22 research outputs found

    Type-Based Termination, Inflationary Fixed-Points, and Mixed Inductive-Coinductive Types

    Full text link
    Type systems certify program properties in a compositional way. From a bigger program one can abstract out a part and certify the properties of the resulting abstract program by just using the type of the part that was abstracted away. Termination and productivity are non-trivial yet desired program properties, and several type systems have been put forward that guarantee termination, compositionally. These type systems are intimately connected to the definition of least and greatest fixed-points by ordinal iteration. While most type systems use conventional iteration, we consider inflationary iteration in this article. We demonstrate how this leads to a more principled type system, with recursion based on well-founded induction. The type system has a prototypical implementation, MiniAgda, and we show in particular how it certifies productivity of corecursive and mixed recursive-corecursive functions.Comment: In Proceedings FICS 2012, arXiv:1202.317

    Copatterns: programming infinite structures by observations

    Get PDF
    This article which will appear in the proceedings of POPL 2013 in January 2013, introduces the dual of pattern matching, as it is used in functional programming for defining functions, by copatterns. Whereas data types are eliminated by pattern matching, i.e. by giving giving a choice for each constructor, coalgebras are introduced by copatterns, namely by giving the result of each eliminator. Patterns and copatterns are entirely symmetrical. This article introduces a language which allows to define data types, coalgebras, and functions by nested pattern and copattern matching. An operational semantics is introduced, and type soundness and subject reduction is shown

    Flexible Coinduction in Agda

    Get PDF
    We provide an Agda library for inference systems, also supporting their recent generalization allowing flexible coinduction, that is, interpretations which are neither inductive, nor purely coinductive. A specific inference system can be obtained as an instance by writing a set of meta-rules, in an Agda format which closely resembles the usual one. In this way, the user gets for free the related properties, notably the inductive and coinductive intepretation and the corresponding proof principles. Moreover, a significant modularity is achieved. Indeed, rather than being defined from scratch and with a built-in interpretation, an inference system can also be obtained by composition operators, such as union and restriction to a smaller universe, and its semantics can be modularly chosen as well. In particular, flexible coinduction is obtained by composing in a certain way the interpretations of two inference systems. We illustrate the use of the library by several examples. The most significant one is a big-step semantics for the ?-calculus, where flexible coinduction allows to obtain a special result (?) for all and only the diverging computations, and the proof of equivalence with small-step semantics is carried out by relying on the proof principles offered by the library

    Constructing Initial Algebras Using Inflationary Iteration

    Get PDF
    An old theorem of Adámek constructs initial algebras for sufficiently cocontinuous endofunctors via transfinite iteration over ordinals in classical set theory. We prove a new version that works in constructive logic, using “inflationary” iteration over a notion of size that abstracts from limit ordinals just their transitive, directed and well-founded properties. Borrowing from Taylor’s constructive treatment of ordinals, we show that sizes exist with upper bounds for any given signature of indexes. From this it follows that there is a rich class of endofunctors to which the new theorem applies, provided one admits a weak form of choice (WISC) due to Streicher, Moerdijk, van den Berg and Palmgren, and which is known to hold in the internal constructive logic of many kinds of elementary topos.UK EPSRC PhD studentship 211980

    Interactive programming in Agda – Objects and graphical user interfaces

    Get PDF

    Constructing Infinitary Quotient-Inductive Types

    Get PDF
    This paper introduces an expressive class of quotient-inductive types, called QW-types. We show that in dependent type theory with uniqueness of identity proofs, even the infinitary case of QW-types can be encoded using the combination of inductive-inductive definitions involving strictly positive occurrences of Hofmann-style quotient types, and Abel's size types. The latter, which provide a convenient constructive abstraction of what classically would be accomplished with transfinite ordinals, are used to prove termination of the recursive definitions of the elimination and computation properties of our encoding of QW-types. The development is formalized using the Agda theorem prover
    corecore