303 research outputs found

    Typing after syntax. An argument from quotation and ellipsis

    Get PDF
    The paper, assuming the general framework of Chomsky’s (2013a, 2015b) current version of the Minimalist syntax, investigates the syntax of quotation in light of ellipsis. I show that certain unexpected effects arising for quotational ellipsis are problematic for the standard feature valuation system and, especially, for the theory of phases. I discuss some effects of two possible interpretations of such ellipsis, as well as a constraint following from deviant antecedents, to show that the standard view on the internal syntax of quotational expressions should be reconsidered. The paper offers a new view on feature valuation, as well as the connection between the Narrow Syntax and the C-I interface, defined in terms of recursive typing taking place at the interface

    Practical Datatype Specializations with Phantom Types and Recursion Schemes

    Get PDF
    Datatype specialization is a form of subtyping that captures program invariants on data structures that are expressed using the convenient and intuitive datatype notation. Of particular interest are structural invariants such as well-formedness. We investigate the use of phantom types for describing datatype specializations. We show that it is possible to express statically-checked specializations within the type system of Standard ML. We also show that this can be done in a way that does not lose useful programming facilities such as pattern matching in case expressions.Comment: 25 pages. Appeared in the Proc. of the 2005 ACM SIGPLAN Workshop on M

    Equational Axiomization of Bicoercibility for Polymorphic Types

    Full text link
    Two polymorphic types σ and τ are said to be bicoercible if there is a coercion from σ to τ and conversely. We give a complete equational axiomatization of bicoercible types and prove that the relation of bicoercibility is decidable.National Science Foundation (CCR-9113196); KBN (2 P301 031 06); ESPRIT BRA7232 GENTZE

    Type inference for nested self types (extended abstract)

    Get PDF

    The Algebraic Intersection Type Unification Problem

    Full text link
    The algebraic intersection type unification problem is an important component in proof search related to several natural decision problems in intersection type systems. It is unknown and remains open whether the algebraic intersection type unification problem is decidable. We give the first nontrivial lower bound for the problem by showing (our main result) that it is exponential time hard. Furthermore, we show that this holds even under rank 1 solutions (substitutions whose codomains are restricted to contain rank 1 types). In addition, we provide a fixed-parameter intractability result for intersection type matching (one-sided unification), which is known to be NP-complete. We place the algebraic intersection type unification problem in the context of unification theory. The equational theory of intersection types can be presented as an algebraic theory with an ACI (associative, commutative, and idempotent) operator (intersection type) combined with distributivity properties with respect to a second operator (function type). Although the problem is algebraically natural and interesting, it appears to occupy a hitherto unstudied place in the theory of unification, and our investigation of the problem suggests that new methods are required to understand the problem. Thus, for the lower bound proof, we were not able to reduce from known results in ACI-unification theory and use game-theoretic methods for two-player tiling games

    A Type Checker for a Logical Framework with Union and Intersection Types

    Get PDF
    We present the syntax, semantics, and typing rules of Bull, a prototype theorem prover based on the Delta-Framework, i.e. a fully-typed lambda-calculus decorated with union and intersection types, as described in previous papers by the authors. Bull also implements a subtyping algorithm for the Type Theory Xi of Barbanera-Dezani-de'Liguoro. Bull has a command-line interface where the user can declare axioms, terms, and perform computations and some basic terminal-style features like error pretty-printing, subexpressions highlighting, and file loading. Moreover, it can typecheck a proof or normalize it. These terms can be incomplete, therefore the typechecking algorithm uses unification to try to construct the missing subterms. Bull uses the syntax of Berardi's Pure Type Systems to improve the compactness and the modularity of the kernel. Abstract and concrete syntax are mostly aligned and similar to the concrete syntax of Coq. Bull uses a higher-order unification algorithm for terms, while typechecking and partial type inference are done by a bidirectional refinement algorithm, similar to the one found in Matita and Beluga. The refinement can be split into two parts: the essence refinement and the typing refinement. Binders are implemented using commonly-used de Bruijn indices. We have defined a concrete language syntax that will allow the user to write Delta-terms. We have defined the reduction rules and an evaluator. We have implemented from scratch a refiner which does partial typechecking and type reconstruction. We have experimented Bull with classical examples of the intersection and union literature, such as the ones formalized by Pfenning with his Refinement Types in LF. We hope that this research vein could be useful to experiment, in a proof theoretical setting, forms of polymorphism alternatives to Girard's parametric one

    A Gradual Polymorphic Type System with Subtyping for Prolog

    Get PDF
    Although Prolog was designed and developed as an untyped language, there have been numerous attempts at proposing type systems suitable for it. The goal of research in this area has been to make Prolog programming easier and less error-prone not only for novice users, but for the experienced programmer as well. Despite the fact that many of the proposed systems have deep theoretical foundations that add types to Prolog, most Prolog vendors are still unwilling to include any of them in their compiler\u27s releases. Hence standard Prolog remains an untyped language. Our work can be understood as a step towards typed Prolog. We propose an extension to one of the most extensively studied type systems proposed for Prolog, the Mycroft-O\u27Keefe type system, and present an implementation in XSB-Prolog. The resulting type system can be characterized as a Gradual type system, where the user begins with a completely untyped version of his program, and incrementally obtains information about the possible types of the predicates he defines from the system itself, until type signatures are found for all the predicates in the source code
    corecore