6 research outputs found

    Local modes-based free-shape data partitioning

    Get PDF
    In this paper, a new data partitioning algorithm, named “local modes-based data partitioning”, is proposed. This algorithm is entirely data-driven and free from any user input and prior assumptions. It automatically derives the modes of the empirically observed density of the data samples and results in forming parameter-free data clouds. The identified focal points resemble Voronoi tessellations. The proposed algorithm has two versions, namely, offline and evolving. The two versions are both able to work separately and start “from scratch”, they can also perform a hybrid. Numerical experiments demonstrate the validity of the proposed algorithm as a fully autonomous partitioning technique, and achieve better performance compared with alternative algorithms

    Cybernetics of the mind:learning individual's perceptions autonomously

    Get PDF
    In this article, we describe an approach to computational modeling and autonomous learning of the perception of sensory inputs by individuals. A hierarchical process of summarization of heterogeneous raw data is proposed. At the lower level of the hierarchy, the raw data autonomously form semantically meaningful concepts. Instead of clustering based on visual or audio similarity, the concepts are formed at the second level of the hierarchy based on observed physiological variables (PVs) such as heart rate and skin conductance and are mapped to the emotional state of the individual. Wearable sensors were used in the experiments

    Cybernetics of the mind:learning individual's perceptions autonomously

    Get PDF
    In this article, we describe an approach to computational modeling and autonomous learning of the perception of sensory inputs by individuals. A hierarchical process of summarization of heterogeneous raw data is proposed. At the lower level of the hierarchy, the raw data autonomously form semantically meaningful concepts. Instead of clustering based on visual or audio similarity, the concepts are formed at the second level of the hierarchy based on observed physiological variables (PVs) such as heart rate and skin conductance and are mapped to the emotional state of the individual. Wearable sensors were used in the experiments

    Detecting anomalous behaviour using heterogeneous data

    Get PDF
    In this paper, we propose a method to detect anomalous behaviour using heterogenous data. This method detects anomalies based on the recently introduced approach known as Recursive Density Estimation (RDE) and the so called eccentricity. This method does not require prior assumptions to be made on the type of the data distribution. A simplified form of the well-known Chebyshev condition (inequality) is used for the standardised eccentricity and it applies to any type of distribution. This method is applied to three datasets which include credit card, loyalty card and GPS data. Experimental results show that the proposed method may simplify the complex real cases of forensic investigation which require processing huge amount of heterogeneous data to find anomalies. The proposed method can simplify the tedious job of processing the data and assist the human expert in making important decisions. In our future research, more data will be applied such as natural language (e.g. email, Twitter, SMS) and images

    Empirical data analytics

    Get PDF
    In this paper, we propose an approach to data analysis, which is based entirely on the empirical observations of discrete data samples and the relative proximity of these points in the data space. At the core of the proposed new approach is the typicality—an empirically derived quantity that resembles probability. This nonparametric measure is a normalized form of the square centrality (centrality is a measure of closeness used in graph theory). It is also closely linked to the cumulative proximity and eccentricity (a measure of the tail of the distributions that is very useful for anomaly detection and analysis of extreme values). In this paper, we introduce and study two types of typicality, namely its local and global versions. The local typicality resembles the well-known probability density function (pdf), probability mass function, and fuzzy set membership but differs from all of them. The global typicality, on the other hand, resembles well-known histograms but also differs from them. A distinctive feature of the proposed new approach, empirical data analysis (EDA), is that it is not limited by restrictive impractical prior assumptions about the data generation model as the traditional probability theory and statistical learning approaches are. Moreover, it does not require an explicit and binary assumption of either randomness or determinism of the empirically observed data, their independence, or even their number (it can be as low as a couple of data samples). The typicality is considered as a fundamental quantity in the pattern analysis, which is derived directly from data and is stated in a discrete form in contrast to the traditional approach where a continuous pdf is assumed a priori and estimated from data afterward. The typicality introduced in this paper is free from the paradoxes of the pdf. Typicality is objectivist while the fuzzy sets and the belief-based branch of the probability theory are subjectivist. The local typicality is expressed in a closed analytical form and can be calculated recursively, thus, computationally very efficiently. The other nonparametric ensemble properties of the data introduced and studied in this paper, namely, the square centrality, cumulative proximity, and eccentricity, can also be updated recursively for various types of distance metrics. Finally, a new type of classifier called naïve typicality-based EDA class is introduced, which is based on the newly introduced global typicality. This is only one of the wide range of possible applications of EDA including but not limited for anomaly detection, clustering, classification, control, prediction, control, rare events analysis, etc., which will be the subject of further research

    Anomalous behaviour detection using heterogeneous data

    Get PDF
    Anomaly detection is one of the most important methods to process and find abnormal data, as this method can distinguish between normal and abnormal behaviour. Anomaly detection has been applied in many areas such as the medical sector, fraud detection in finance, fault detection in machines, intrusion detection in networks, surveillance systems for security, as well as forensic investigations. Abnormal behaviour can give information or answer questions when an investigator is performing an investigation. Anomaly detection is one way to simplify big data by focusing on data that have been grouped or clustered by the anomaly detection method. Forensic data usually consists of heterogeneous data which have several data forms or types such as qualitative or quantitative, structured or unstructured, and primary or secondary. For example, when a crime takes place, the evidence can be in the form of various types of data. The combination of all the data types can produce rich information insights. Nowadays, data has become ‘big’ because it is generated every second of every day and processing has become time-consuming and tedious. Therefore, in this study, a new method to detect abnormal behaviour is proposed using heterogeneous data and combining the data using data fusion technique. Vast challenge data and image data are applied to demonstrate the heterogeneous data. The first contribution in this study is applying the heterogeneous data to detect an anomaly. The recently introduced anomaly detection technique which is known as Empirical Data Analytics (EDA) is applied to detect the abnormal behaviour based on the data sets. Standardised eccentricity (a newly introduced within EDA measure offering a new simplified form of the well-known Chebyshev Inequality) can be applied to any data distribution. Then, the second contribution is applying image data. The image data is processed using pre-trained deep learning network, and classification is done using a support vector machine (SVM). After that, the last contribution is combining anomaly result from heterogeneous data and image recognition using new data fusion technique. There are five types of data with three different modalities and different dimensionalities. The data cannot be simply combined and integrated. Therefore, the new data fusion technique first analyses the abnormality in each data type separately and determines the degree of suspicious between 0 and 1 and sums up all the degrees of suspicion data afterwards. This method is not intended to be a fully automatic system that resolves investigations, which would likely be unacceptable in any case. The aim is rather to simplify the role of the humans so that they can focus on a small number of cases to be looked in more detail. The proposed approach does simplify the processing of such huge amounts of data. Later, this method can assist human experts in their investigations and making final decisions
    corecore