1,180 research outputs found

    Very High Lorentz Factor Fireballs and Gamma-Ray Burst Spectra

    Full text link
    Collisionless entrainment of the surrounding matter imports the relativistic baryon component in the Gamma-Ray Burst (GRB) fireball frame. We show that half the fireball energy can be transferred from radiation to the comoving hot motions of baryons under the photosphere. The yet baryon-poor fireball can reexpand to a very high Lorentz factor (VHLF) \Gamma ~ 10^3-10^6 by its own relativistic collisionless pressure beyond the photosphere (so-called collisionless bulk acceleration), leading to internal and external shocks. A simple synchrotron emission from the VHLF internal shocks produces (i) the extra power-law spectral component with variability observed in the Fermi GeV bursts, up to the TeV range for the future Cherenkov Telescope Array (CTA), (ii) the GeV onset delay with a weak luminosity dependence t_{delay} ~ L^{-1/5}, and (iii) the spectral break of GRB 090926 by the synchrotron cooling break or the maximum synchrotron cutoff limited by the dynamical time, not by the e+- creation cutoff. The relativistic baryon component could also heat the photospheric thermal photons into the main GRB Band spectrum via pp, p\gamma (Bethe-Heitler and photomeson), and Coulomb thermalization processes. In this hot photosphere-internal-external shock model, we can predict the anticorrelation of ~TeV neutrinos and GeV gamma-rays, which may be detectable using IceCube. The spectral peak and luminosity (Yonetoku) relation is also reproduced if the progenitor stars are nearly identical. We also discuss the steep/shallow decay of early X-ray afterglows and short GRBs.Comment: 21 pages, 6 figures, final version to be published in Progress of Theoretical Physic

    Soft hadron production in pp interactions up to ISR energies

    Get PDF
    Soft hadron production is described as a two-step process, where the interaction of the partonic constituents of the colliding hadrons leads to the production of intermediate subsystems (fireballs), which decay subsequently into hadrons. The weights of the various final states are derived from the corresponding phase-space factors modified by empirical transition elements. The results compare well with data at energies between particle production thresholds and ISR energies. Special emphasis is put on correlation data, which offer the opportunity to shed some light on the question whether particle production proceeds via fireballs or strings.Comment: 14 pages, 19 figure

    The order, shape and critical point for the quark-gluon plasma phase transition

    Get PDF
    The order, shape and critical point for the phase transition between the hadronic matter and quark-gluon plasma are considered in a thermodynamical consistent approach. The hadronic phase is taken as Van der Waals gas of all the known hadronic mass spectrum particles mH2.0m_H\le 2.0 GeV as well as Hagedorn bubbles which correspond hadronic states with mass spectrum mH>2.0m_H> 2.0 GeV. The density of states for Hagedorn bubbles is derived by calculating the microcanonical ensemble for a bag of quarks and gluons with specific internal color-flavor symmetry. The mixed-grand and microcanonical ensembles are derived for massless and massive flavors. We find Hagedorn bubbles are strongly suppressed in the dilute hadronic matter and they appear just below the line of the phase transition. The order of the phase transition depends on Hagedorn bubble's internal color-flavor structure and the volume fluctuation as well. On the other hand, the highly compressed hadronic matter undergoes a smooth phase transition from the gas of known mass spectrum hadrons to another one dominated by Hagedorn bubbles with specific internal color-flavor structure before the phase transition to quark-gluon plasma takes place at last. The phase transition is found a first order for the intermediate and large chemical potentials. The existence of the tri-critical point depends on the modification of the bubble's internal structure specified by a phenomenological parameter γμB\gamma\propto\mu_B in the medium.Comment: 69 pages, 10 figure

    Proto-type installation of a double-station system for the optical-video-detection and orbital characterisation of a meteor/fireball in South Korea

    Get PDF
    We give a detailed description of the installation and operation of a double-station meteor detection system which formed part of a research & education project between Korea Astronomy Space Science Institute and Daejeon Science Highschool. A total of six light-sensitive CCD cameras were installed with three cameras at SOAO and three cameras at BOAO observatory. A double-station observation of a meteor event enables the determination of the three-dimensional orbit in space. This project was initiated in response to the Jinju fireball event in March 2014. The cameras were installed in October/November 2014. The two stations are identical in hardware as well as software. Each station employes sensitive Watec-902H2 cameras in combination with relatively fast f/1.2 lenses. Various fields of views were used for measuring differences in detection rates of meteor events. We employed the SonotaCo UFO software suite for meteor detection and their subsequent analysis. The system setup as well as installation/operation experience is described and first results are presented. We also give a brief overview of historic as well as recent meteor (fall) detections in South Korea. For more information please consult http://meteor.kasi.re.kr .Comment: Technical/instrumentation description of a professional meteor detection system, 23 pages, 20 figures (color/monochrome), 5 tables, submitted to the Journal of Korean Astronomical Society (JKAS, http://jkas.kas.org/, http://jkas.kas.org/history.html
    corecore