64 research outputs found

    Type-based race detection for Java

    Get PDF
    Between Object and Idea: Re-thinking Fashion Spaces   Wednesday 19th June 2013, 10.00-17.30  Venue: 2nd Floor Humanities Seminar Room, Stevens Building, Royal College of Art, Kensington Gore, London, SW7 2EU  This one-day symposium explores the increasingly wide scope of spaces where fashion is practiced and studied. It brings together a cross-disciplinary cohort of fashion researchers to explore ideas relating to fashion spaces. As fashion research becomes bolder in its interactions with oth..

    Type-based race detection for Java

    Full text link

    Static Application-Level Race Detection in STM Haskell using Contracts

    Get PDF
    Writing concurrent programs is a hard task, even when using high-level synchronization primitives such as transactional memories together with a functional language with well-controlled side-effects such as Haskell, because the interferences generated by the processes to each other can occur at different levels and in a very subtle way. The problem occurs when a thread leaves or exposes the shared data in an inconsistent state with respect to the application logic or the real meaning of the data. In this paper, we propose to associate contracts to transactions and we define a program transformation that makes it possible to extend static contract checking in the context of STM Haskell. As a result, we are able to check statically that each transaction of a STM Haskell program handles the shared data in a such way that a given consistency property, expressed in the form of a user-defined boolean function, is preserved. This ensures that bad interference will not occur during the execution of the concurrent program.Comment: In Proceedings PLACES 2013, arXiv:1312.2218. [email protected]; [email protected]

    The Silently Shifting Semicolon

    Get PDF
    Memory consistency models for modern concurrent languages have largely been designed from a system-centric point of view that protects, at all costs, optimizations that were originally designed for sequential programs. The result is a situation that, when viewed from a programmer\u27s standpoint, borders on absurd. We illustrate this unfortunate situation with a brief fable and then examine the opportunities to right our path

    Dynamic Race Prediction in Linear Time

    Full text link
    Writing reliable concurrent software remains a huge challenge for today's programmers. Programmers rarely reason about their code by explicitly considering different possible inter-leavings of its execution. We consider the problem of detecting data races from individual executions in a sound manner. The classical approach to solving this problem has been to use Lamport's happens-before (HB) relation. Until now HB remains the only approach that runs in linear time. Previous efforts in improving over HB such as causally-precedes (CP) and maximal causal models fall short due to the fact that they are not implementable efficiently and hence have to compromise on their race detecting ability by limiting their techniques to bounded sized fragments of the execution. We present a new relation weak-causally-precedes (WCP) that is provably better than CP in terms of being able to detect more races, while still remaining sound. Moreover it admits a linear time algorithm which works on the entire execution without having to fragment it.Comment: 22 pages, 8 figures, 1 algorithm, 1 tabl

    Rigorous concurrency analysis of multithreaded programs

    Get PDF
    technical reportThis paper explores the practicality of conducting program analysis for multithreaded software using constraint solv- ing. By precisely defining the underlying memory consis- tency rules in addition to the intra-thread program seman- tics, our approach orders a unique advantage for program ver- ification | it provides an accurate and exhaustive coverage of all thread interleavings for any given memory model. We demonstrate how this can be achieved by formalizing sequen- tial consistency for a source language that supports control branches and a monitor-style mutual exclusion mechanism. We then discuss how to formulate programmer expectations as constraints and propose three concrete applications of this approach: execution validation, race detection, and atom- icity analysis. Finally, we describe the implementation of a formal analysis tool using constraint logic programming, with promising initial results for reasoning about small but non-trivial concurrent programs
    • …
    corecore