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ABSTRACT 
 

Embedding malcode within documents provides a convenient means of attacking systems. Such attacks 

can be very targeted and difficult to detect to stop due to the multitude of document-exchange vectors and 

the vulnerabilities in modern document processing applications. Detecting malcode embedded in a 

document is difficult owing to the complexity of modern document formats that provide ample 

opportunity to embed code in a myriad of ways. We focus on Microsoft Word documents as malcode 

carriers as a case study in this paper. To detect stealthy embedded malcode in documents, we develop an 

arbitrary data transformation technique that changes the value of data segments in documents in such a 

way as to purposely damage any hidden malcode that may be embedded in those sections. Consequently, 

the embedded malcode will not only fail but also introduce a system exception that would be easily 

detected. The method is intended to be applied in a safe sandbox, the transformation is reversible after 

testing a document, and does not require any learning phase. The method depends upon knowledge of the 

structure of the document binary format to parse a document and identify the specific sectors to which the 

method can be safely applied for malcode detection. The method can be implemented in MS Word as a 

security feature to enhance the safety of Word documents.  

1. Introduction 

Modern document formats are fundamentally object containers that provide a convenient “code-injection 

platform.” One can embed many types of objects into a document, not only scripts, tables, and media, but 

also arbitrary code used to render some embedded object of any type. Many cases have been reported 

where malcode has been embedded in documents (e.g., PDF, Word, Excel, and PowerPoint [10,16,20]) 

transforming them into a vehicle for host intrusions. Malcode bearing documents can be easily delivered 

and bypass network firewalls and intrusion detection systems when posted on an arbitrary website as a 

passive “drive by” Trojan, transmitted over emails, or introduced to systems by storage media such as 

CD-ROMs and USB drives. Furthermore, attackers can use such documents as a stepping stone to reach 

other systems, unreachable via the regular network. Consequently, any machine inside an organization 

with the ability to open a document can become the spreading point for the malcode to reach any host 

within that organization.  

In this study, we focus on Microsoft Word document files. There is nothing new about the presence of 

viruses in email streams, embedded as attached documents, nor is the use of malicious macros a new 

threat. Word macro viruses have been well studied
1
 [5,31]. In this paper, however, we focus on another 

attack type, the exploit of Word vulnerabilities where malcode is embedded in normal-appearing 

document data sectors. Microsoft Office documents are implemented in Object Linking and Embedding 

                                                                 

1
 To thwart malicious macros, the solution provided by Microsoft is to disable all macros that do not contain 

authorized digital signatures. While malicious macro problem is not completely solved, attackers can embed 

malcode using  stealth  strategies that are harder to detect. 
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(OLE) structured storage format, in which any arbitrary code could be embedded and executed and 

various vulnerabilities would be exploited. For example, Word may harbor various memory corruption 

exploits such as buffer overflows [43], integer overflows [35], format string overflows [37], and 

vulnerabilities with other applications (e.g., HP Storage Management Appliance [36] and WMF 

vulnerability in MS graphic rendering engine [42]). Adversarues may craft data that cause a buffer 

overflow which directs the program to an invalid memory address. Consequently, Word jumps to a 

particular location to execute arbitrary code. Combined with polymorphic [9,18,39,44] and mimicry 

[19,25,32] strategies, the embedded malcode is difficult to detect by IDSes and currently no easy solution 

is available other than not using Word altogether. However, Adobe PDF is not immune to the same attack 

strategies.  

To counter these stealthy attack techniques, we developed a malcode detection technique we call the 

Arbitrary Data Transformation (ADT). The strategy is to modify and damage possible embedded malcode 

by arbitrarily changing the data values of certain content portions of Word files. Having modified data 

processed by MS Word, execution of those portions with embedded malcode will very likely be damaged 

causing a “system crash” that is easily noticed. On the other hand, altering normal data used to describe 

the content of the documents would not crash the program in cases where no malcode existed. The display 

of the document might be different or distorted but Word won’t crash. For example, the characters, font 

size, and type are changed, but Word can still display the document without causing exceptions. 

The technique is intended as a safety check when opening Word documents. ADT might be applied 

within Word in a sandbox or virtual machine, or by a separate analysis application such as SPARSE 

[22,23] or a third party AV scanner, and if the document is deemed benign, the document would be 

opened in its normal fashion after reversing the ADT transformation. Hence, ADT is a reversible 

transformation and detection process applied to Word documents in a safe environment.  

The ADT strategy was inspired by the technique of instruction set randomization (ISR) [3,14] and address 

space layout protection (ASLR) [4,6] for thwarting code injection attacks. ISR randomly maps the 

instruction set of a program and requires a key to decode the instructions. The attacker cannot be certain 

what the real code is without a key to decode it. ASLR changes the memory layout so the malcode cannot 

know where their targets are located in memory. The malcode is thus uncertain about the location of 

specific code it seeks to target.  

ADT is different than ASLR. It does not protect programs from exploitation of some vulnerability that 

transfers control to the modified sections. On the other hand, we let the embedded code be triggered. Our 

ADT strategy arbitrarily changes data values in the document that would damage any embedded malcode 

which would be noticed when the exploit triggering the malcode is executed. ADT is different than ISR. 

ADT doesn’t need a key to decode the transformed data values. We open the “transformed” document 

using MS Word and let the application either fail or not, essentially using MS Word as detector.  

Each single byte has 256 possible values, and an n-byte data sequence has 
n256 possible permutations. 

As long as the changed byte values are arbitrarily chosen in a random non-predictable fashion, the 

attacker cannot predict or guess what transform we may apply to document’s data sections. Since the 

ADT process can be performed every time when a document is opened, the changed values can be 

different each time a document is opened. Therefore, it is impossible to continuously guess the key by 

using any brute force strategy [27], which has been shown can compromise the ASLR and ISR protection 

mechanisms. Each attempted probe requiring opening the document produces a new transformed instance 

of the document, creating essentially moving targets thwarting brute force guessing strategies.  

The ADT method is similar to emulating suspect content. For example, modern AV systems run an 

emulator to see if certain content being processed is likely code embedded in data that should not have 

code. The ADT strategy attempts to detect code by damaging it and noting a system failure.  A third party 

AV vendor would be able to apply emulation inside documents but that process may be expensive and 

requires that the document format be parsed to identify data sections where emulation would be applied.  
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Given these constraints, the document application vendor is in the best position to perform the check for 

hidden malware within the application directly. Sections parsed in the proprietary Word format might be 

directly tested using the ADT strategy without the need to develop an emulator.  

The rest of the paper is organized as follows. In Section 2, we discuss related work and the prior work 

focusing on malicious document detection. We detail the ADT technique in section 3 and evaluate our 

approach in Section 4. Finally, we conclude the paper in Section 5 after discussing future work to 

improve upon the method. 

 

2. Related Work 

2.1 State-of-the-Art Detection Techniques 

Approaches to malware detection can generally be grouped into two areas: the static and the dynamic 

approaches. Static techniques analyze the binary content of files that may harbor malware without 

executing the code, while dynamic detection systems execute the code in emulated environments and 

observe the run-time behavior to determine malfeasance.  

Traditional development of virus signatures required human experts to manually analyze the program and 

extract specific byte contents as signatures [15,31]; this was a laborious, time consuming procedure. The 

later improved methods are algorithmic scanning that look for frequent common patterns in the binary 

content [17,28] and heuristic analyses that search for suspicious code or behavior at specific locations in 

memory or files [1]. In addition, n-gram modeling techniques and statistical anomaly detection have been 

applied effectively to detect malware [22,30,33]. However, none of these approaches can guarantee detect 

zero-day attacks will be detected without false positives. 

Since it is difficult and time consuming to analyze the intent of malicious software by manually 

disassembling the code or by using reverse engineering methods, dynamically executing the code and 

observing the system behavior has become a common method for malware detection. Numerous papers 

have been published on this topic [11,12,31,47,48].  

2.2 Steganalysis, Polymorphism, and Mimicry Attacks 

Recently, steganalysis, polymorphic, and mimicry techniques have been used counter and evade the static 

and dynamic detection techniques. Steganography is a technique that hides secret messages embedded in 

otherwise normal appearing objects or communication channels. Provos [44] studies cleverly embedded 

“foreign” material within media objects that evades statistical analysis while maintaining what otherwise 

appears to be completely normal-appearing objects (e.g., a sensible image). The general class of the 

steganographic embedding of secret messages may be viewed as a “mimicry” attack, whereby the 

messages are embedded in such a fashion as to mimic the statistical characteristics of the objects in which 

the messages are embedded. Malcode embedded in documents may be considered a form of 

steganography, but here with the aim of code execution.  

Similarly, polymorphic techniques have been exploited to deceive signature-based IDSes. ADMutate [39] 

and CLET [9] craft polymorphic worms with vulnerability-exploiting shellcode to defeat simple static 

anomaly detectors. According to the statistical distribution learned by sniffing the environment, Lee et al. 

[18] inject morphed padding bytes into the code allowing the code to have a “normal” appearing 

statistical characterization. Other researchers suggest that systematically injecting noise or fake samples 

into the training pool can obstruct the learning algorithms from generating reliable signatures [24,26]. As 

a result, all detection algorithms based on learning a static pattern would be evaded by adding patterns 

that are similar to the exploit’s invariants. Song et al. [29] suggest it is futile to compute a set of 

signatures of malicious code, and hence identifying malcode embedded in a document using signature-

based approaches may not be the wisest strategy.  



4 

 

The ADT method described in this paper can counter these obfuscation techniques since either the 

encrypted code or the decoder that is embedded inside a document is arbitrarily modified and its 

functionality will be damaged and very likely detected if the modification results in a system crash.  

2.3 Code Injection Attacks and Detection Techniques 

Various defense techniques have been developed to protect systems from code injection attacks. Some 

concentrate on preventing buffer overflow by protecting the return address, specific data values, and 

pointers from being overwritten [7,8,21]. However, all of these techniques only detect some specific types 

of exploits (e.g., overwritten of return address), while others can still bypass the protection. 

Obfuscation and randomization are approaches that try to solve the code injection problem more 

generally. They are not protection mechanism; however, randomization techniques make the exploits 

more difficult to succeed. Instruction set randomization (ISR) defuse code injection attacks by randomly 

changing the instructions used on a host machine or application [3,14]. ISR prevents the execution of 

embedded malcode by randomizing the relationship between the op code and the instructions for 

programs. The code section of an executable is encrypted with a key, which is stored in memory, and an 

instruction is decrypted when it is loaded to the processor. The drawback however is that the emulator 

design requires extra memory to handle shared libraries and ISR cannot disable mimicry attacks that use 

legal instructions. 

Address space layout randomization (ASLR) [4,6] that randomizes the base address of stack, heap, code, 

and data. As a result, the embedded malcode jumps to a wrong location or pointers won’t be able to locate 

the malcode it tends to launch. Shacham et al. [27] studied the effectiveness of address randomization. 

They implemented a brute force attack (they called a derandomization attack) that repeatedly probes the 

target and can compromise a 16-bit key space address randomization protected machine within a few 

minutes. They stated that runtime address-space randomization techniques are not as effective as once 

commonly believed, and any buffer-overflow attack could be crafted to work against address 

randomization.  

Jiang et al. [13] developed a system named RandSys that combines the ISR and ASLR techniques that 

can effectively thwart a wide variety of code injection attacks with a small overhead. There proposed 

system greatly enhances protection because it is more difficult to correctly guess the combined keys. 

2.4. SPARSE: A Hybrid System to Detect Malicious Documents 

We previously introduce the SPARSE system [22,23] developed for malicious document detection. 

SPARSE is a hybrid system that combines multiple detectors and various detection strategies to detect 

malicious documents as well the location of the embedded malcode with in the document.  

The static detector built into SPARSE is based on the Anagram algorithm [33] that characterizes the 

binary contents of document files. The system includes a fine-grained static parsing mechanism to 

separate different types of objects embedded in the documents to model them separately, avoiding  

mixing their statistics together. The detailed algorithm used to detect malicious documents is described in 

[22], in which a 2-class mutual information modeling technique (i.e. one benign model and one malicious 

model) is suggested.  

SPARSE has a second dynamic event detector system that models the system’s run-time behavior such as 

file creation/modification, module loading, registry access/change, and process activity. In addition, the 

system includes a mechanism that activates and examins passive embedded objects that require human 

action to launch. Thus, the dynamic detector has an automaton that automatically interacts with the  

SPARSE also has a mechanism to locate the malicious sector harboring the embedded malcode in a 

document by selectively removing suspicious sectors one at a time and testing the rest of the document 

for identifying the presence of the malcode. This strategy not only locates the malcode but also uses the 
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extracted sectors containing malcode in an integrated feedback loop to update the models and to improve 

the accuracy of the detectors over time. 

In our earlier study [23], we found combining multiple detectors and using optimized strategies, the 

hybrid SPRASE system could achieve high detection accuracy with a low false positive rate, and the 

experimental result of the hybrid system was superior to the result of using any individual detector alone. 

As an additional dynamic test procedure integrated in SPARSE, ADT is designed to detect stealthy 

embedded attack that may use mimicry strategies that can evade both static and dynamic detection 

approaches. ADT does not need any training model; instead, it disables potentially embedded malcode by 

altering vulnerable data values. The detailed technique is described in the next section. 

 

3. Arbitrary Data Transformation 

Before detailing the approach, we briefly describe the attacks we address. The attacks we consider are not 

traditional macro viruses, which are typically VBA code and are usually located in the “Macros” or 

“WordDocument” sector
2
. Figure 1 displays a parsed document in the OLE structural format, which 

contains nodes and directories; we call each node a “sector.” In sectors such as “1Table,” Word may 

harbor various exploits such as buffer overflows [35,36,43,66] or vulnerabilities with other applications 

[42]. The attackers may craft data that exploit the vulnerabilities which redirect the execution of Word to 

a particular location to execute arbitrary embedded malcode.  

Another type of attack strategy is to embed malcode in the padding areas of the binary file format (the 

space filled with 0 byte values to align blocks of code on disk for fast disk access) of documents or to 

replace normal textual data with malcode. This stealthy multi-partite strategy
3
 [30, 34] can lie dormant in 

the file store of the target environment awaiting a future attack that would extract and activate it. In 

contrast, normal documents do not contain executable code in these areas. Further, the embedded code 

can be shaped to appear as if it were normal text through “spectrum shaping” [45,46].  

We studied the Microsoft Office Binary File Format Documentation [41, 67] to understand and analyze 

the Microsoft document format to parse the binary into the correct sectors. The proprietary Microsoft 

documentation contains a very substantial list of sectors with intricate structure. In general terms, we may 

categorize the byte content of a Word document into two types: the data and the pointers to the data (i.e. 

the binary contents that indicate the offset or the length of data). When processing a document, Word first 

looks for the pointers, which are at either absolute or relative locations; these pointers tell Word where to 

find the data that specify the document rendering function by its type (e.g., text, images, or tables). The 

data values are either exact data values (e.g., images) or information telling Word how to display the data, 

such as objects’ sizes and styles (e.g., data structure variables). 

Specifically, many pointers are contained in the File Information Block (FIB) that are embedded in the 

beginning of the WordDocument sector, and these pointers indicate either the offset or the length of data 

embedded in sectors such as the other portions in WordDocument or the 1Table sector. The rest of the 

WordDocument sector contains the text, macros, and some other data. The 1Table sector, which is 

currently the most vulnerable portion of Word documents, contains approximately 130 data structures 

including many types of pointers and data. The most prevalent attacks in the wild have been primarily 

stealthily embedded attacks in the 1Table sector. For this study we obtained a number of Word documents 

                                                                 

2
 In general, the OLE structure is like a small file system that are composed with various “sectors” such as 

WordDocument, Macros, and 1Table. More details about the Word document structure can be found in other works 

on malicious document detection [32,33]. 
3
 An earlier work [47] demonstrated that embedding malcode, even known viruses, in the padding areas could evade 

detection by COTS AV scanners. 
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attacks which were all embedded in the 1Table sector. However, our detection strategy is not limited to 

only 1Table but can also be applied to the other sectors with a correctly implemented parser. 

 

Figure 2: An example of the internal structure of a parsed document in OLE format 

The data in 1Table can be text such as “Times New Roman,” identifying fonts, or numbers used to define 

sizes, locations, flags and indices, or code blocks that can be script or encrypted code. In addition to the 

pointers and data, there are some “magic numbers” in some cases which are keywords or special values 

that cannot be changed without crashing Word, for instance, the magic numbers indicating the beginning 

of a document or a sector, streams of Microsoft Office reference schemas [40], and some specific 

numbers used to indicate the end of structures. All of these values cannot be arbitrarily modified.  

Embedding malcode in pointers is difficult. First, if the malcode is crafted as a pointer value, the attacker 

has to ensure that the document doesn’t break Word before the malcode is launched, i.e. arbitrarily 

replacing a pointer value with another would likely crash Word when it processes that pointer. Second, 

since the pointers are usually short, i.e. from 1 bit to a few bytes, and not contiguous, there is not 

sufficient space to place the malcode in a pointer area without overwriting the data or padding values 

adjacent to the pointers. Finally, it is hard to exploit these pointers without being fairly easily noticed, e.g., 

by introducing high entropy values in a certain area, significantly increasing the document size, or 

crashing the system. As a result, an attacker would likely find it convenient and safe to embed their 

malcode in the data sections or the padding areas. For example, the data that cause buffer overflow can be 

any arbitrary value; some are embedded in the data areas while others overwrite some pointers. However, 

the executable malcode or the decoder of the encrypted malcode are always embedded in the data sections 

or padding areas, for this is far easier to craft without introducing errors in the documents. 

Based on the above observation of the attacks we studied and MS Word format’s complexity, in order to 

counter this type of attack our goal to detect malcode is to alter the byte values of the malcode that may 

be embedded in the data or padding areas. To this end, we arbitrarily change the data portions to arbitrary 

chosen different values, for all of the non-zero data values that can be safely changed. As a consequence, 
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the ADT strategy will change the binary content of illegally embedded code to arbitrary values and will 

force it to crash or to be disabled. That is, ADT does not avoid the execution of buffer overflow or other 

vulnerabilities but damages the malcode to purposely crash. On the other hand, normal data used to 

describe the documents should be able to be changed into other values without serious error; the display 

of the document may be changed even appearing incomprehensible, but the system won’t crash when 

malcode is not present. To understand which values can be changed, we studied and analyzed the 

(proprietary) Microsoft documentation
4
 [41] and manually analyzed thousands of Word documents. For 

example, each of the 130 structures in the 1Table sector used to describe the documents structure may 

contain several types of data, including pointers, data, and keywords. We analyzed each of the structures 

and observed which data could or could not be safely changed. 

For all of the byte values that can be changed (i.e. neither keywords nor pointers), we increase or decrease 

those data values by some arbitrarily chosen displacement x (e.g., changing the character “A” to “Q”). In 

our test cases, the value of x ranged from 1 to 3 (or -3 to -1), so a y-byte long data section has 
yx2  (x 

can be negative) possible permutations. The range of x is 256, which is the total possible values of a byte. 

In this paper, we arbitrarily changed the values with a displacement from 1 to 3 to provide a proof-of-

concept demonstration. As future work, the value displacements may be changed to specific values 

defined according to the type of the structure using that data so the display of documents won’t be 

damaged but just transformed into another style or type. Thus, the range of the displacement value can be 

far wider than what we used in this study. Moreover, as we noted ADT does not need to convert the 

transformed values back as in ISR to render a document. Word will render the transformed data segments.  

As a result, displacement value x, can be different every time when we perform the transformation, and 

we may arbitrarily apply different displacement values to each byte value if we choose. Hence, the brute 

force attacks [27], which keep probing to learn the correct encryption key, will not able to successfully 

guess “the key”.  

In many cases, as we noted, the display of the document will likely be distorted after applying ADT, as 

we may expect. For example, the font display for ASCII data used in the 1Table sector may appear with 

the “Times New Roman” font name, where the corresponding byte values are “54 69 6D 65 73 20 4E 65 

77 20 52 6F 6D 61 6E.” These data values are the data that describe the text type font. Arbitrarily 

changing any of these values to another value, including the extended ASCII characters, would not cause 

Word to crash. Word would choose a default font or style if the transform was incomprehensible to Word.  

Figure 2 compares a Word document before and after the ADT process. In this figure, the data 

representing the text type (i.e. FFN, Font Family Name) are arbitrarily changed, but the document can still 

be opened and displayed without any error. The worst outcome of ADT is that Word displays a blank 

page or displays some strange characters when malcode is not embedded in the document. 

                                                                 

4
 We signed a non-disclosure agreement and hence cannot reveal the format details in a public document. Interested 

readers can request the documentation from Microsoft: officeff@microsoft.com 
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Figure 2: Before (a) and after (b) transforming the data that used to render the text type. 

In (a), the text type is “Times New Roman.” In (b), both the characters representing the text 

type and the reference index have been changed. 

 

On the other hand, stealthy embedded malcode residing in the data portion, if there is any, will also be 

changed, and subsequently either Word will crash or the malcode will be disabled when an attempt is 

made to execute it. For example, the hexadecimal Opcode value “6A” and “EB” represent the push and 

jmp x86 instructions, respectively. If the byte values are increased by 1, they become “6B” and “EC” 

which are not correct Opcodes. Even though sometimes the changed code is valid, it can become another 

completely unintended instruction. As a result, the program or the OS will not be able to correctly execute 

the attackers’ shellcode and will either crash or terminate the process. Figure 3 and 4 display the binary 

content of two buffer overflow attacks. In Figure 3, the list of 4-byte values is a list of pointers (i.e. the 

fcPlfLfo structure), and the zeros are padding values. The highlighted values are embedded shellcode 

which is an infinite loop causing memory corruption. In Figure 4, the structure is used to describe the 

Font Family Name (FFN). ADT does not change the values of the pointers; however, the byte values of 

the malcode embedded in the padding area will be changed after the ADT process. In any case, the attack 

will be disabled. Hence, whether the shellcode exhibits obvious or mimicry behavior, our system can 

detect it by the ADT process. 
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Figure 3: The binary content of malicious shellcode embedded in a Word document 

(fcPlfLfo). 
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Figure 4: The binary content of a malicious shellcode embedded in a Word document 

(fcSttbfffn). 

Indeed, some changes may cause Word to be incapable of displaying the content at all, and these 

documents are considered as false positives in our experiments, which will be presented in the next 

section. However, Word does not crash in these cases; instead, it displays a message indicating that the 

document may be damaged. Two examples are shown in Figure 5 and Figure 6. These error messages 

vary depending on the version of Word or patch level. We doubt a true attack would cause this message to 

be displayed. If the attack was crafted to display this error message (but not crash the system), the attack 

would announce itself to the user anyway! Furthermore, it is possible that attackers can replace the “non-

changeable values,” such as the keywords, by crafted malcode; however, this is much harder than 

embedding malcode in the data area because the non-changeable values are usually short, not contiguous, 

or special keywords. 

By way of summary, the ADT technique will disable or corrupt the stealthy embedded malcode, but not 

normal data. Thus, if a document behaves normally before the ADT process and crashes afterwards, we 

consider that it contains stealthy malcode (malicious); if it doesn’t crash after the process, it is deemed 

benign.  
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Figure 5: An error message when opening a damaged document. 

 

Figure 6: An error message when opening a damaged document. 

 

4. Evaluation 

To evaluate the ADT strategy, we tested 15 “1Table” attacks supplied to us by an external party, where 

we were able to manually verify the accuracy of our method. These attacks include memory corruption 

(i.e. stack buffer overflow) and Trojan-Droppers, exercised vulnerabilities known to exist in earlier 

versions of Word that have since been patched for the most recent versions. For each of the tested 

documents, we automatically applied ADT, and subsequently we observed and compared the system 

behavior (i.e. whether there is any exception or error) when executing both the original documents and 

their modified versions in a virtual machine. 

The summary results displayed in Table 1 show 11 out of the 15 attacks were successfully detected – the 

data modification forced system errors. For the memory corruption attacks, Word couldn’t display the 

documents, instead, it either showed a “Your system is low on virtual memory” or ran for a long time 

until the system crashed. A sample of code is shown in Table 2. This shellcode, which was an infinite 

loop to corrupt memory, was embedded in the data area, and changing any of the byte values, except “01” 

and “02,” would disable the function (i.e. the code would become meaningless). After applying ADT to 

these malicious documents, we forced Word to terminate immediately
5
 when opening the documents. It 

appeared Word found incorrect embedded code and stopped the process. For the other attacks, the 

situations were similar; Word was either terminated immediately or displayed an error message. 

 

 

 

                                                                 

5 This was tested in Windows XP SP2 and Word 2002 with no patches. Other versions of Windows and 
Word may exhibit different error handling mechanism. 
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Table 1: Summary of the tested known attacks. The original file names are not revealed 

because of confidentiality concerns. Three Trojan-Droppers contained code in 

multiple structures. The numbers in the parentheses are the number of suspicious structures. The 

structure names are defined by the Microsoft documentation [41]. 

Attack Index Attack Type Result Location 

1 Memory corruption Detected FIB 

2 Memory corruption Detected fcPlfLfo 

3 Memory corruption Detected fcPlfLfo 

4 Display pop-up message Detected fcSttbfffn 

5 Encrypted malcode Detected fcSttbfffn 

6 Steganographic Detected fcSttbfffn 

7 Opened system32/calc.exe Detected fcPlfLfo 

8 Program error Detected fcSttbfffn 

9 Program error Detected fcDop 

10 Trojan-Dropper Detected fcSttbfffn 

11 Trojan-Dropper Detected fcSttbfffn 

12 Trojan-Dropper Disabled Multiple (5) 

13 Trojan-Dropper Disabled Multiple (25) 

14 Trojan-Dropper Disabled Multiple (22) 

15 Trojan-Dropper (an attack 

used to against Tibet support 

organizations in March 

2008) 

Couldn’t 

change 

the values 

fcSttbfBkmkFactoid 

 

Table 2: The shellcode example of a memory corruption attack. 

Byte Value Code Comment 

BB XX XX XX XX mov ebx, XX XX XX XX XX XX XX XX is the attack 

6A 01 push 01 Add an argument 

6A 02 push 02 Add an argument 

FF D3 call ebx Call the attack 

EB F8 jmp F8 Jump 8 bytes backward, 

which is 6A 01 

 

After applying ADT, three Trojan-Droppers did not introduce system errors; instead, their malicious 

behaviors, creating some registry keys and files, was disabled. This was what we expected: the 

transformed malcode would either be disabled or introduce program error. Nevertheless, we labeled them 

as false negatives because we couldn’t automatically verify whether the disabled events were benign or 

malicious by simply observing a system crash. Other detectors could be used in this case to make a final 

informred decision. Furthermore, we couldn’t transform one of the Trojan dropper’s malcode (the 15th 

attack shown in Table 1), which was a recent attack that compromised a few targeted organizations [38] 

related to the recent Tibet/Chinese government dispute. According to the official Microsoft 

Documentation [41], this malcode was embedded in an undocumented structure. Being an undocumented 
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structure, we couldn’t transform it without introducing a significant number of false positives. However, 

it is very interesting that the attackers had knowledge to embed malcode in this structure
6
; we didn’t since 

it was  undocumented and did not appear in the MS Word format specification.   

To establish a False Positive rate, we also performed the same test scenario on 1516 benign documents. 

Most of them behaved normally after the ADT process – they did not cause the system or Word to crash 

after applying ADT; however, we could not apply the strategy to some complex benign documents.  

Among these 1516 test documents, 9 caused Word to display an error message after applying the ADT 

process (e.g., a pop-up window displayed “Word was unable to read this document. It may be corrupt.”). 

Thus, we found some particular documents with distinct sectors that cannot be arbitrarily changed; for 

these we require deeper knowledge of Word, as in the case of the undocumented sectors described above. 

For this study, although we understood the names of the structures and fields, we couldn’t obtain 

complete knowledge such as the meaning of some field values. For most of the normal documents, many 

of the particular strings could be arbitrarily changed without introducing error. However, in a few cases, 

the document couldn’t be displayed after applying ADT on some subset of these strings. Table 3 

summarizes the data that caused false positives. 

Table 3: The shellcode example of a memory corruption attack. 

Structure name Description Comment 

fcSttbfffn Table of font name strings Some strings cannot be arbitrarily 

changed. 

fcPlfLfo List Format Override Some flag values cannot be 

arbitrarily changed. 

fcSttbfbkmk Table of bookmark name strings Some strings cannot be arbitrarily 

changed. 

fcSttbttmbd True type font embedding string table Some strings cannot be arbitrarily 

changed. 

 

We note, however, that although there was an error message generated for these false positives, the 

system didn’t crash. We doubt a true attack would cause this message to be displayed. If the attacks were 

crafted to display any error message (but not to crash the system), it would alert the user of a potential 

attack. Nevertheless, in this study, we measured these cases as false alarms. This does not invalidate the 

utility of this strategy; rather it demonstrates the fact that we did not have access to sufficient knowledge 

of the complex binary format of Word documents that inhibits the general application of the technique. 

We believe those with the deep knowledge of Word formats can apply this method safely to increase the 

security of Word documents. 

 

5. Conclusion 

In this paper, we present Arbitrary Data Transformation to detect stealthy malcode embedded in Word 

documents. ADT arbitrarily modifies a document’s data values, and hence the byte content of maliciously 

embedded malcode will also be altered, if there is any. Changing normal data values might damage the 

display but wouldn’t cause a system crash; on the other hand, system crash or errors will be observed if 

there is any hidden malicious executable code because its byte content is arbitrary changed and its 

execution flow would be damaged. Since the changed values are arbitrarily chosen and can be different 

                                                                 

6
 Apparently this undocumented Microsoft sector was somehow discovered by the attackers who were targeting 

organizations sympathetic to Tibet. The reader can draw their own conclusion about how the attackers learned of 

this undocumented opportunity.  
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each time  ADT is applied, this approach is secure against brute force guessing the exact transformation 

(e.g., which bytes are changed and by what values).  The method is intended to be applied to a safe 

sandobox environment opening documents using an unaltered version of Word. There is no learning 

phase required to apply the method. However, detailed knowledge of Word document structure is 

necessary to identify the specific data sectors to which the method is applied.  

We evaluated ADT by using 15 carefully crafted attacks provided to us by a third party; 11 caused system 

crashes or errors that were easy to observe, and 3 did not cause a crash but we found the “malicious 

behavior” (i.e. some strange files were created) was observed. For comparison, we also tested 1516 

benign documents and had only 9 false positives, but using other detection methods these would not have 

been deemed malicious.  

Since this technique requires knowledge of specific proprietary applications such as Microsoft Word, it 

is difficult to be generally implemented by an AV vendor without having the ability to parse the binary 

file content. However, if all document processing vendors performed this type of check in each of their 

respective applications using internal emulation or sandboxing, they would cut off an avenue of attack 

against their products. Hence, this technique might be included directly in MS Word as a security feature. 
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