25 research outputs found

    Feature-Aware Verification

    Full text link
    A software product line is a set of software products that are distinguished in terms of features (i.e., end-user--visible units of behavior). Feature interactions ---situations in which the combination of features leads to emergent and possibly critical behavior--- are a major source of failures in software product lines. We explore how feature-aware verification can improve the automatic detection of feature interactions in software product lines. Feature-aware verification uses product-line verification techniques and supports the specification of feature properties along with the features in separate and composable units. It integrates the technique of variability encoding to verify a product line without generating and checking a possibly exponential number of feature combinations. We developed the tool suite SPLverifier for feature-aware verification, which is based on standard model-checking technology. We applied it to an e-mail system that incorporates domain knowledge of AT&T. We found that feature interactions can be detected automatically based on specifications that have only feature-local knowledge, and that variability encoding significantly improves the verification performance when proving the absence of interactions.Comment: 12 pages, 9 figures, 1 tabl

    Variability-aware Datalog

    Full text link
    Variability-aware computing is the efficient application of programs to different sets of inputs that exhibit some variability. One example is program analyses applied to Software Product Lines (SPLs). In this paper we present the design and development of a variability-aware version of the Souffl\'{e} Datalog engine. The engine can take facts annotated with Presence Conditions (PCs) as input, and compute the PCs of its inferred facts, eliminating facts that do not exist in any valid configuration. We evaluate our variability-aware Souffl\'{e} implementation on several fact sets annotated with PCs to measure the associated overhead in terms of processing time and database size.Comment: PADL'20 pape

    Variability Abstractions: Trading Precision for Speed in Family-Based Analyses (Extended Version)

    Full text link
    Family-based (lifted) data-flow analysis for Software Product Lines (SPLs) is capable of analyzing all valid products (variants) without generating any of them explicitly. It takes as input only the common code base, which encodes all variants of a SPL, and produces analysis results corresponding to all variants. However, the computational cost of the lifted analysis still depends inherently on the number of variants (which is exponential in the number of features, in the worst case). For a large number of features, the lifted analysis may be too costly or even infeasible. In this paper, we introduce variability abstractions defined as Galois connections and use abstract interpretation as a formal method for the calculational-based derivation of approximate (abstracted) lifted analyses of SPL programs, which are sound by construction. Moreover, given an abstraction we define a syntactic transformation that translates any SPL program into an abstracted version of it, such that the analysis of the abstracted SPL coincides with the corresponding abstracted analysis of the original SPL. We implement the transformation in a tool, reconfigurator that works on Object-Oriented Java program families, and evaluate the practicality of this approach on three Java SPL benchmarks.Comment: 50 pages, 10 figure

    Refactoring Delta-Oriented Product Lines to achieve Monotonicity

    Get PDF
    Delta-oriented programming (DOP) is a flexible transformational approach to implement software product lines. In delta-oriented product lines, variants are generated by applying operations contained in delta modules to a (possibly empty) base program. These operations can add, remove or modify named elements in a program (e.g., classes, methods and fields in a Java program). This paper presents algorithms for refactoring a delta-oriented product line into monotonic form, i.e., either to contain add and modify operations only (monotonic increasing) or to contain remove and modify operations only (monotonic decreasing). Because of their simpler structure, monotonic delta-oriented product lines are easier to analyze. The algorithms are formalized by means of a core calculus for DOP of product lines of Java programs and their correctness and complexity are given

    A Code Tagging Approach to Software Product Line Development:An Application to Satellite Communication Libraries

    Get PDF
    International audienceSoftware product line engineering seeks to systematise reuse when developing families of similar software systems so as to minimise development time, cost and defects. To realise variability at the code level, product line methods classically advocate usage of inheritance, components, frameworks, aspects or generative techniques. However, these might require unaffordable paradigm shifts for developers if the software was not thought at the outset as a product line. Furthermore, these techniques can be conflicting with a company's coding practices or external regulations. These concerns were the motivation for the industry- university collaboration described in this paper in which we developed a minimally intrusive coding technique based on tags. The approach was complemented with traceability from code to feature diagrams which were exploited for automated configuration. It is supported by a toolchain and is now in use in the partner company for the development of flight grade satellite communica- tion software libraries

    Assessing Product Line Derivation Operators Applied to Java Source Code: An Empirical Study

    Get PDF
    International audienceProduct Derivation is a key activity in Software Product Line Engineering. During this process, derivation operators modify or create core assets (e.g., model elements, source code instructions, components) by adding, removing or substituting them according to a given configuration. The result is a derived product that generally needs to conform to a programming or modeling language. Some operators lead to invalid products when applied to certain assets, some others do not; knowing this in advance can help to better use them, however this is challenging, specially if we consider assets expressed in extensive and complex languages such as Java. In this paper, we empirically answer the following question: which product line operators, applied to which program elements , can synthesize variants of programs that are incorrect , correct or perhaps even conforming to test suites? We implement source code transformations, based on the derivation operators of the Common Variability Language. We automatically synthesize more than 370,000 program variants from a set of 8 real large Java projects (up to 85,000 lines of code), obtaining an extensive panorama of the sanity of the operations
    corecore