9 research outputs found

    Protection against overflow attacks

    Get PDF
    Buffer overflow happens when the runtime process loads more data into the buffer than its design capacity. Bad programming style and lack of security concern cause overflow vulnerabilities in almost all applications on all the platforms;Buffer overflow attack can target any data in stack or heap. The current solutions ignore the overflowed targets other than return address. Function pointer, for example, is a possible target of overflow attack. By overflowing the function pointer in stack or heap, the attacker could redirect the program control flow when the function pointer is dereferenced to make a function call. To address this problem we implemented protection against overflow attacks targeting function pointers. During compiling phase, our patch collects the set of the variables that might change the value of function pointers at runtime. During running phase, the set is protected by encryption before the value is saved in memory and decryption before the value is used. The function pointer protection will cover all the overflow attacks targeting function pointers;To further extend the protection to cover all possible overflowing targets, we implemented an anomaly detection which checks the program runtime behavior against control flow checking automata. The control flow checking automata are derived from the source codes of the application. A trust value is introduced to indicate how well the runtime program matches the automata. The attacks modifying the program behavior within the source codes could be detected;Both function pointer protection and control flow checking are compiler patches which require the access to source codes. To cover buffer overflow attack and enforce security policies regardless of source codes, we implemented a runtime monitor with stream automata. Stream automata extend the concept of security automata and edit automata. The monitor works on the interactions between two virtual entities: system and program. The security policies are expressed in stream automata which perform Truncation, Suppression, Insertion, Metamorphosis, Forcing, and Two-Way Forcing on the interactions. We implement a program/operating system monitor to detect overflow attack and a local network/Internet monitor to enforce honeywall policies

    Using Execution Transactions To Recover From Buffer Overflow Attacks

    Get PDF
    We examine the problem of containing buffer overflow attacks in a safe and efficient manner. Briefly, we automatically augment source code to dynamically catch stack and heap-based buffer overflow and underflow attacks, and recover from them by allowing the program to continue execution. Our hypothesis is that we can treat each code function as a transaction that can be aborted when an attack is detected, without affecting the application's ability to correctly execute. Our approach allows us to selectively enable or disable components of this defensive mechanism in response to external events, allowing for a direct tradeoff between security and performance. We combine our defensive mechanism with a honeypot-like configuration to detect previously unknown attacks and automatically adapt an application's defensive posture at a negligible performance cost, as well as help determine a worm's signature. The main benefits of our scheme are its low impact on application performance, its ability to respond to attacks without human intervention, its capacity to handle previously unknown vulnerabilities, and the preservation of service availability. We implemented a stand-alone tool, DYBOC, which we use to instrument a number of vulnerable applications. Our performance benchmarks indicate a slow-down of 20% for Apache in full-protection mode, and 1.2% with partial protection. We validate our transactional hypothesis via two experiments: first, by applying our scheme to 17 vulnerable applications, successfully fixing 14 of them; second, by examining the behavior of Apache when each of 154 potentially vulnerable routines are made to fail, resulting in correct behavior in 139 of cases

    Countering Network Worms Through Automatic Patch Generation

    Full text link

    ValueGuard: Protection of Native Applications against Data-Only Buffer Overflows

    Full text link
    Code injection attacks that target the control-data of an application have been prevalent amongst exploit writers for over 20 years. Today however, these attacks are getting increasingly harder for attackers to successfully exploit due to numerous countermeasures that are deployed by modern operating systems. We believe that this fact will drive exploit writers away from classic control-data attacks and towards data-only attacks. In data-only attacks, the attacker changes key data structures that are used by the program’s logic and thus forces the control flow into existing parts of the program that would be otherwise unreachable, e.g. overflowing into a boolean variable that states whether the current user is an administrator or not and setting it to “true” thereby gaining access to the administrative functions of the program. In this paper we present ValueGuard, a canary-based defense mechanism to protect applications against data-only buffer overflow attacks. ValueGuard inserts canary values in front of all variables and verifies their integrity whenever these variables are used. In this way, if a buffer overflow has occurred that changed the contents of a variable, ValueGuard will detect it since the variable’s canary will have also been changed. The countermeasure itself can be used either as a testing tool for applications before their final deployment or it can be applied selectively to legacy or high-risk parts of programs that we want to protect at run-time, without incurring extra time-penalties to the rest of the applications.status: publishe

    Chain-of-Thought Prompting of Large Language Models for Discovering and Fixing Software Vulnerabilities

    Full text link
    Security vulnerabilities are increasingly prevalent in modern software and they are widely consequential to our society. Various approaches to defending against these vulnerabilities have been proposed, among which those leveraging deep learning (DL) avoid major barriers with other techniques hence attracting more attention in recent years. However, DL-based approaches face critical challenges including the lack of sizable and quality-labeled task-specific datasets and their inability to generalize well to unseen, real-world scenarios. Lately, large language models (LLMs) have demonstrated impressive potential in various domains by overcoming those challenges, especially through chain-of-thought (CoT) prompting. In this paper, we explore how to leverage LLMs and CoT to address three key software vulnerability analysis tasks: identifying a given type of vulnerabilities, discovering vulnerabilities of any type, and patching detected vulnerabilities. We instantiate the general CoT methodology in the context of these tasks through VSP , our unified, vulnerability-semantics-guided prompting approach, and conduct extensive experiments assessing VSP versus five baselines for the three tasks against three LLMs and two datasets. Results show substantial superiority of our CoT-inspired prompting (553.3%, 36.5%, and 30.8% higher F1 accuracy for vulnerability identification, discovery, and patching, respectively, on CVE datasets) over the baselines. Through in-depth case studies analyzing VSP failures, we also reveal current gaps in LLM/CoT for challenging vulnerability cases, while proposing and validating respective improvements

    Binary Program Integrity Models for Defeating Code-Reuse Attacks

    Get PDF
    During a cyber-attack, an adversary executes offensive maneuvers to target computer systems. Particularly, an attacker often exploits a vulnerability within a program, hijacks control-flow, and executes malicious code. Data Execution Prevention (DEP), a hardware-enforced security feature, prevents an attacker from directly executing the injected malicious code. Therefore, attackers have resorted to code-reuse attacks, wherein carefully chosen fragments of code within existing code sections of a program are sequentially executed to accomplish malicious logic. Code-reuse attacks are ubiquitous and account for majority of the attacks in the wild. On one hand, due to the wide use of closed-source software, binary-level solutions are essential. On the other hand, without access to source-code and debug-information, defending raw binaries is hard. A majority of defenses against code-reuse attacks enforce control-flow integrity , a program property that requires the runtime execution of a program to adhere to a statically determined control-flow graph (CFG) -- a graph that captures the intended flow of control within the program. While defenses against code-reuse attacks have focused on reducing the attack space, due to the lack of high-level semantics in the binary, they lack in precision, which in turn results in smaller yet significant attack space. This dissertation presents program integrity models aimed at narrowing the attack space available to execute code-reuse attacks. First, we take a semantic-recovery approach to restrict the targets of indirect branches in a binary. Then, we further improve the precision by recovering C++-level semantics, and enforce a strict integrity model that improves precision for virtual function calls in the binary. Finally, in order to further reduce the attack space, we take a different perspective on defense against code-reuse attacks, and introduce Stack-Pointer Integrity -- a novel integrity model targeted at ensuring the integrity of stack pointer as opposed to the instruction pointer. Our results show that the semantic-recovery-based approaches can help in significantly reducing the attack space by improving the precision of the underlying CFG. Function-level semantic recovery can eliminate 99.47% of inaccurate targets, whereas recovering virtual callsites and VTables at a C++ level can eliminate 99.99% of inaccurate targets

    Type-Assisted Dynamic Buffer Overflow Detection

    No full text
    Programs written in C are inherently vulnerable to buffer overflow attacks. Functions are frequently passed pointers as parameters without any hint of their sizes. Since their sizes are unknown, most run time buffer overflow detection techniques instead rely on signatures of known attacks or loosely estimate the range of the referenced buffers. Although they are effective in detecting most attacks, they are not infallible. In this paper we present a buffer overflow detection technique that range checks the referenced buffers at run time. Our solution is a small extension to a generic C compiler that augments executable files with type information of automatic buffers (local variables and parameters of functions) and static buffers (global variables in data / bss section) in order to detect the actual occurrence of buffer overflow. It also maintains the sizes of allocated heap buffers. A simple implementation is described, with which we currently protect vulnerable copy functions in the C library
    corecore