the data. Literature refers to the physical disposition 

of media where the data is contained [278]. In CPS, possession can be lost if 

a CPS component producing the data is compromised in which case the 

control over the specific CPS component is considered lost. Therefore, 

possession is breached if the data does not reflect the status consistent with 

normal operation. 

• The utility score (Uer) relates to the usefulness of the data during the normal 

state of CPS operations which in the presence of anomalous behaviour is 

considered compromised. This metric does not consider the threat actor’s 

efforts, or the computational complexity needed to compromise the data utility. 

The utility score is greatest for utility compromise. 

 
 In addition, to express safety, this study uses the CDe attribute introduced in the 

environmental metric [277]. The attribute is expected to differ between organisations, 

as shown in Figure 48 and Figure 49. The attribute describes the condition related 

to the data in the presence of detected anomalous behaviour as not considered for 

safe use. Therefore, having potential consequences for the organisation such as 

cascading effects resulting in loss of life, damage to equipment or monetary loss.  

Table 21 
Metrics and attributes used to derive the risk occurrence. 

Required CVSS Metric Group & Attributes Rating Value 
 Base 
Y→Y Attack Vector AVb Ne/Phy 0.85/0.62 
Y→Y Attack Complexity ACb Lo/H 0.77/0.44 
Y→Y Privileges Required Prb Lo/H 0.62/0.27 
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Y→Y Scope Sbi Uch/Ch 0.06/0.23 
Y→Y User Interaction UIb Nn/R 0.85/0.62 
 Temporal 
0→Y Report Confidence RC_ABDe Co/U 96.00/85.00 
0→Y Report Confidence Acs Co/U 96.00/85.00 
0→Y Collateral Damage CDe Nn/Co 0.10/0.90 

 

Table 22 
Base and Environmental Metric Groups and used to derive the Risk Severity Impact using the annotation of 

Low (Lo) and High (H) ratings. 
Required Metric Groups & Attributes Rating Value 
 Base 
Y→Y Confidentiality Impact Cb Lo/H 0.22/0.56 
Y→Y Integrity Impact Ib Lo/H 0.22/0.56 
Y→Y Availability Impact Ab Lo/H 0.22/0.56 
 Environmental 
N→Y Conf. Requirement Cer   Lo/H 0.50/1.00 
N→Y Integrity Requirement Ier Lo/H 0.50/1.00 
N→Y Availability Requirement Aer Lo/H 0.50/1.00 
0→N Possession Impact Per Lo/H 0.50/1.00 
0→N Utility Impact Uer Lo/H 0.50/1.00 
0→N Authenticity Impact Auer Lo/H 0.50/1.00 

 

5.3.3 Cyber risk Score  
 

 In phase three, the cyber risk score is derived from the three metric groups using 

a BBN. In this study, the base metric group attributes’ values are used as the input 

for the BBN as the previous knowledge to quantify the prior distribution value deriving 

the IRO and the Initial Risk Severity Impact (IRSI).  

  

 The Bayes theorem is utilised to derive the Cyber Risk Value of risk occurrence 

(CRVro) and the Cyber Risk Value of risk severity (CRVrs) values. According to [279] 

the Bayes theorem can be used to derive conditional probability, where in 

generalised terms the probability [P] of random variables ‘x’ given ‘y’ can be 

expressed as: 

P(x|y) = P(y|x) * P(x) / P(y)     (5.5). 

Furthermore, according to Figure 49, to derive the IRO the following applies: 

• P(AVb) is not dependent. 

• UIb depends on AVb, expressed as P(UIb)=P(UIb|AVb). 
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• ACb depends on AVb, expressed as P(ACb)=P(ACb|AVb). 

• Prb conditionally depends on the AVb and ACb, and AVb and ACb are also 

internally dependent, thus P(Prb) = P(Prb|Avb, ACb). If P(Prb|Avb, ACb) is 

generalised as P(x|y1, y2) the theorem is applied as: 

• P(x|y1, y2) = P(x) *P((y1, y2)|x) / (y1, y2)          (5.6) 

Then 

• P(x|y1, y2)| = P(y1) + P(y2) - P(y1) * P(y2)            (5.7) 

 
 However, this study aims to solve the challenge of deriving a value that is based 

on actual detected anomalous behaviour, is accurate, trustworthy and improves 

cyber risk situational awareness. Therefore, the Risk Occurrence Update Factor 

(ROUF) and the Risk Severity Update Factor (RSUF) are produced. The ROUF is 

based on the ML model’s performance metrics and safety factor whereas the RSUF 

is based on the PH Auer, Per, and Uer which are integrated into the Confidentiality 

(Cer), Integrity (Ier), and Availability (Aver) requirement environmental metrics 

attributes such that combined value is used in this model for simplicity. The CRVro is 

derived as:  

IRO = ∫ P (ACb, AVb, Prb, UIb)      (5.8). 

ROUF = ∫ P (RC_ABDs, RC_As, CDe)     (5.9) 

CRVro = ∫ IRO × ROUF      (5.10) 

The CRVrs is derived as: 

IRSI = ∫ P (Cb, Ib, Avb)      (5.11) 

RSUF = ∫ P (Cer, Ier, Aver)     (5.12) 

CRVrs= ∫ IRSI × RSUF      (5.13). 

The overall Cyber risk Value CRVt is derived as: 

∫ CRVro × CRVrs      (5.14). 
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Figure 49 BBN CRVQ model 

5.4 Deriving the CRVQ estimate 
 

 To demonstrate the CRVQ model, this study defines a set of input values 

expressed as:  

• Metric Group: Rating/Value, 

• Base (Cb:Lo/0.22, Ib:H/0.56,Ab:H/0.56); 

• Environmental (Cer:Lo/0.5, Ier:H/1, Aer:Lo/0.5, Per:Lo/0.5, Uer:H/1, Auer:H/1); 

• Base (AVb:Ne/0.85, ACb:Lo/0.77, Prb:Lo/0.62, Sbi:Uch/0.06, UIb:R/0.62); 

• Temporal (RC_ABDe:Co/0.96, Acs:Co/0.96, CDe:Nn/0.1). 

 

To establish the ROUF, the study derives values from the super learner ensemble 

performance metrics recorded in Table 23, given the equations defined in section 

5.3.1. If the RC_As and RC_ABDs values exceed 0.96 the maximum value of 0.96 

will be retained. If the RC_As and RC_ABDs values are 0.85 or below the value of 

0.85 will be recorded. For example, let the focus be on the risk occurrence part of 

the model, to derive the ROUF score, utilising the ROUF normalised equations 
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presented in section 05.3.3. The likelihood that the initially assessed cyber risk 

changed; based on the ML model’s extracted performance metrics it is 67%, 

increasing the cyber risk score by 13% compared with the initial cyber risk value.  

Table 23 Report Confidence metrics resampled to rolling 10s dataset individual learners accuracy score with 
repeated stratified 10fold 3 repeat CV  10s_R2-10s_R4. 

Metric Groups & Attributes Rating Update Factor Value 
RC_As 
2 Plastic Bag 1.16 
10 Denial of Service attack 1.01 
11 Spoofing 1.24 
RC_ABDs 
2 Plastic Bag 0.87 
10 Denial of Service attack 1.01 
11 Spoofing 1.12 

 

 Anomalous behaviour detection in ICS improves the cyber defence mechanisms 

against evolving threats and cyber-attacks from modern adversaries.  Integrating this 

dimension as a source of information into the cyber risk quantification model to derive 

the cyber risk value contributes to a better understanding and contextualising of 

cyber risk in ICS. Data-informed cognisance contributes to the understanding of how 

the cyber incident evolves and articulates changes in the cyber risk posture. This 

helps anticipate potential consequences and take measured actions informed by 

data resulting in improved decision-making achieving better situational awareness of 

the cyber risk posture. 

 

5.5 SPEAR Framework Discussion 
 

5.5.1 Applicability to Cyber risk Quantification 
  

 This study addressed the research question of how the SPEAR Framework can 

be utilised to quantify the cyber risk in CPS. The presented CRVQ model is an 

integral part of the SPEAR Framework. This chapter outlined the structure of the 

CRVQ model, identified the algorithm and the performance metrics to objectively 
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quantify the cyber risk value in CPS. Further, the research study demonstrated in 

this chapter the model’s applicability to quantifying the cyber risk score and 

articulated the cyber risk score change in the presence of anomalous behaviour. 

Existing risk assessment models are driven by the IS community and ICT systems 

[280-283], whereas methodologies such as the qualitative Hazard and Operability 

study (HAZOP) tend to focus on risks to personnel and equipment, not cybersecurity 

[284]. While individual maturity exists, a disconnect remains between ICT and OT, 

particularly in ICS. It is acknowledged that cybersecurity controls applicable in the 

ICT realm are not necessarily applicable to the OT realm. Nevertheless, a holistic 

defence-in-depth security approach with layered protective controls which consider 

the converged realms is needed. It is acknowledged that generalisation and scaling 

of the proposed CRVQ model at this stage are not possible. Further empirical studies 

are required to systematically investigate and report further findings from a wider 

pool of ICS assets to optimise the CRVQ model and its components. 

 

 That said, this research asserts that quantifying the cyber risk forms an important 

part to enhance a robust defence-in-depth approach. It is further asserted that CPS 

sensor-generated data combined with ML anomaly detection techniques can 

contribute to the objective evaluation of the effectiveness of the assessed cyber risk 

in CPS. Hence creating an opportunity for decision-making for cybersecurity 

protective and corrective actions proactively. Such an approach aligns with the 

CREST principles of intelligence often referred to as CROSSCAT (Centralised, 

Responsive, Objective, Systematic, Sharing, Continuous review, Accessible, Timely) 

[285] to improve the cyber-threat intelligence capability creating opportunities to 

solve real-life problems.  
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5.5.2 Applicability to Support DFIR 
 

 Finally, this chapter addressed the research question concerning how the SPEAR 

Framework supports DFIR. Thus far this chapter has outlined and discussed the 

correlation of raw data collection, information processing, generating knowledge and 

application of this knowledge to quantify the value of cyber risk as part of defence-

in-depth capability in CPS. To illustrate the applicability of the SPEAR Framework 

and its components to DFIR, comparisons are drawn with the generic DFRWS and 

the ISO/IEC 27050:2016 standard data lifecycle phases. According to the following 

study [56], the stages can be broadly categorised into physical, logical and legal 

contexts.  The physical context is concerned with capturing the data from seized 

physical media and maps to the identification and preservation stages, these are not 

the focus of this study. The logical context that is concerned with the data and 

information mapping to the collection, processing and analysis stages are of 

particular interest to this research study, see Figure 50. The initial risk assessment 

is a well-established field and is out of the scope of this research study. The SPEAR 

Framework’s learning model introduces the capability of collecting and processing 

CPS datasets. Applying the learning algorithm to the data classifies the anomalous 

behaviour from the sensor-generated datasets. Performance metrics are applied to 

the produced results. The results are further analysed, and the cyber risk is quantified 

generating a score which can be applied to the effective evaluation of the cyber risk 

impact.  

 

 In ubiquitous CPS, particularly ICS and CNI seizing physical media is not always 

possible and innovative methods of gathering DE are required. Such methods could 

include ML-based models, as presented in the SPEAR Framework. Collection of DE 
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could be achieved by continuously processing and analysing data from CPS in near-

real-time, applying ML algorithms to detect anomalous behaviour as an early incident 

indicator. Therefore, cyber-threat intelligence and the knowledge produced from 

sensor data utilising the SPEAR Framework’s learning algorithms could assist in the 

reconstruction of events and identification of prior patterns. However, consideration 

should be given to admissibility. For example, CPS objects can be modelled as 

“Digital Witnesses” (DW) to support DFIR [6, 56]. In such a case chain-of-custody 

needs to be achieved by utilising a suitable mechanism for admissibility in the Court 

of Law. Therefore, the SPEAR Framework has applicability to support the logical 

stages of the DFIR in CPS. However, it should be recognised that more research is 

needed to understand the constraints and develop techniques that contribute to 

reducing the workload and cost of DF investigations and generating admissible and 

trustworthy DE. 

 

Figure 50 The SPEAR Framework applicability to DFIR based on anomalous behaviour detection from CPS 
sensor data and Cyber risk Quantification. 
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6.  Chapter: A-ADC - Adaptive Learning Anomaly 
Detection and Classification Model 

 

 The previous chapters presented model-based learning to tackle malicious intent, 

accidental hazards and professional errors in ICS. The SLR findings indicate that 

several factors influence the learning model’s performance among which are the 

model’s structure, parameter tuning and computational environment. However, data 

produced from physical plant sensors in ICS is ubiquitous and the evolving 

distribution of the data is an important factor. Hence, in dealing with the time-critical 

nature of ICS, it is critical to adapt to changes while maintaining the model efficacy 

in near-real-time utilising continuous data streams. Due to the range of critical 

services that ICS provide, disruptions to operations could have devastating 

consequences making ICS an attractive target for sophisticated threat actors. Hence, 

we introduce a novel anomalous behaviour detection model for ICS data streams 

from physical plant sensors. A model for one-class classification is developed, 

leveraging stream rebalancing followed by adaptive Machine Learning (ML) 

algorithms coupled with drift detection methods to detect anomalies from physical 

plant sensor data. Our approach is demonstrated on ICS datasets. Additionally, a 

use case illustrates the model’s applicability to post-incident investigations as part of 

a defence-in-depth capability in ICS. The experimental results show that the 

proposed model achieves an overall Matthews Correlation Coefficient (MCC) score 

of 0.999 and Cohen’s Kappa (K) score of 0.9986 on limited variable single-type 

anomalous behaviour per data stream. The results on wide data streams achieve an 

MCC score of 0.981 and a K score of 0.9808 in the prevalence of multiple types of 

anomalous instances. Finally, we introduce a Performance Benchmark Criteria 
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framework to quantify the performance of incremental classifiers across distinct 

levels of cyber-physical experimental environments. 

 

6.1 The A-ADC Model 
 

6.1.1 Overview 
 

 Traditional ML mechanisms generate prediction models learnt on batches of data 

or datasets offline, see Figure 51a. In real-world applications, ICS sensors 

continuously produce data and process command controls with limited 

computational resources [19, 129]. Therefore, effective anomaly detection should 

utilise techniques that are capable of processing streams of data. Notably, as shown 

in Table 24,  data stream classification algorithms should process a single data 

instance, and utilise a limited amount of memory and time with an ability to predict 

the class on demand [130, 286]. However, utilising online learning techniques does 

not mean that changes in data from ICS physical plant sensors would be detected. 

As shown in Figure 51b, they should be fused with techniques to deal with adapting 

to change quickly to maintain fast detection and a low rate of false alarms [142, 287]. 
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Figure 51 (a) General workflow for traditional machine learning using datasets (b) General Workflow for 
adaptive learning using data streams related to the MOA workflow 

Table 24 Data Stream Classification Requirements 

Data Stream 
Classification 
Requirements 

Requirement description 

Input The initial step includes processing an instance that the algorithm is passed from the data 
stream one at a time. Each instance is inspected once. Once an instance is inspected, it is 
discarded without the ability to retrieve it. 

Learning Utilises a limited amount of memory and time. The size of a continuous data stream is larger 
than the memory available to the learning algorithm. 

Model Ability to predict the class on request from previously unseen data. 
 

 As part of our research towards near-real-time detection of anomalous behaviour 

in ICS, this research study leverages online learning techniques with change 
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detection ability. The study utilises the MOA open-source framework [288] and the 

WEKA [289]. MOA is a software environment that is designed to deal with the 

challenges of scaling up state-of-the-art algorithms to real-world datasets and data 

streams. MOA consists of algorithms for batch and online learning to gain knowledge 

from evolving data streams. WEKA provides learning algorithms applicable to 

datasets and data streams, and tools to transform, pre-process, analyse and 

evaluate the data.  MOA supports bi-directional interactions with the WEKA 

environment. This research constructs the A-ADC adaptive online learning model 

presented in Figure 52 facilitating anomalies detection from ICS-based data streams. 

 
Figure 52 Components of the A-ADC anomaly detection ensemble model for data streaming from ICS 

 

6.1.2 Model Design 
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 The model’s Streaming Layer utilises an arff loader to read the source data stream 

in an arff format one instance at a time. The data stream is read as the data flows 

without any allowance for random access to the instances. Although instances are 

discarded once read, see Table 24, the algorithm can remember the instances 

internally in the short term. This enables the creation of mini-batches to apply 

conventional ML techniques. That said, the retained instances have to be discarded 

to adhere to the data streaming requirements as outlined in Table 24 and to operate 

within the physical limits of the available working memory in near-real-time [130]. As 

described in Figure 52, two activities take place in the Processing Layer that are 

integral components of the model. Firstly, the data stream attributes selection filter is 

applied based on expert knowledge to retain attributes that contain actual physical 

plant sensor values. Additionally, the processed instances are discarded to operate 

within the working memory and time constraints of data stream processing. However, 

this approach lacks support for DF readiness. To support post-incident investigation 

as part of DFIR, the Stream_to_offline component produces an offline dataset of the 

incoming data stream. The dataset is produced by collecting the instances as they 

arrive in the stream from the incoming instance connection until the last instance 

arrives. 

 

 The Classification Layer presented in Figure 52 takes the output from the 

Data_stream_attributes_selection filter from the Pre-Processing Layer of the model. 

Initially, the data stream is passed through an arbitrary incremental multi-filter that 

applies successive filters. The numeric attributes are standardised to have zero 

mean and unit variance. Whether dealing with batches or data streams, real world-

data from sensors may become corrupted or erroneous during the data collection 
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stages. The model handles missing data values by imputing the values of the missing 

numeric attributes with means and the nominal attributes with modes.  

 

 Next, the model utilises the MOA incremental (adaptive) classifiers with warning 

and drift detection. The change detection mechanism within the incremental 

predictive algorithm is utilised to maintain the model’s performance in the prevalence 

of the detected changes in the data stream. Whereas the drift detection component 

detects a deviation from the expected behaviour. As already stated, in data streams 

the entire dataset is not available. Therefore, there is no differentiation between train 

and test data subsets. The instances update the classifier incrementally and the 

prediction is made for each instance saving the results in a confusion matrix. Then 

the classifier is trained on that instance. The performance is computed every 1,000 

instances and piped to a graphical and textual output for visualisation.  

 

6.1.3 Algorithms Modelling 
 

 The A-ADC model has access to several data streaming predictive algorithms to 

eventually utilise the best-performing algorithm. By segmenting the model’s 

architecture, see Figure 52, the study’s approach ensures that the experiment is 

repeatable utilising different datasets and algorithms. The study compares the 

anomalous behaviour detection model for data streaming with the SPEAR super 

learner batch learning ensemble [22].  

 

 Large parts of ICS data exhibit normal behaviour and anomalies that can impact 

the efficacy of the classifier are typically the minority class. The anomalous behaviour 

triggers the phenomenon of sudden or gradual change in the data stream. The model 
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utilises the data stream rebalancing to address the problem of class imbalance batch 

by batch while training the model instance at a time [290]. The authors [290] present 

the concept of rebalancing data streams online and demonstrate the impact of data 

stream rebalancing on classifier performance utilising synthetic data streams.  

 

 Initially, the model utilises the Temporally Augmented Classifier (TAC) with ARF 

and ADWIN, see Figure 53a. Next, this study utilises the RS algorithm with ARF as 

the base learner [127] and HDDM_A_Test [145] as the base learner’s warning and 

drift detection method, see Figure 53b. Then, this study utilises the RS algorithm with 

HAT [141] combined with ADWIN as the drift detection mechanism, as shown in 

Figure 53c and finally, HAT coupled with Perceptron (Pe), see Figure 53d. The 

related configurations are shown in Table 25. 

 
Figure 53 Algorithms evaluated as part of the A-ADC model on ICS data streams 
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 The performance of the RS algorithm is compared with that of 

FeatureImportanceHoeffdingTreeEnsemble (FIHTE). The FIHTE algorithm is based 

on the traditional HT classifier that factors in feature importance [291], see Figure 54. 

The related configuration is provided in Table 25. This method utilises ensembles of 

incremental DT with ARF tree learner combined with HDDM_A_Test and the Mean 

Decrease in Impurity (MDI) to calculate the feature importance.  

 
Figure 54 ‘Feature Importance Hoeffding Tree Ensemble’ predictive algorithm as part of the A-ADC model on 

ICS data streams 

 Finally, a DDM classifier with the HDDM_A_Test is used. The DDM classifier 

independently detects a deviation from the expected behaviour and functions as a 

classifier in the ICS data stream distinguishing between normal and anomalous 

behaviours using NB as the base learner [145], see Figure 55 and related 

configuration in Table 25. 

 
Figure 55  Drift detection algorithm as part of the A-ADC model on ICS data streams 

Table 25 Configuration of the adaptive learning predictive algorithms as part of the A-ADC model on ICS data 
streams 

Incremental Classifier Incremental Classifier Configuration 

RS_TAC_ARF_ADWIN  

Figure 53a 

meta.imbalanced.RebalanceStream -l (meta.TemporallyAugmentedClassifier -

l (meta.AdaptiveRandomForest -x (ADWINChangeDetector -a 0.001) -p 

(ADWINChangeDetector -a 0.01))) 

RS_ARF_HDDM_A 

Figure 53b 

meta.imbalanced.RebalanceStream -l (meta.AdaptiveRandomForest -l 

(ARFHoeffdingTree -e 200000 -g 50 -c 0.01 -z) -x HDDM_A_Test -p 

HDDM_A_Test) 
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RS_HAT_ADWIN 

Figure 53c 

meta.imbalanced.RebalanceStream -l (trees.HoeffdingAdaptiveTree -e 100000 

-z) 

RS_HAT_P 

Figure 53d 

meta.imbalanced.RebalanceStream -l 

(trees.HoeffdingAdaptiveTreeClassifLeaves -a functions.Perceptron -e 100000 

-z) 

FIHTE_ARF_HDDM_A 

Figure 54 

moa.learners.featureanalysis.FeatureImportanceHoeffdingTreeEnsemble -l 

(meta.AdaptiveRandomForest -l (ARFHoeffdingTree -e 200000 -g 50 -c 0.01 -

z) -x HDDM_A_Test -p HDDM_A_Test) 

DDM_NB_HDDM_A 

Figure 55 

drift.DriftDetectionMethodClassifier -d HDDM_A_Test 

 

6.2 Case Studies 
 

6.2.1 Liquid Storage and Water Distribution 
 

 In summary and as outlined in Chapter 4, section 4.7 and shown in Figure 41, the 

‘aNomalies’ liquid distribution testbed consists of two tanks. The main tank contains 

four floating discreet sensors, and a secondary tank is fitted with an ultrasonic 

sensor. The testbed that can operate in manual or automatic modes via a 

touchscreen or remotely is fitted with two pumps, automated controls and 

infrastructure for data acquisition. The secondary tank is divided into 10,000 equal 

segments where 0 represents the value for a full tank and 10,000 reflects an empty 

tank. The pumps can be activated to an ON position represented as 1.0 and an OFF 

position represented as 0.0. in combination or alternatively. The pumps are triggered 

depending on the pre-determined level of the liquid in the tanks. The PLC consisting 

of ten registers utilises three registers to record the values of the testbed sensors. 

Register two, which records the values for the four discreet sensors utilises the first 

four bits of the PLC register. Register three contains the pumps’ states utilising the 
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last two PLC register bits. Register four represents the ultrasonic sensor as a 16-bit 

integer value.  

 

 The dataset, outlined in Chapter 4, section 4.8 and Table 15 utilised for data 

stream simulation in our experiment was produced from the ‘aNomalies’ testbed [84]. 

The single ‘Register’ feature records all sensor types as the feature’s values. The 

dataset was adapted to simulate sensor-based data streams for incremental 

learning. The dataset features were rearranged, such that each sensor type is 

represented as an individual register feature in time series. The following expression 

shows an example measurement and a timestamp of the instances utilised; in = (tn, 

s1n, s2dn-x, s3pn-x, s4un, s5n, s6n, s7n, s8n, s9n, s10n,). Sensors s2d, s3p and 

s4u measure operational components either as a single sensor or a group of 

sensors. For example, s2d indicates the discreet sensors, s3p indicates the pumps 

sensors and s4u the ultrasonic sensors. The sensors' measurements are time-

aligned. The normal behaviour of the ‘aNomalies’ dataset is stationary around a 

deterministic trend according to the statistical KPSS test [254], with a p-value >0.05 

(significance level). That said, such characteristics may change over time or in the 

prevalence of anomalies introducing a concept of change in the data stream. 

According to statistical theory, the algorithmic error rate decreases in a stationary 

dataset, whereas the error rate increases as the distribution changes [143]. 

Therefore, this study hypothesizes that detected warning and change in a data 

stream with stationary characteristics is indicative of anomalous behaviour.  

 

 The Water Distribution Testbed (WDT) testbed is a hardware-in-the-loop testbed 

that emulates water passage between nine tanks using solenoid valves, pumps, 
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pressure and flow sensors. The WDT testbed uses a three-layer SCADA 

architecture. The WDT testbed consists of two main subsystems. The physical 

subsystem is made up of 5 tanks, 20 solenoid valves, and 5 pressure sensors under 

each of the tanks. Additionally, 8 manual valves are used for leak simulation. The 

simulated part of the testbed consists of 3 more tanks, 2 pumps, 4 flow sensors, 2 

solenoid valves and 3 pressure sensors per tank. The first layer is the field 

instrumentation control layer which consists of the sensors and the actuators 

connected to the PLC. The second process control layer, consists of 4 PLCs and the 

third process control layer consists of the SCADA system [292, 293].  

 

6.2.2 Steam Turbine Power and Pumped-storage Hydropower Generation 
 

 The   Hardware-In-the-Loop (HIL) Augmented ICS (HAI) testbed emulates steam-

turbine power generation and pumped-storage hydropower generation [294]. The 

testbed consists of 4 primary processes, namely the boiler process, the turbine 

process, the water-treatment process and the HIL simulator. The boiler process is 

controlled by utilising four controllers: water level, pressure, temperature and flow 

rate. The turbine process utilises a direct motor speed controller and the water-

treatment process uses a level controller. Whereas the HIL simulation model is made 

up of two synchronous generator models and a power grid model with an electrical 

load [295]. 

 

6.2.3 Datasets 
 

 The details of the datasets utilised for the experimentation to simulate online 

learning data streams are shown in Table 26. 
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 The ‘aNomalies’ dataset is a collection of labelled sensor values that consists of 

fifteen artefacts ranging from 134,225 to 189,048 instances [22, 84]. The dataset 

contains several differentiating factors. Besides the limited number of operational 

component sensors, the five real-world operational scenarios include normal, 

accident, sabotage, breakdown and cyber-attack behaviours that range from a few 

seconds to several minutes representing external attacks and insider threats. The 

prevalence of anomalies in the data subsets ranges between 0.5%-28%. 

 

 The characteristics of the WDT dataset represent a small-scale data stream, a 

large number of attributes, multiple anomalous occurrences and data imbalance. The 

dataset contains 9,206 instances, 40 attributes and an overall 15.85% prevalence of 

multiple types of anomalous instances. 

 

 The HAI dataset represents an imbalanced dataset that contains 38 attacks that 

include 14 primitives and 14 combination attacks. The HAI dataset is representative 

of a large dataset of 999,000 instances, 59 attributes and an overall prevalence of 

1.83% anomalous instances.  

Table 26 The datasets used to evaluate the A-ADC model 

Dataset ID: Year Instances Anomalies Attacks Attributes 
‘aNomalies’:2017 134,225-

189,048 
0.5-28% 15 situations covering 5 

real-world operational 
scenarios,  

3  

WDT:2021 9,206 15.85% 28 (only 18 with an effect 
on the physical 
processes) 

40 

HAI:2020 999,000 1.83% 38 including 
14 primitives 
14 combinations 

59 

 

6.2.4 Post-incident Investigation 
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 Thus far, this research study has addressed the applicability of the model to ICS 

anomalous behaviour detection as part of a defence-in-depth capability. Besides 

anomalous behaviour detection, the research considers the role of this model to 

support DF readiness. DF capabilities are needed to understand ICS events for post-

incident investigation and event reconstruction [296].  

 

 This study illustrates the A-ADC model’s applicability to support modern DFIR. For 

coherence with the discussion in chapter 5, section 5.5.2, this chapter refers to the 

phases of frameworks and standards such as the DFRWS and the ISO/IEC 

27050:2016, see Figure 56. Additionally, it referred to a prior study [56] that proposed 

the categorisation of the data stages into physical, logical and legal contexts. The 

physical context relates to the data captured from seized physical media 

corresponding to the identification and preservation of data lifecycle phases. This 

research study asserted it was not always feasible to seize the physical media in 

operations-critical and dispersed infrastructures such as ICS that ubiquitously 

produce large quantities of data. Other mechanisms are required to gather DE such 

as novel ML techniques that can continuously process data streams from physical 

plant sensors to detect anomalous behaviour.  

 

 This chapter addresses the logical context with the related phases of the digital 

investigation models shown in Figure 56.  As stated for data streaming anomaly 

detection, processed data instances are discarded to adhere to the data streaming 

paradigm, see Table 24 [130]. Therefore, datasets are not produced natively, limiting 

support for DF readiness such as event reconstruction and identification of prior 

patterns. The A-ADC model’s support for modern DFIR is twofold. Firstly, the model 



Page 160 of 226 
 

utilises adaptive learning to detect anomalous behaviour from data stream instances. 

Secondly, the Stream_to_offline component produces a dataset from the incoming 

data stream instances to support post-incident investigation and event 

reconstruction. 

 
Figure 56 The A-ADC model feasibility to support modern DFIR from data streams 

  

 However, to satisfy the legal context, DE admissibility in ICS should be 

considered. Previous studies studied the concept of DW [297-300]. Moreover, as 

part of DF readiness by design, the authors [6, 56] proposed that CPO can be 

modelled as a DW to support DFIR. In this instance, a DW  refers to a CPO that is 

capable to maintain admissible evidence to the Court of Law, similarly to a human 

witness [6, 298]. A chain-of-custody needs to be achieved and maintained 

throughout the investigation to address the requirements of the legal context. 

However, without maintaining integrity, the data could be falsified. Mechanisms such 

as Blockchain (BCh) are explored as a method for secure logging to maintain the 

integrity of the collected data [296, 301]. In [56] the authors proposed that a forensic-

enabled design could be achieved by automating the identification and preservation 
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stages by utilising Blockchain-based systems. However, further research is needed 

to understand the constraints and feasibility of these techniques in ICS [296, 301-

303]. While the A-ADC model is pertinent to support the logical stages of the DFIR 

in CPS, the admissibility of DE in ICS is a complex problem that merits further 

research.  

 

6.3 Performance Evaluation  
 

6.3.1 Metrics 
 

 Evaluation of binary classification adopts several statistical metrics depending on 

the experiment such as F1-scores which are computed from the confusion matrix 

and often used, see Figure 38 [256].  Unlike the F1-score given by equation (4.4), 

Precision and Recall given by equations (4.2) and (4.3) respectively, the MCC is 

intended to handle highly imbalanced datasets [256, 304]. The MCC score for binary 

classification is given by equation (6.1). 

 

MCC =  TP ×TN−FN ×FP
�(TP+FN)×(FN+TN)×(TP+FP)×(FP+TN)

    (6.1) 

 

The MCC factors in the performance of all four categories from the confusion matrix, 

see  Figure 38, proportionate to the dataset’s sizes of positive and negative elements 

[305, 306]. Furthermore, classifiers could exhibit high TP and low FP values. 

However, in the absence of reporting the number of unclassified instances, these 

results could be misleading about the classifier’s performance. For example, if the 

rate of unclassified instances is high, this could still result in weak classifier 

performance. Therefore, the metrics of reporting the weighted MCC score, the 
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incorrectly classified and the unclassified instances are justified in demonstrating this 

classifiers’ performance.   

 

 The metrics on the progress of the model’s efficacy were reported every 10,000 

instances. The results of the algorithms for the liquid storage and distribution case 

study using the ‘aNomalies’ dataset are provided in Table 27 and Table 28. The 

RS_ARF_HDDM_A and FIHTE_ARF_HDDM_A algorithms achieved the highest 

MCCw scores and lowest rate of unclassified instances, see Table 28.  

 
Table 27. Overall MCCw scores and K statistics for the ‘aNomalies’ data stream 

Incremental Classifier   K scores MCCw scores 
RS_ARF_HDDM_A  0.9986 0.999 
FIHTE_ARF_HDDM_A  0.9987 0.999 
RS_HAT_ADWIN  0.9739 0.975 
RS_HAT_P  0.2445 0.287 
RS_TAC_ARF_ADWIN  0.9980 0.998 
DDM_NB_HDDM_A  0.9988 0.9988 

 

Table 28 Overall instances classification rate for the ‘aNomalies’ data streams. 
Incremental Classifier Unclassified [%] Incorrectly classified [%] Correctly classified [%] 

RS_ARF_HDDM_A 0.001343 0.003371 99.995307 
FIHTE_ARF_HDDM_A 0.001400 0.003000 99.995643 
RS_HAT_ADWIN 0.005200 0.060836 99.933960 
RS_HAT_P 0.000657 13.792786 86.206529 
RS_TAC_ARF_ADWIN 0.001500 0.005914 99.992690 
DDM_NB_HDDM_A 0.002810 0.002760 99.994400 

 

The comparison of the classifiers’ MCCw scores and the percentage of the 

anomalous instances prevalent in the data stream is given in Table 27 and Table 29 

describes the operational scenarios. The attained results from the operational 

scenarios are shown in Figure 57 whereas the results achieved from the two best-

performing classifiers are presented in Figure 58. 

 
Table 29 Operational Scenarios 'aNomalies' dataset 

File  Scenario - Type Sensors  Labels 
1 Normal None All anomalies 
2 Plastic Bag Ultrasonic Plastic_bag 
3 Blocked measure 1 Ultrasonic Spoofing 
4 Blocked measure 2 Ultrasonic High_blocked 
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5 2 floating objects, main tank Ultrasonic Second_blocked 
6 7 floating objects, main tank Ultrasonic Bad_connection 
7 Humidity Ultrasonic DoS_attack 
8 Failure of a discreet sensor Discreet 1 Hits_3 
9 Failure of a discreet sensor Discreet 2 Wet_sensor 
10 Denial of Service attack Network Poly_2 
11 Spoofing Network Poly_7 
12 Wrong Connection Network Hits_2 
13 Tank hit, low intensity All system Hits_1 
14 Tank hit, medium intensity All system Blocked_1 
15 Tank hit, high intensity All system Blocked_2 

 

 
Figure 57 Comparison of the classifiers' MCCw scores and the percentage of anomalies in the ‘aNomalies’ data 
stream. 

 
Figure 58 Comparison of the two best-performing classifiers' weighted MCC scores and the percentage in the 

‘aNomalies’ data streams. 

 The experimentation reveals that the classifiers perform well in a binary 

classification with an occurrence of one type of anomaly, see Table 27 and Table 28 

and multiple types of anomalous behaviour, see Table 30 and Table 31. According 
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to the literature [129, 130], classification accuracy is correlated with the number of 

available training instances. The training instances are expected to be inversely 

impacted by increases in change detections, where reducing the number of available 

training instances is expected to lead to lower classification accuracy. This is 

demonstrated according to the results recorded for the WDT data stream in  Figure 

59, Table 30 and Table 31.  

Table 30 Performance metrics of the weighted MCC score and the Cohen Kappa (K) statistics for the WDT and 
HAI data streams 

Incremental Classifier 
mFeaturesMode =60 

WDT scores for HAI scores for 
K MCCw K MCCw 

RS_ARF_HDDM_A 0.9332 0.933 0.9809 0.981 
FIHTE_ARF_HDDM_A 0.9332 0.949 0.9809 0.981 
RS_TAC_ARF_ADWIN 0.9486 0.949 0.9862 0.986 
DDM_NB_HDDM_A 0.9245 0.925 0.9845 0.985 

 

Table 31 Performance metrics of the unclassified, incorrectly classified and correctly classified instances for the 
WDT and HAI data streams. 

Incremental Classifier mFeaturesMode =60 Unclassified [%] Incorrectly classified [%] Correctly classified [%] 
WDT 

RS_ARF_HDDM_A 0.51 1.79 97.69 
FIHTE_ARF_HDDM_A 0.51 1.79 97.70 
RS_TAC_ARF_ADWIN 0.54 1.38 98.08 
DDM_NB_HDDM_A 1.62 1.92 96.46 

HAI 
RS_ARF_HDDM_A 0.62 0.07 99.32 
FIHTE_ARF_HDDM_A 0.62 0.07 99.32 
RS_TAC_ARF_ADWIN 0.28 0.05 99.67 
DDM_NB_HDDM_A 0.39 0.05 99.56 

 

 The results for the steam turbine power and pumped-storage hydropower 

generation for the HAI data stream are presented in Table 30 and Table 31. The 

optimisation was carried out to improve the model’s performance. The 

mFeaturesMode parameter was tuned for the RS_ARF_HDDM_A improving the 

MCCw scores from 0.981 (mFeaturesMode=60) to 0.987 (mFeaturesMode=10) while 

reducing the incorrectly classified instances from 0.07% to 0.0474% respectively.  
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Figure 59 Comparison of the two best-performing classifiers’ weighted MCC scores in the tested datasets. 

 

6.3.2 Performance Benchmark Criteria Framework 
 

 A persistent lack of suitable and up-to-date benchmark datasets to evaluate the 

performance of data stream classifiers remains a profound disadvantage in 

accelerating scientific research [130, 307, 308]. Drawbacks of synthetically 

generated and benchmark datasets used to evaluate incremental learning, such as 

those listed in Table 32, include not reflecting current ICS environments and up-to-

date adversary challenges [307].  

 

 The state-of-the-art addresses performance evaluation metrics as discussed in 

6.3.1. However, the metrics do not factor in performance variations due to different 

dataset characteristics as illustrated in Table 26 and Table 32. Besides approaches 

to evaluate drift detectors, scientific literature uncovers the lack of consistent use of 

metrics and explains the drawbacks of some commonly used metrics such as 

classifier accuracy [307, 309-312]. In addition, the state of the art does not factor in 

changes due to evolving design and iterations across different types of environments 
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such as the research environments described by [313] in their vision for a new 

generation of smart machines.  

Table 32 Benchmark datasets characteristics used in concept drift detection. 

Benchmark datasets Description Instances Year 

Electricity pricing 

[314] 

Australian New South Wales electricity market prices in 30 

mins intervals 

45,312 1999 

Forest Covertype 

[315] 

54 attributes that describe types of forest cover in the 

Roosevelt National Forest in Northern Colorado. 

581,012  1998 

KDD’99 23 class labels, 41 attributes that simulate military network 

intrusion 

494,000 1999 

Poker hand 

[316] 

11 attributes that represent a 5-card poker hand of a 52-

piece card deck 

1,000,000 2007 

Airlines 

[317] 

13 attributes representing flight departure and arrival with 

related delays 

120,000,000 2008 

 

 This research thesis proposes a novel Performance Benchmark Criteria (PBC) 

framework to address these shortcomings for ICS. This chapter introduces the 

concept of objectively quantifying the performance of incremental classifiers across 

different levels of cyber-physical experimental environments. This is achieved by 

producing metric criteria groups: Base, Temporal and Environment, as illustrated in 

Figure 60. The Base group contains performance and classification impact metrics. 

The Base group represents fundamental metrics that are constant within and across 

experimental environments and data sources. The Temporal group reflects the data 

characteristics that change between data sources and across experimental 

environments. The attributes of the Environment group are anticipated to vary across 

different experimental environments. The interaction of the elements guides the 

design of the proposed framework. 
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Figure 60 The Performance Benchmark Criteria (PBC) framework 

 

 This study defines the Building Blocks as a segment consisting of components 

of algorithms, libraries and modules that contribute to the design of the basic model. 

This segment typically uses synthetic or publicly available datasets. The Synthetic 

Labs phase includes maker and virtual environments that enable ideation and 

collaboration on the components of the basic building blocks to develop subsystems. 

This phase generates datasets from synthetic environments. Whereas, the key 

characteristic of the Testbed Lab phase is the safety of an environment to enable 

reproducibility, consistency and predictability. Datasets generated in these 

environments are often contributed to the scientific body of knowledge. While 

developing and iterating the idea requires attributes that characterise the first three 

phases of the proposed framework, Living Labs create a test environment to 

represent real-world challenges. These include physics, socio-technical influences, 

component noise and exposure to current adversary challenges that characterise 

real-world applications of unpredictability, diversity and exceptions. The datasets 

generated from Living Labs are valuable to researchers, policymakers and 

regulators. However, these datasets are likely to require curation due to additional 
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challenges. These include privacy and exposure of sensitive environmental 

information. Thus datasets are not always made available in publicly accessible 

repositories. The anticipated performance of the classifier within the Production 

phase should be informed by the performance benchmark as the baseline metric. 

 

 The Base metrics derive values from established evaluation techniques to capture 

the classifier and drift detector performance. Besides the performance metrics 

outlined in section 6.3.1 other performance criteria have been proposed, some with 

varying levels of application in published work while others with the challenge of the 

metrics’ suitability [287, 307, 309-312]. The Temporal metrics derive the values from 

the characteristics of the data source. The data source characteristics such as the 

number of instances, attributes and computational environment impact incremental 

classifiers’ performance. The data sources to evaluate the incremental classifiers 

vary across the experimentation environments, see Figure 60. Therefore, defining a 

common standard for metrics and reference datasets is an important challenge that 

merits further empirical research. 

 

6.3.3 Model’s Effectiveness 
 

 The goal of the model is to identify the minority class observations in the data 

stream. Although classifiers could exhibit strong performance in the majority class, 

such performance could be misleading due to the impact of the minority class 

observation in an imbalanced dataset [146]. While accuracy is considered an 

effective metric for balanced datasets, scientific literature highlights shortfalls in using 

classifier accuracy to evaluate incremental classifiers [141, 304, 307, 309-311]. For 

example, let’s assume 1% anomalies prevalent in a dataset with a binary classifier 
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labelling each instance in the dataset as normal, classification achieves 99% 

accuracy despite not labelling any of the anomalous instances correctly. Hence, this 

study derived performance metrics including MCC, F1 and K scores, as produced in 

Table 27 and Table 30. In Table 28, Table 31 and Figure 58 the study reports the 

unclassified and incorrectly classified instances.  

 

 This research applied data stream rebalancing to deal with the problem of an 

imbalanced data stream while maintaining the data streaming paradigm [290]. 

Furthermore, it applied an online change detection method based on Hoeffding’s 

Bounds moving averages to detect changes in the data streams [145]. Compared to 

batch learning, online learning utilises the method of concept change through moving 

averages where the deviation of the data distribution does not require an updated 

model.  

 

 The results demonstrate that the RS_ARF_HDDM_A and the 

FIHTE_ARF_HDDM_A algorithms produced consistently high MCCw and K scores 

with fewer unclassified and incorrectly classified instances. Using the ‘aNomalies’ 

data stream produced an overall MCCw score of 0.999 and a K score above 0.998 

for the RS_ARF_HDDM_A and FIHTE_ARF_HDDM_A. Both the algorithms scaled 

to the HAI data stream achieved 0.981 and 0.9809 MCCw and K scores respectively. 

While the RS_TAC_ARF_ADWIN algorithm achieved a slightly higher MCCw score 

of 0.986 for the HAI data stream, it produced lower MCCw scores for the ‘aNomalies’ 

data stream, see Figure 57 and Table 27. Likewise, RS_ARF_HDDM_A and 

FIHTE_ARF_HDDM_A algorithms produced fewer unclassified and incorrectly 

classified instances for the ‘aNomalies’ data stream, see Table 28. Finally, optimising 
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the RS_ARF_HDDM_A algorithm improved the MCCw scores to 0.987 

(mFeaturesMode=10) while reducing the incorrectly classified instances from 0.07% 

to 0.0474% respectively for the HAI data stream. 

 

 The results of our preliminary experimentation found that the k-NN SAM algorithm 

produced high MCCw and K scores of 0.989 for the HAI and 0.959 for the WDT data 

streams. While the results partially agree with another study [126], this research 

found the overall instances throughput was poor. Algorithms such as RS_HAT_P 

and RS_HAT_ADWIN showed inferior performance and did not scale effectively.  

 

 The promising results make this research relevant in the context of addressing 

cyber and physical attacks within ICS as part of a defence-in-depth approach. The 

A-ADC model has been empirically evaluated utilising ICS data [84, 292-294]. 

Optimisation of parameters including mFeaturesMode and mFeatureperTreesize of 

the ARF base learners reveals a further decrease in the rate of unclassified instances 

and an increase in the flow throughput. Therefore, a direction of future work in this 

area could focus on additional model tuning. The results demonstrate that the A-ADC 

model can adapt to changes dynamically, and scale to different data stream 

characteristics while maintaining classification performance. Thus, the model is 

considered suitable for identifying normal and anomalous behaviour in ICS data 

streams. 

 

6.3.4 Comparison of the Learners 
 

 Varying consistency in reporting dataset characteristics such as attack duration or 

anomalous instances within the dataset makes performance comparison 
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challenging. Apart from the variations in the computational environment, the training 

dataset pre-processing including feature selection and parameter utilisation could 

impact the effectiveness of a fair comparison between algorithms. Another issue is 

the split between the training and testing datasets which could differ between models 

thus augmenting the challenges of achieving an unbiased comparison of ML models. 

Likewise, the type of learning, batch learning and data stream learning evaluations 

fundamentally differ. The output of batch learning is a static model. The model reuses 

data, leveraging techniques such as cross-validation and hold-out to measure the 

generalisation of the model and to compare results. Whereas data streams process 

each instance in a limited memory allocation and time and need to be ready to predict 

at any time. The focus in data streams is on model efficacy over time. Incremental 

learning uses prequential, also known as interleaved-test-then-train and holdout 

evaluations. The trade-off in approaches such as holdout or prequential depends on 

the expected characteristics of the data stream such as the prevalence of concept 

drift and availability of holdout instances.  

 

 Despite using different ML approaches, to achieve a fairer comparison when 

training different models, this thesis considers performance metrics that can be 

leveraged by both ML models. Primarily, the focus of this thesis is a fair comparison 

of the SPEAR and A-ADC models’ effectiveness in detecting anomalous behaviours 

using comparable metrics, datasets and computational environment. This research 

considered the limitations of unbiased comparison given the different ML 

approaches. It does not seek to compare the results of one model over the other. 

Instead, it presents a meaningful comparison of the effectiveness of different models 

to detect anomalies given comparable constraints and performance metrics. This 
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research thesis utilises the default processing environment memory allocation and 

leverages datasets with a varying number of instances, anomalies and attack types, 

see Table 26. A range of metrics on progress was reported every 10,000 instances. 

The performance of the A-ADC model was compared with the SPEAR framework 

super-learner ensemble supervised learning model that utilised the default 

parameters and 10s rolling windows [22]. This study compares the overall and 

anomalous behaviour F1-score and the Recall values. The results reveal that the 

adaptive learning model, see Table 33, achieved consistent overall F1A and RecallA 

scores of at least 0.997 for the anomaly class compared with the SPEAR 

framework’s model of 0.990. The summary of the overall results is presented in Table 

33 and individual attacks are in Figure 61 and Figure 62.  

 

 The results of this research thesis concerning the WDT dataset are consistent with 

that of [293], who evaluated the performance of several ML classifiers including RF 

against the WDT dataset. The RF algorithm achieved 0.97 and 0.98 F1 and Recall 

scores respectively for the physical dataset. Whereas these results demonstrate the 

ARF-based algorithms RS-ARF_HDDM_A and FIHTE_ARF_HDDM_A achieve a 

consistent F1 and Recall scores of 0.982 whereas the RS_TAC_ARF_ADWIN has a 

slightly higher score of 0.986. The summary of the F1 and Recall scores is shown in 

Table 34. 

Table 33 Performance comparison of the SPEAR Framework Super-Learner and A-ADC Model classifiers. 
Classifier F1A  RecallA  

Batch Learning SPEAR Framework 
Default parameters 10s rolling window 0.990 0.990 

Adaptive Learning A-ADC model 
RS_ARF_HDDM_A 0.999 0.997 
FIHTE_ARF_HDDM_A 0.999 0.998 
DDM_NB_HDDM_A 0.998 0.996 
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Figure 61 F-score comparison of the SPEAR Framework Super-Learner and A-ADC Model classifiers 

 
Figure 62 Recall comparison of the SPEAR Framework Super-Learner and A-ADC Model classifiers 

Table 34 F1 and Recall performance metrics for the A-ADC Model classifiers for the WDT dataset. 

 

RS_ARF_ 

HDDM_A 

FIHTE_ARF_ 

HDDM_A 

RS_TAC_ARF_ 

ADWIN 

 
Recall F-score Recall F-score Recall F-score 

Normal class  0.987 0.989 0.987 0.989 0.989 0.992 

Anomaly class 0.953 0.944 0.953 0.944 0.972 0.957 

Weighted 
Average 0.982 0.982 0.982 0.982 0.986 0.986 
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7. Conclusion and Future Work 
 

7.1 Conclusion 
 

 The original contributions of this research commenced with an SLR of peer-

reviewed literature with an explicit investigation of empirical primary studies that 

addressed cyber resilience and DFIR of CPS in smart cities. The SLR provided 

scientific evidence of the gaps in the literature and an evidence-based summary of 

key themes. This phase of the research study was published by MDPI Smart Cities 

[5]. 

 

 This research developed an ML model-driven framework (SPEAR) to profile 

anomalous behaviour in ICS innovatively combining physical plant sensor-generated 

data with AI to address anomalous behaviour detection in ICS. Consideration was 

given to the threat landscape and the evolving threat model. Factoring in anomaly 

types and ML techniques, detection algorithms comprising a super-learner ensemble 

and hybrid unsupervised learning models for binary classification were developed. 

The learning models were underpinned by detailed procedure design and a pilot 

phase experimentation. The framework and the associated learning models were 

experimentally validated on an ICS liquid storage and distribution case study utilising 

a set of performance metrics. Further, a cyber risk quantification model (CRVQ) was 

derived demonstrating the concept of objectively producing a cyber risk score for a 

materialised cyber risk. This phase of the research study was published in the IEEE 

Internet of Things Journal [22]. 
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 Another model was then proposed for anomalous behaviour detection from ICS 

data streams from physical plant sensors. A novel adaptive learning model for one-

class classification was developed, leveraging stream rebalancing and drift detection 

methods. The detailed design and piloting phase was followed by experimentally 

evaluating the model on ICS case studies. These included the ICS liquid storage and 

distribution, steam turbine power and pumped-storage hydropower generation case 

studies using a set of performance metrics. Further, a comparison of the 

performance of the proposed model with batch learning approaches was carried out. 

In addition, a performance benchmarking criteria framework was introduced. The 

framework aimed to coherently quantify the performance of classifiers across 

different cyber-physical experimental environments. This phase of the research 

study was submitted for publication and is currently under review. 

 

 Further, besides proposing a mechanism for detecting anomalous behaviour, the 

concept of DW as part of DF readiness in ICS was investigated. A use case 

presented the concept of integrating BCh technologies into the design of ICS to 

support modern DF readiness. BCh, a disruptor technology, due to its distributed 

nature is protected from integrity attacks and its immutable timestamps could offer 

novel approaches to achieving DCoC in ICS supporting DF readiness. This element 

of the research study has been published in IEEE Blockchain Technical Briefs 2022 

[318]. 

 

 At this stage, we evaluate the aims and objectives to evaluate this research study. 

The thesis has: 
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“two directions sharing the main goal to improve cyber resilience in ICS”. 

 

The first aim of this research study was to: 

 

“investigate and develop a security mechanism to improve the proactive cyber 

defence in ICS to support its mission objectives. The mechanism seeks to be security 

process-driven, integrate novel ML techniques and utilise data generated from 

physical plant sensors. The mechanism intends to be testable, trustworthy and 

repeatable”. 

 

And because the increase in automation and interconnectedness in ICS widens the 

attack surface with threats ranging from external adversaries to insiders creating 

genuine security concerns of potentially catastrophic consequences [6, 18, 19, 249], 

the research study aimed secondly to 

 

“investigate how the security mechanism addresses the reactive defence as part of 

DF readiness in ICS”. 

 

 The aims were advanced by setting out and addressing the following objectives:

  

• Objective 1: Conduct a Systematic Literature Review (SLR) of current cyber 

resilience and DFIR approaches in CPS in smart cities. This objective was 

addressed in Chapter 2 by conducting an SLR of scientific literature reporting on 

frameworks and systems that addressed CPS’ cyber resilience in smart cities to 

address the RQs outlined in Table 1.  
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 The protocol utilised to achieve this objective was based on the SLR guidelines 

for the computer engineering discipline proposed by Kitchenham and Charters [58], 

which present a rigorous and credible methodology. The SLR analysis uncovered 

emerging themes and concluded with several key findings, among which: 

- The chronological analysis of key events revealed some of the important 

influencing factors including Industry 4.0, government-led support and initiatives 

such as the National Cyber Security Strategy in the UK [66] or national 

infrastructure plans [66, 164, 167], innovative ideas [195] and incidents [64, 319] 

were among some of the key influencing factors. 

-  The data source analysis showed a lack of real CPS datasets with a predominant 

use of software-based simulations and simulation infrastructure. However, 

reliance on simulators may not sufficiently represent the threats compared with 

datasets generated from a real-world environment. For example, datasets 

generated from isolated or simulated environments are likely to be constrained in 

enabling the understanding of prevalent threat types in the context of the actual 

CPS.  

- Further analysis of cross-sector proposals or applications to improve DF showed 

a distinct lack of research focusing on cyber resilience in some smart sectors 

such as smart healthcare and smart citizen were addressed by a small number 

of studies. This SLR concluded that some smart sectors have complex and 

diverse ethical challenges whereas, media prominence of critical infrastructures 

attacks may be factors that focus the spotlight on research in those sectors. 
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• Objective 2: Investigate the current ML approaches to improve the proactive 

cyber defence of ICS. This objective was addressed in Chapters 2, 4 and 6 by 

investigating the types of anomalies, followed by the application of relevant ML 

techniques to address the RQs outlined in Table 1.  

 

 This research investigated the ICS threat landscape including critical 

infrastructure and major ICS cybersecurity attacks, concluding from the findings that 

threats in ICS are more basic and the ICS security less well-understood compared 

with the well-established field of IS. Furthermore, despite the level of widely 

acknowledged and well-reported high-profile attacks remaining low, the threat actor 

motivations evolved.  

 

 Apart from the threat actors’ evolving techniques, tools and procedures, this study 

factored in the numerous dataset-related challenges. Against this backdrop, a 

thorough investigation of the types of anomalies in the context of the application of 

ML techniques was carried out. An in-depth investigation of ML approaches 

leveraged for anomalous behaviour classification in ICS set the groundwork for 

addressing accidental and malicious activities as part of a modern defence-in-depth 

approach. Following that, consideration was given to the ubiquity and characteristics 

of data produced from sensors, actuators and controllers creating continuous data 

streams.  Since data streams evolve and data distribution can change, online ML 

techniques capable of handling data streams to process data dynamically and adapt 

to changing and scaled data were investigated.  
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• Objective 3: Develop an approach that leverages ML techniques to improve cyber 

resilience in ICS. This objective was addressed in Chapters 3, 4 and 6 by 

developing ML model-driven approaches to address the RQs outlined in Table 1.   

 

 A novel Super learner Ensemble Anomaly detection cyber risk quantification 

(SPEAR) framework was proposed to profile anomalous behaviour in ICS. As part of 

the framework, a supervised learning super learner ensemble and hybrid 

unsupervised learning model were constructed. Detailed procedure design was 

developed factoring in the complexities of the data preparation stages. Pilot 

experimentation was employed as part of evaluating the instruments and the 

procedure design.  Furthermore, a novel Adaptive learning for Anomaly Detection 

and Classification (A-ADC) model for data streams was introduced for near-real-time 

profiling of anomalous behaviour from ICS physical plant sensor data streams. The 

model performed novel computation, innovatively combining adaptive ML algorithms 

with drift detection methods. The approach of segmenting the model’s architecture 

aims to achieve repeatability for different data streams and algorithms. 

 

• Objective 4: Develop a novel ML-based anomaly detection and cyber risk 

quantification mechanism, evaluating and analysing the efficacy. This objective 

was addressed in Chapters 5. The RQs outlined in Table 1 are addressed by 

experimentally evaluating the models presented in Objective 3  and by proposing 

a BBN model as part of the SPEAR framework to quantify cyber risk in the 

prevalence of anomalous behaviour in ICS.  
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 The SPEAR framework and associated learning models were experimentally 

validated on an ICS liquid distribution case study. The proposed approach showed 

promising results, an overall F1-score of 99.13%, and an anomalous recall score of 

99% detecting anomalies lasting only 17 seconds ranging from 0.5% up to 89% of 

the dataset. 

 

 The A-ADC model’s experimental validation produced an overall Matthews 

Correlation Coefficient (MCC) score of 0.999 and Cohen’s Kappa (K) score of 0.9986 

on limited variable single-type anomalous behaviour per data stream. Wide data 

streams achieve an MCC score of 0.981 and a K score of 0.9808 in the prevalence 

of multiple types of anomalous instances. 

 

• Objective 5: Investigate the mechanism’s support for post-incident investigations 

as part of DF readiness. This objective was addressed in Chapters 2, 5 and 6 by 

investigating and demonstrating how sensing capabilities create opportunities to 

protect ICS as part of defence-in-depth approaches. 

 

 The SLR investigated how the identified primary studies addressed modern DFIR 

and further what were the efforts to utilise interactions in CPS to improve DFIR. Apart 

from insights gained about the factors influencing the findings and emerging themes 

outlined in Objective 1, the DFIR analysis asserted that CPS-related cyber resilience 

and DFIR were active research domains. However, the in-depth analysis uncovered 

that these areas have not been extensively considered by researchers in the context 

of CPS and modern DF readiness. The findings pointed to differences in scientific 

interest in the DFIR stages with variations across smart sectors and research 
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diversification to other smart city sectors an ambition of future research directions. 

For example, the DFIR analysis revealed that 67.308% of the investigated studies 

focused on the detection and analysis stages of IR.  

 

 Furthermore, this research scrutinised the applicability of the SPEAR framework 

and the A-ADC model to support DFIR as part of DF readiness to improve defence-

in-depth in ICS. The research concluded that the SPEAR framework could be applied 

innovatively as part of a post-incident investigation, reconstruction of events and 

identification of prior patterns. For example, due to the operation-critical and 

dispersed nature of ICS ubiquitously producing large quantities of data, it is not 

always possible to seize physical media. Innovative methods of gathering DE are 

needed to exploit the opportunities created by the pervasive nature of data. This 

could be achieved by modelling cyber-physical objects as DW coupled with the 

concept of DCoC to support modern DFIR. 

 

7.2 Future Work 
 

 This research developed a novel ML model-driven framework to detect and 

classify anomalous behaviours and derive a cyber risk score from ICS physical plant 

sensor data. Although the laboratory studies produced promising results, future 

research is still required to address additional optimisation and generalisation issues. 

For example, the data produced from physical plant sensors are ubiquitous and the 

data distribution evolves. While the fusion of OT and ICT increases process control, 

monitoring and automation, the increased integration of connected technologies into 

daily lives creates an expanding and dynamic attack surface with numerous attack 
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vectors. Besides targeted attacks from external adversaries including APT and 

insider threats, ICS are predisposed to challenges resulting from the disparity 

between security and operational priorities of ICT and OT, which further complicates 

the protection of ICS from cybersecurity threats [18, 19]. Hence, ICS have to adapt 

to a complex and evolving threat landscape. The integration of near-real-time 

prediction and the trade-off to maintain the model efficacy is a challenging problem 

that merits further research. Additionally, further research is vital to integrate CTI into 

the modelling of cyber-attacks against critical functions to support modern defence-

in-depth strategies for the smart cities of the future.  

 

 Moreover, this research scrutinised the applicability of the framework as part of 

reactive cyber defence. For example, logs systematically record events in digital 

systems that help understand ongoing and occurred events. Secure logs protection 

is a well-understood technique in computer security to maintain the integrity of the 

logs to support incident responders. Apart from investigating digital crimes, logs can 

be leveraged to deal with insider threats such as accidental hazards and professional 

errors. Hence, secure logs form an important part of DF readiness. In a digital 

investigation, any piece of data is a potential DE artefact. However, the method in 

which DE is handled influences whether that digital artefact is admissible in the Court 

of Law [5]. For example, DE requires a DCoC, which maintains traceability of the 

digital artefact to ensure attribution, specifically referencing the chronology of 

ownership, custody and location of the DE.  

 

 Against this backdrop, due to its security capabilities, Blockchain (BCh) 

technology can be integrated into ICS as an enabler to achieve modern DF 
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readiness. Apart from operational activities such as process control and automation, 

physical plant sensors could collaborate on providing specific cyber threat 

intelligence from the physical plant’s sensing capabilities to support incident 

investigations. However, in pervasive systems particularly critical infrastructures, it is 

not always viable to seize physical media to gather DE. While the surge of disruptive 

technologies integrated into ICS introduces complexities and increases their attack 

surface, disruptive technologies such as BCh present an opportunity to leverage the 

concept of DW to support investigations. The concept of DW in ICS is illustrated in 

Figure 64 in section 9.6. DW is referred to as cyber-physical objects with functional 

sensing capability to confirm a crime-related event [6, 56, 298], in this instance 

extended to accidental and malicious anomalous activities detected from ICS 

physical plant sensors. DF readiness should be carefully embedded into the ICS 

design and architecture as well as industrial business practice, illustrated in Figure 

65 in section 9.6 and Figure 66 in section 9.7. Therefore, future research is vital to 

focus on modelling cyber-physical objects as DW to support DF readiness. That 

being said, the integration of forward-looking innovative enablers such as BC 

technology to achieve DCoC as part of DF readiness in ICS remains limited. The 

complexity of ICS environments by utilising DW to achieve DF readiness requires 

extensive empirical research. 

 

 The results of evaluating the ML models developed throughout the research are 

based on laboratory conditions and theoretical discussions. Countermeasures were 

taken to maintain the characteristics of a real-world environment by utilising a dataset 

from a purpose-built testbed. However, a further appropriate field study will create 

an environment representing real-world challenges giving more accurate data to 
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investigate how the components of the framework would operate under such 

conditions in practice. An actual field study can last for many months allowing the 

capture of a range of anomalous activities. However, utilising actual environments in 

ICS many of which support critical infrastructures could have catastrophic 

consequences. Therefore, defining a common standard for metrics and reference 

datasets across different types of experimental environments is an important 

challenge for future research. 
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9. Appendices 
9.1 Chapters Composition 
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9.2 Nomenclature 
 

Acronym Description 
A-ADC Adaptive learning for Anomaly Detection and Classification  
ABA Anomaly Behaviour Analysis  
ABC AdaBoost Classifier  
AC Autoencoder 
ACb Attack Complexity  
ACM DL Association of Computing Machinery Digital Library  
ACPO Association of Chief Police Officers  
ADFM Abstract Digital Forensic Model  
ADWIN Adaptive Windowing 
AI Artificial Intelligence 
ANN Artificial Neural Network 
APT Advanced Persistent Threat  
Auer Authenticity Score 
AVb Attack Vector 
BBN Bayesian Belief Network 
BC Bagging Classifier 
BCh Blockchain 
C Conference 
Ch Changed 
Co Confirmed 
CART Classification and Regression Trees 
CCTV Closed-Circuit Television  
CDe Collateral Damage 
CER Containment, Eradication and Recovery  
CIA Confidentiality, Integrity and Availability  
CISA Cybersecurity and Infrastructure Security Agency  
CNI Critical National Infrastructure 
CPN Cyber-Physical-Natural 
CPO Cyber-Physical-Objects  
CPPSs Cyber–Physical Production Systems  
CPS Cyber Physical Systems  
CRISP-DM Cross-Industry Standard Process for Data Mining  
CRISP-DM  Cross-Industry Standard Process for Data Mining 
CROSSCAT Centralised, Responsive, Objective, Systematic, Sharing, Continuous review, 

Accessible, Timely 
CRVQ Cyber-risk Value Quantification 
CRVro Cyber-risk Value of risk occurrence  
CRVrs Cyber-risk Value of risk severity  
CRVt  Cyber-Risk Value 
CTI Cyber Threat Intelligence 
CUSUM Cumulative Sum  
CV Cross-Validation 
CVSS Common Vulnerability Scoring Systems 
DCoC Digital Chain-of-Custody 
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DDM Drift Detection Method  
DE Digital Evidence  
DF Digital Forensics  
DFIR Digital Forensic and Incident Response 
DFRWS Digital Forensic Research Workshop  
DL Digital Library 
DoD Department of Defence 
DoJ Department of Justice  
DoS Denial of Service 
DT Decision Tree 
DW Digital Witnesses  
DWT Discrete Wavelet Transform  
EC Exclusion Criteria 
ECDD Exponentially weighted moving average Concept Drift Detector 
EDDM Early Drift Detection Method  
ENISA European Union Agency for Network and Information Security 
EO Executive Order  
ERP Enterprise Resource Planning  
ESI Electronically Stored Information  
ETC Extra Tree Classifier 
EWMA Exponential Weight Moving Average  
FDI False Data Injection  
FIHTE FeatureImportanceHoeffdingTreeEnsemble  
FN False Negative  
FNR False Negative Rate 
FP False Positive 
FPR False Positive Rate 
GDPR General Data Protection Regulation 
GNB Gaussian Naïve Bayes  
H High 
HAT Hoeffding Adaptive Tree 
HAZOP Hazard and Operability (study) 
HIL Hardware-In-the-Loop  
HIPPA Health Insurance Portability and Accountability Act  
HMI Human-Machine-Interface  
HT Hoeffding Trees  
HWT Hoeffding Window Tree  
IACS Industrial Automation and Control Systems 
IC Inclusion Criteria 
ICS Industrial Control Systems  
ICT Information Communication Technologies  
IDA Incident Detection and Analysis  
IDIP Integrated Digital Investigation Process  
IDS Intrusion Detection System  
IEC International Electro-technical Commission 
IECEE IEC System of Conformity Assessment Schemes for Electrotechnical 

Equipment and Components 
IEEE Institute of Electrical and Electronics Engineers  
IF Isolation Forest 
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IIoT Industrial Internet of Things  
IoT Internet of Things  
IP Intellectual Property 
IR Incident Response  
IRO Initial Risk Occurrence  
IRSI Initial Risk Severity Impact  
IS Information Systems  
ISO/IEC International Organization for Standardization and International 

Electrotechnical Commission 
IT Information Technologies  
ITS Intelligent Transportation Systems  
J Journal 
K Cohen’s Kappa 
k-NN k-Nearest Neighbour 
KPSS Kwiatkowski-Phillips-Schmidt-Shin 
L Level 
Lo Low 
LIE Linear Incremental Estimator  
LOF Local Outlier Factor 
LR Logistic Regression  
LRD Local Reachability Density 
LSB Least Significant Bit 
MCA Multiple Characteristic Association  
MCC Matthews Correlation Coefficient 
MDI Mean Decrease in Impurity  
MES Manufacturing Execution System  
MiM Man-in-the-Middle  
ML Machine Learning 
MOA Massive Online Analysis  
Ne Network 
Nn None 
N Noise 
NB Naïve Bayes  
NCSC National Cyber Security Centre  
NHS National Health Service 
NIS Network and Information Security 
NIST National Institute of Standards and Technology  
OSELM Online Sequential Extreme Learning Machines  
OT Operational Technologies  
Pe Perceptron 
Phy Physical 
P Probability 
PBC Performance Benchmark Criteria  
PCA Principal Component Analysis 
Per Possession Score 
PESGS Primal Estimated SubGradient Solver 
PH Parkerian Hexad  
PHT Page-Hinkley Test  
PIA Post-Incident Activity  
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PICOC Population, Intervention, Comparison, Outcomes and Context 
PLC Programmable Logic Controllers  
Prb Privilege 
Q Quarter 
QA Quality Assessment  
R Required 
RBM Restricted Boltzmann Machines  
RC_ABDs Report Confidence Anomalous Behaviour Detection  
RC_As Report Confidence Accuracy 
ReLu Rectified Linear Unit 
RF Random Forest 
ROC AUC Receiver Operating Characteristic Area Under the Curve  
ROUF Risk Occurrence Update Factor 
RQ Research Questions 
RS Rebalance Stream  
RSUF Risk Severity Update Factor  
RW Rolling Windows 
S Seasonality 
SAM Self Adjusting Memory  
SANS SysAdmin, Audit, Network, and Security 
SCADA Supervisory Control and Data Acquisition  
SLR Systematic Literature Review  
SPEAR Super learner Ensemble Anomaly detection cyber-Risk quantification 

(framework) 
SVC Support Vector Classifier  
SVM Support Vector Machine 
SWS Smart Water Systems 
T Trend 
TA Time Automata  
TAC Temporally Augmented Classifier  
TCP/IP Transmission Control Protocol/Internet Protocol  
TDL-CNN Tapped Delay Line Convolutional Neural Network  
TE_PCS Tennessee-Eastman process control system  
TN  True Negative 
TNR True Negative Rate 
TP True Positive 
TPR True Positive Rate 
Uch Unchanged 
U Unknown 
Uer Utility Score 
UIb User Interaction 
US United States 
WEF World Economic Forum  
WEKA Waikato Environment for Knowledge Analysis  
WTD Water Distribution Testbed  
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9.3 SLR Methodology 
 

9.3.1 PICOC Criteria 
  

 The PICOC (population, intervention, comparison, outcomes, context) criteria as 

demonstrated in Table 35 are used from an engineering point of view, as proposed 

by Kitchenham and Charters [58] to frame the RQs effectively. 

Table 35 Application of PICOC criteria [58] to the Research Questions (RQs). 
PICOC Criteria Criteria Description  

Population Frameworks addressing smart cities 

Intervention Digital forensic incident response (DFIR) frameworks that support cyber resilience 

Comparison Frameworks addressing cyber resilience 

Outcomes Scope, technique, security application and sector of the studies analysed 

Context Academic research 

 

9.3.2 Data Sources and the Search Strategy 
 

 Digital library (DL) sources for computer science research publications were used. 

To help answer the RQs, keywords representative of the research topic were pre-

defined and a search string was constructed using Boolean operators, key terms and 

synonyms to fetch all relevant studies. The Boolean operators were limited to AND 

and OR. The following search string was used: 

 (‘Cyber Physical Systems’ OR ‘Cyber-Physical Systems’ OR ‘CPS’ OR ‘Cyber 

Physical Object’ OR ‘CPO’ OR ‘smart device’ OR ‘IoT device’) AND (‘cybersecurity’ 

OR ‘cybersecurity’ OR ‘cyber-resilience’ OR ‘resilience’) AND (‘smart cities’ OR 

‘smart city’) AND (‘model’ OR ‘modeling’ OR ‘technique’ OR ‘framework’ OR 

‘information modeling’ OR ‘modeling technique’ OR ‘analytical modeling’ OR 

‘reference architecture’ OR ‘reference model’ OR ‘Security Solutions’ OR ‘IoT 

Architecture’) 
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 The DLs used in this SLR were the Institute of Electrical and Electronics Engineers 

(IEEE), Association of Computing Machinery Digital Library (ACM DL), Science 

Direct, Web of Knowledge and Scopus. The search string was aligned to the built-in 

options within the DLs’ search engines to filter the results. Where possible, searches 

were performed to match the search string from the title, abstract, keywords, and full 

text. The search of the specified DLs concluded by 5 April 2019 taking into 

consideration all studies returned by the defined search string published to that date. 

In addition to the set of studies produced through the search of the DLs, a 

snowballing approach search strategy was applied, as outlined by Wohlin [320], 

which produced a further set of relevant studies. This was a manual process applied 

to the studies collected by the pre-identified search criteria until no further studies 

met the inclusion criteria. After identifying studies from the specific data sources 

using the defined search string, the rest of the protocol outlined in  Sections 9.4.3 - 

9.4.7 was applied to the studies identified by the initial search. 

 

9.3.3 Selection Criteria 
 

 Rigorous inclusion and exclusion criteria, as defined in Table 36, were applied to 

the produced set of studies from the DLs to ascertain that only relevant studies are 

retained in response to the RQs. 

Table 36 Inclusion and exclusion criteria for the primary studies. 
Inclusion Criteria (IC) Exclusion Criteria (EC) 

IC1: Must be a peer-reviewed, English-language primary 
study. EC1: Duplicate studies. 

IC2: Must contain CPS-specific information related to cyber 
resilience, modern DFIR or frameworks. 

EC2: Study is not a framework that 
supports cyber resilience or DFIR. 

IC3: Must include empirical evidence related to the cyber 
resilience security application and use of CPSs.  
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 Included studies must satisfy all IC. i.e., they must be primary, peer-reviewed, 

written in English and contain appropriate information on new applications or 

development of an existing mechanism for cyber resilience, modern DFIR or 

framework in CPS, providing empirical findings. 

 

9.3.4 Selection Process 
 

 The selection process consisted of three key phases as demonstrated in Figure 

63. The selection process was critically reviewed. 

 

Figure 63 Primary studies selection process. IEEE—Institute of Electrical and Electronics Engineers; ACM—
Association of Computing Machinery. 

Phase 0—Keyword Filtering. During this phase, the identified search string was 

applied to each of the DLs utilised returning a combined result of 441 research 

studies. These studies were passed through to the next phase. 

Phase 1—Title, Indexing Keywords, Abstract, and Conclusion Filtering. Following 

the initial keyword filtering, in phase 0, the titles, indexing keywords, abstracts and 

conclusion were scrutinised against the IC. Studies showing relevance to the 

research topic were included in the next phase. In this phase, 319 studies were 

excluded and 122 were put through to the final phase. 

Phase 2—Full-Text Filtering. The full texts of the 122 studies were read. After 

applying the selection criteria in this final phase, some studies were excluded for 
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several reasons. For example, references [41, 321, 322] did not include an empirical 

study, references [323-325] at the time of review were not peer-reviewed 

publications, reference [326] is not an English language study, reference [327] is a 

poster, the focuses of references [328-330] were not specific to CPS cyber resilience 

or modern DFIR. Additionally, 10 studies were identified as duplicates and excluded 

from the final selection list. Snowballing identified an additional 159 studies. After 

applying the selection process, these studies were reduced to 19 after excluding nine 

duplicate studies and three PhD theses. 

The final list of primary studies included in this SLR resulted in 52 articles, as shown 

in  Figure 63. 

 

9.3.5 Quality Assessment 
 

 Motivated by the guidance in reference [58], a checklist was developed according 

to references [331, 332] to make sure all included studies satisfy Quality Assessment 

(QA) criteria. This evidence-based approach assesses the validity of experimental 

data and reduces bias. The following QA criteria were applied: 

Phase 1: CPS. The study must be focused predominantly on CPS security or the 

application of the CPS framework to a specific cyber resilience problem and 

appropriately documented. 

Phase 2: Context. The context of the study must be provided in sufficient detail to 

accurately interpret the research. 

Phase 3: Detail. The framework details are critical to answering RQ1 and RQ2. 

Sufficient detail about the approach to build the framework and comparison with 

other approaches must be presented clearly in assisting to answer RQ3. 
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Phase 4: Data. Sufficient detail about the type of training and test data identified and 

how the data was acquired, measured and reported must be provided clearly to 

determine the accuracy of the results reported. 

 

9.3.6 Validation Process  
 

 A random set of 30 primary studies from the pool of studies were selected and 

had the inclusion/exclusion criteria re-applied to validate the effectiveness and 

objectivity of the process application. Further 30 random primary studies were 

selected from the pool of studies and had the QA criteria applied to validate the 

effectiveness and the application of the QA process.  

 

9.3.7 Data Extraction Strategy  
 

 The data extraction was applied to the final 52 primary studies. Initially, the 

process and format were trialled on a subset of studies before extending the process 

to all included studies. The data was categorized, stored in a spreadsheet and 

tabulated using the following characteristics:  

Context: year of publication, type of article, application of the study, sector, model 

type and security approach.  

Qualitative data: was recorded including the conclusion and future research 

directions provided by the authors  

Quantitative data: experiment observations were noted including the technique and 

dataset source. 
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9.4 Key Attacks on ICS 
 

Table 37 Key attacks on ICS timeline of reported high profile-attacks on ICS for a period between 1990 and 
February 2021 

Attack Year Description 

Solar Sunrise 1998 

Solar Sunrise is referred to as one of the earliest multi-stage 
cyber-attacks with international response against critical 
infrastructure. The threat actors targeted the US Department of 
Defence networks, breaching the US Navy Naval Sea Systems 
Command in Maryland [39]. The attack vector was a systematic 
exploitation of a vulnerability in the Sun Solaris operating 
systems that embedded a program to gather and later exfiltrated 
the data [39, 246]. Although this attack was considered the most 
organised and systematic by the Department of Defence, it was 
attributed to two Californian High School students [246]. 

Maroochy 
Water 2000 

The Maroochy wastewater system in Queensland Australia 
suffered problems with the radio frequency signals that 
controlled the wastewater pumping stations. The relevant pump 
alarms did not activate. The threat actor, a disgruntled ex-
employee, was found with SCADA equipment and software on 
their laptop to control the sewage management control system 
[333]. The attack vector in this case was a radio transmitter used 
to deliberately interfere with the radio signals of approximately 
150 sewage pumping stations for about three months [334]. 
Over two months the attacker made 46 attempts to take control 
of the sewage system. This attack resulted in the release of 
millions of gallons of untreated sewage contaminating 
waterways and local parks [333, 334]. The attack is an example 
of an insider threat attack against ICS which resulted in physical 
damage and cascading effect on the environment and the 
public.  

David-Besse 2003 

A Denial Service Attack (DoS) Slammer worm compromised the 
David-Besse nuclear powerplant in Ohio, United States [335, 
336]. The target of this attack was not the powerplant and no 
specific threat actor attribution was made. The attack vector 
used a backdoor in its ICS network from the Internet provider. 
This attack was caused by bypassing a firewall for one of the 
consultants’ applications and an unpatched vulnerability for 
which a patch was available for at least six months leading up 
to the attack. The Slammer worm entered the ICS network 
through the bypassed firewall and exploited a buffer overflow in 
Microsoft’s SQL engine slowing the servers down [336]. The 
consequence of the compromise was a five-hour outage of the 
parameter display system. The reactor was offline for major 
repairs at the time of the attack and the analogue reads from the 
sensors were not affected. However, the consequence of this 
attack could have been catastrophic.  

Baku-Tbilisi-
Ceyhan 2008 

The Turkey Baku-Tbilisi-Ceyhan gas pipeline explosion was 
initially attributed to a cyber-attack [337]. However, no threat 
actor attribution was made. Moreover, according to the following 
reference [338], the initial attribution’s credibility was doubted 
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with a possibility of a physical attack. That said, a possible attack 
vector outlined in the SANS ICS report was the penetration of 
the ICS network using misconfigured IP-based cameras and 
vulnerable camera communication software gaining persistent 
access by further exploiting a Windows-based alarms server 
[338].  

Stuxnet  2010 

The Stuxnet malware attack targeted an Iranian nuclear plant 
[64]. The attack infected the control system networks of fourteen 
industrial sites in Iran including causing significant physical 
damage to a fifth of the Iranian nuclear centrifuges in the Natanz 
uranium-enrichment facility [5, 339]. The 500-kilobyte worm, 
one of the most advanced malware at the time, is believed to 
have targeted specific equipment within the Natanz nuclear 
plant. Stuxnet used two attack vectors. The first attack vector 
was delivered by a worker believed to have used a USB stick 
and malware wormed its way onto it, thus creating a simple 
propagation vector onto another machine, without a need for an 
internet connection. The second attack vector compromised the 
Centrifuges Drive Systems with malware posing as a legitimate 
windows driver impacting the centrifuges’ rotor speeds leading 
to damage [336]. The attack was executed in three phases. 
Initially, it exploited four unpatched Microsoft vulnerabilities, two 
of which resulted in self-replication and the other two in privilege 
escalation which was unknown before this point, possibly zero-
day vulnerabilities. In the second phase, it looked for a very 
specific Siemens Step7 Windows-based software which was 
used to program ICS which operated the centrifuges. Lastly, the 
worm compromised the PLC modifying the data such that the 
HMI displayed the wrong information which went undetected 
and enabled the attackers to cause physical damage [64, 68, 
182, 339]. This is a shift from the conventional paradigm of the 
CIA [64]. Despite the initial threat actor, the paradigm shift to a 
well-financed and precisely executed sophistication of the attack 
is observed. This indicates a nation-state sponsor, with a 
political and not a financial gain motive [64, 339].  

Bowman 
Avenue  2013 

The Bowman Avenue Dam is a small hydraulic infrastructure to 
control storm surges [340-342]. The threat actors gained access 
to the floodgates [340-342]. The Bowman Dam’s SCADA 
system used a cellular modem for internet connectivity. The 
attack vector leveraged unprotected infrastructure accessible 
from the Internet with no firewall protection or access control 
implementation. The attack took place during the SCADA 
maintenance during which the gate was manually disconnected 
with no control and only status monitoring capability in place. A 
Federal indictment attributed the attack to nation-state 
sponsored [341, 342].  

German Steel 
Mill 2014 

In December 2014 the German government’s Bundesamt für 
Sicherheit in der Informationstechnik (BSI) (translated as 
Federal Office of Information Security) reported on an 
unspecified attack on a steel facility. While no attribution was 
asserted and the attack vector was not disclosed, according to 
SANS ICS [50], the threat actors had detailed knowledge of 
the ICS network. The attack failed multiple physical 
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components. The attackers used spear phishing to gain 
access to the enterprise network, followed by lateral movement 
into the ICS network [343, 344]. 

Ukrainian 
Power Grid 2015 

This attack on the Ukrainian power grid [65] seized control of 
the power grid’s connected control system by compromising the 
SCADA system. The threat actors leveraged BlackEnergy 
malware exploiting Excel macros delivered using a spear-
phishing technique [65]. The attackers used open-source 
information about the infrastructure from the ICS vendors. 
Additionally, the attackers leveraged a lack of two-factor 
authentication between the enterprise and the ICS network. 
Finally, the firewall configuration permitting remote 
administrative level connection from within the ICS utilising 
native system capabilities was also exploited. The consequence 
of the attack was a significant blackout leaving over 200,000 
customers without electricity [5, 340]. Overall this attack 
resulted in physical damage to a number of the substations’ 
physical components [65]. The attack impacted thirty 
substations and rendered the SCADA equipment inoperable. 
The electricity had to be manually restored.  The Ukrainian 
power grid attack was the first to publicly acknowledge an 
incident which resulted in a power outage [65]. The threat actors 
showed expert knowledge of the network-connected 
infrastructure, operating ICS through a HMI [65]. The tactics, 
techniques and procedures employed at the Ukrainian power 
grid could be reused against other infrastructure across the 
world and a repeat of an attack is a real possibility [65, 345]. 

Ukrainian 
Power Grid 2016 

The second attack launched against the Ukrainian power grid 
resulted in a power outage in its capital city, Kyiv. The attack 
affected 30 substations. The impact of the population scale was 
similar to the 2015 attack. However, additionally, a telephone 
denial of service attack was also launched. Although the 
recovery from the attack was within 3 hours, the recovery was 
manual due to the management systems affected by the attack. 
The attack was attributed to nation-state actors [341]. The 
fundamental difference from the first attack was the increase in 
sophistication of the threat actor's tactics, techniques and 
procedures. The second attack used a sophisticated malware 
“Crashoverride” which targeted the SCADA system, not a 
manual trip of the circuit breakers as was the case in the 2015 
attack [341].  

Kemuri Water 
Company 2015 

The cyber-attack on an undisclosed water company in the 
United States uses the pseudonym ‘Kemuri’ to protect its 
identity [61]. The threat actors gained access to the applications 
controlling the PLCs for valve and flow control. Additionally, the 
sensors monitoring the plant were compromised and the levels 
of chemicals in the water treatment plant were altered [61, 346]. 
In this case, the ICS was internet facing and the attack could 
have resulted in serious damage to the public. Despite this 
attack exposing customer personal data, there is no reported 
subsequent evidence that this was misused [336]. The attack 
was attributed to a Syrian hacktivist group [336, 346]. 
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Saudi 
Petrochemical 
Plant 

2017 

In the Saudi petrochemical plant, the threat actors targeted the 
industrial control unit’s safety system to cause physical damage. 
However, a malfunctioning code resulted in the shutdown of the 
operation instead [336, 340]. This could be an indicator that the 
threat actors did not have detailed knowledge to successfully 
execute the attack in its entirety, however, they may use the 
developing knowledge to launch future larger-scale attacks. The 
attack vector leveraged the Triton malware to gain remote 
access. According to [336], the threat actors aimed to alter the 
codebase of the Safety Instrumentation System responsible for 
the plant’s operational safety to cause significant physical harm. 
When the attack occurred, the failsafe mode was triggered 
resulting in an operational shutdown [336, 347]. No attribution 
has been made, and despite some indicators of Triton deployed 
attack suggesting state sponsorship other research does not 
draw the same conclusion [348, 349].  

Norsk Hydro 2019 

Manufacturing sector such as the Norwegian Norsk Hydro a 
renewable energy supplier that was targeted by the LockerGoga 
ransomware infecting forty sites and leading to production 
stoppage across Europe and the United States [40, 350]. 
Switching their operation to manual helped Norsk Hydro 
minimise the impact of the attack. In this attack, the threat actors 
exploited a weakness in the corporate Active Directory system 
for the attack propagation despite considerable weaknesses in 
their infrastructure related to endpoint security, security 
monitoring and system design [350].  

National 
Water Supply 2020 

The attack on Israel’s Water Authority water treatment station’s 
command and control targeted the PLCs operating the valves at 
several locations [351]. The threat actors aimed to disrupt the 
supply of water and alter the levels of chlorine. According to 
[351] the attackers succeeded in taking over the operations 
system at one of the stations. 

Oldsmar 
Water 
Treatment 
Facility 

2021 

The attackers gained access to the SCADA system at Florida’s 
Oldsmar water treatment facility and briefly increased the 
amount of sodium hydroxide a hundred-fold [352]. Poor 
password hygiene and outdated operating system were the 
likely attack vector used by the attackers. The facility provides 
water to about fifteen thousand residents and commercial 
establishments. The chemical being the main ingredient in drain 
cleaners, this attack could have had profound consequences 
[247].   

 

9.5 The Concept of Digital Witness in ICS 
  

 Blockchain (BCh) emerged from the underpinning technology behind the Bitcoin 

cryptocurrency [353, 354]. Leveraged for financial transaction recording, BCh has 

unique characteristics. It is composed of cryptographically chained immutable blocks 
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that form a trusted, shared and distributed ledger of transactions. The blocks in the 

BCh are kept by peer-to-peer distributed management adopting consensus 

algorithms without needing a central authority or another intermediary [6, 354, 355]. 

Notably, nodes managing a BCh are constrained by the use of the same consensus 

algorithm. BCh is intrinsically incremental with each block being append-only, linked 

using secure hashes to the previous and subsequent blocks. The block comprises 

the hash, random nonce, root hash, timestamp and the metadata of all transactions 

immutably recorded with the ability to trace back to the Genesis block. Genesis is 

the name given to the first block in a given BCh. Due to the security capabilities 

including the decentralised architecture of trusted sources, cryptographic security, 

authenticity, responsibility for integrity and fault tolerance, BCh has the potential to 

support securing the IoT [70, 354, 355]. Scientific literature suggests that leveraging 

BCh to address the security of CPS and critical infrastructures to support modern 

DFIR is an active research area [6, 56, 356].  

 

 The role of the DW is to identify and preserve DE artefacts that can be stored on 

the device or transferred to other devices in the cloud, also known as Hearsay DW. 

To describe the DE data lifecycle from creation to destruction, reference is made to 

the Digital Forensic Research Workshop (DFRWS), the ISO/IEC 27050 general 

frameworks alongside adopting the categorisation of the data lifecycle context 

proposed by [56], see Figure 64. Additionally, to achieve admissibility, BCh has a 

unique advantage to initiate and maintain a DCoC. For example, the following study 

[6] introduced a tracking and liability attribution framework leveraging DW to enable 

the tracking of objects’ behaviour within smart controlled business environments to 

detect insider threats. The authors proposed a framework leveraging BCh technology 
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to achieve DF readiness by establishing a DCoC and introduced the concept of DW 

to support post-incident investigations in smart controlled work environments. 

Another study [298] investigated the use of DW in personal devices, where personal 

devices can acquire, store and transmit DE to an authorised entity reliably and 

securely. 

 

Figure 64 Concept of Digital Witness in ICS 

 A drawback of using BCh technologies is the computational complexity of the 

public BCh model. Despite the public BCh being based on Proof-of-Work and while 

it can withstand up to 50% compromised nodes, the implementation of the 

consensus protocol is capable of fewer transactions per second. However, the Proof-

of-Authority leverages pre-authorised validators suited for a permissioned network. 

The related private BCh Practical Byzantine Fault Tolerance or Stellar Consensus is 

less computationally demanding, thus functionally capable of higher throughputs. 

That being said, they require a higher number of trustworthy nodes. Nonetheless, a 
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key characteristic of anomaly detection in ICS is that all objects must be known and 

pre-registered due to digital identity and access control. Hence, a permissioned BCh 

is more likely to provide the throughput, manageability, traceability, trust and integrity 

across a complex interdependent and distributed ICS within a common framework. 

BCh technology should be engineered and built into the ICS’ design to achieve a 

verifiable audit trail, as shown in Figure 65, to support incident responders and 

facilitate DF readiness as part of proactive defence-in-depth. 

 

Figure 65 Integrating Blockchain technology into ICS design 

9.6  ICS Digital Forensic-Enabled Digital Investigation Case 
Study 

 

 Alongside the value gained from the operational use of sensors-generated data, 

these data sources create multi-layered opportunities including support for 

developing intelligence capabilities and DF readiness. Firstly, Figure 66 

demonstrates typical participants and how their interactions relate to a BCh-enabled 

ICS architecture for the physical sensors data pipeline. DW are considered cyber-

physical objects which are functionally capable to maintain admissible DE including 
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receiving, storing and transferring DE following a pre-determined ruleset. Employees 

and CPS objects include authorised persons and smart physical or virtual objects 

with tamper-proof storage capable of performing tasks. The supply chain is 

considered to have a role in the development, operation and maintenance of ICT and 

OT concerning products, components, environmental and system parameters. The 

incident investigation includes the internal physical and virtual entities required for 

anomalous behaviour analysis and gatekeeping coordination of DE to legal 

authorities such as law enforcement agencies and the Courts of Law. Next, besides 

the participants and their interactions, the architectural approach requires the 

integration of distinct composable elements comprising data sources, innovative use 

of ML techniques and BC technologies, as referenced in Figure 66. On the premise 

of a digital investigation, all defined data sources are potentially DE analysed by 

leveraging AI-driven predictive modelling. Finally, depending on the threat model, 

permissioned BCh with smart contracts can be applied to control the ownership 

transfer at authorised hand-off gates to the DF investigation pipeline. 

 

 The threat landscape affecting ICS includes conventional IT and specific OT 

threats that range from external adversaries including APT to the prevalence of 

insider threats including social challenges such as accidental hazards, social 

engineering and disgruntled employees. In summary, the threat model for this use 

case could include: 

• ICS interconnectivity with public networks could result in resourceful adversaries 

exploiting an attack vector and gaining access to the logic and the physical control 

layers, see Figure 33. This could result in the alteration of values resulting in an 

inconsistency between the actual and expected state of the physical process 
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resulting in anomalous behaviour captured within the physical sensors produced 

data. 

• A use case could also suppose internal factors such as social engineering, 

disgruntled employee and supply chain exposure. Such actors have authorised 

unmonitored access to the operational infrastructure. This could result in an 

alteration of the software and environmental parameters configuration, which 

could cause deviation from the expected data patterns. Internal threats are often 

underestimated and challenging to detect [6, 22]. 

Either use case could potentially alter the physical processes resulting in physical 

damage with an impact on the wider society.  

 

Figure 66 BC enabled ICS general framework participants' interactions 

9.7 Regulatory Considerations 
  

 The regulatory landscape is multifaceted. Apart from the IIoT Reference 

Architecture [7, 357], IIoT systems have consumer-centric industry-specific 

standards and regulatory compliance requirements for information handling such as 
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the Health Insurance Portability and Accountability Act (HIPPA) [7] or the General 

Data Protection Regulation (GDPR). Specific to the security in IACS, a catalogue of 

standards is published by the International Electro-technical Commission (IEC) such 

as the IEC 62443 covering electronic security of control systems across several 

industry sectors [7, 358]. Specifically, IEC62443-3-3 which relates to the details of 

system security requirements and security levels has been accredited by the IEC 

System of Conformity Assessment Schemes for Electrotechnical Equipment and 

Components (IECEE). The NIST’s NISTIR7628 revision 1 standard relates to smart 

grid cybersecurity [359] whereas the IEEE published standards on cybersecurity for 

intelligent electronic devices to accommodate critical infrastructure protection [360]. 

 

 Additionally, NIST produced guidelines for the Network-of-Things in the NIST 

SP800-183 [226], and specifically a guide to ICS security in NIST SP 800-82 revision 

2 [54] while mapping to further detailed security recommendations in NIST SP 800-

53 revision 5 guidelines [361]. The Department of Homeland Security in the United 

States issued strategic principles for the security of IoT, whilst the European Union 

Network and Information Security (NIS) Directive guide to securely manage the 

connectivity between operational environments such as ICS or SCADA and the 

respective enterprises. In addition, the ISO published a security catalogue covering 

such as ISO/IEC 30141:2018 which focuses on IoT Reference Architecture. The 

ISO/IEC 27001:2013 covers Security Techniques, ISO 27002:2013 is aimed at 

information security management practice, and the ISO/IEC 27017:2015 specifically 

focuses on cloud services.  
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 Although the regulatory landscape specific to DFIR aims to establish an 

international baseline it is also equally diverse, covered by several standards 

discussed by authors in [6, 56]. For example, the ISO/IEC 27043 focuses on incident 

investigation principles and processes, while ISO/IEC 27037 details DE acquisition. 

Methods for assuring the suitability and adequacy of incident investigations are 

covered by ISO/IEC 27041, ISO/IEC 27042 provides clarity on the analysis and 

interpretation phases of DE. The ISO/IEC 27050-1:2019, ISO/IEC 27050-3:2020 and 

ISO27050-2:2018 focus on the electronic discovery of DE. 

  

 Despite ongoing efforts to develop AI standards in the realm of AI-enabled 

systems, standards’ proliferation and fragmented approach to threats make the 

convergence of standards challenging with currently over 80 frameworks in AI and 

related ethics [26, 362]. The regulations, standards and guidelines presented in this 

section are not exhaustive and are aimed at demonstrating the multi-disciplined 

complexity of the related regulatory and standards landscape. 
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