5,533 research outputs found

    Pacific Basin Communication Study, volume 2

    Get PDF
    Users' meeting summary report, chronology of visits, economic data for forum countries, techniques used in the study, communication choices, existing resources in the Pacific Basin, and warc 79 region 3 rules and regulations were presented in volume 2

    A sustained ocean observing system in the Indian Ocean for climate related scientific knowledge and societal needs

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hermes, J. C., Masumoto, Y., Beal, L. M., Roxy, M. K., Vialard, J., Andres, M., Annamalai, H., Behera, S., D'Adamo, N., Doi, T., Peng, M., Han, W., Hardman-Mountford, N., Hendon, H., Hood, R., Kido, S., Lee, C., Lees, T., Lengaigne, M., Li, J., Lumpkin, R., Navaneeth, K. N., Milligan, B., McPhaden, M. J., Ravichandran, M., Shinoda, T., Singh, A., Sloyan, B., Strutton, P. G., Subramanian, A. C., Thurston, S., Tozuka, T., Ummenhofer, C. C., Unnikrishnan, A. S., Venkatesan, R., Wang, D., Wiggert, J., Yu, L., & Yu, W. (2019). A sustained ocean observing system in the Indian Ocean for climate related scientific knowledge and societal needs. Frontiers in Marine Science, 6, (2019): 355, doi: 10.3389/fmars.2019.00355.The Indian Ocean is warming faster than any of the global oceans and its climate is uniquely driven by the presence of a landmass at low latitudes, which causes monsoonal winds and reversing currents. The food, water, and energy security in the Indian Ocean rim countries and islands are intrinsically tied to its climate, with marine environmental goods and services, as well as trade within the basin, underpinning their economies. Hence, there are a range of societal needs for Indian Ocean observation arising from the influence of regional phenomena and climate change on, for instance, marine ecosystems, monsoon rains, and sea-level. The Indian Ocean Observing System (IndOOS), is a sustained observing system that monitors basin-scale ocean-atmosphere conditions, while providing flexibility in terms of emerging technologies and scientificand societal needs, and a framework for more regional and coastal monitoring. This paper reviews the societal and scientific motivations, current status, and future directions of IndOOS, while also discussing the need for enhanced coastal, shelf, and regional observations. The challenges of sustainability and implementation are also addressed, including capacity building, best practices, and integration of resources. The utility of IndOOS ultimately depends on the identification of, and engagement with, end-users and decision-makers and on the practical accessibility and transparency of data for a range of products and for decision-making processes. Therefore we highlight current progress, issues and challenges related to end user engagement with IndOOS, as well as the needs of the data assimilation and modeling communities. Knowledge of the status of the Indian Ocean climate and ecosystems and predictability of its future, depends on a wide range of socio-economic and environmental data, a significant part of which is provided by IndOOS.This work was supported by the PMEL contribution no. 4934

    Research program of the Geodynamics Branch

    Get PDF
    This report is the Fourth Annual Summary of the Research Program of the Geodynamics Branch. The branch is located within the Laboratory for Terrestrial Physics of the Space and Earth Sciences Directorate of the Goddard Space Flight Center. The research activities of the branch staff cover a broad spectrum of geoscience disciplines including: tectonophysics, space geodesy, geopotential field modeling, and dynamic oceanography. The NASA programs which are supported by the work described in this document include the Geodynamics and Ocean Programs, the Crustal Dynamics Project and the proposed Ocean Topography Experiment (TOPEX). The reports highlight the investigations conducted by the Geodynamics Branch staff during calendar year 1985. The individual papers are grouped into chapters on Crustal Movements and Solid Earth Dynamics, Gravity Field Modeling and Sensing Techniques, and Sea Surface Topography. Further information on the activities of the branch or the particular research efforts described herein can be obtained through the branch office or from individual staff members

    Satellites at work (Space in the seventies)

    Get PDF
    The use of satellites in the areas of communications, meteorology, geodesy, navigation, air traffic control, and earth resources technology is discussed. NASA contributions to various programs are reviewed

    SPACEWAY: Providing affordable and versatile communication solutions

    Get PDF
    By the end of this decade, Hughes' SPACEWAY network will provide the first interactive 'bandwidth on demand' communication services for a variety of applications. High quality digital voice, interactive video, global access to multimedia databases, and transborder workgroup computing will make SPACEWAY an essential component of the computer-based workplace of the 21st century. With relatively few satellites to construct, insure, and launch -- plus extensive use of cost-effective, tightly focused spot beams on the world's most populated areas -- the high capacity SPACEWAY system can pass its significant cost savings onto its customers. The SPACEWAY network is different from other proposed global networks in that its geostationary orbit location makes it a truly market driven system: each satellite will make available extensive telecom services to hundreds of millions of people within the continuous view of that satellite, providing immediate capacity within a specific region of the world

    A geospatial appraisal of ecological and geomorphic change on Diego Garcia Atoll, Chagos Islands (British Indian OceanTerritory)

    Get PDF
    This is an open access article distributed under the Creative Commons Attribution License (CC BY) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This study compiled a wide range of modern and historic geospatial datasets to examine ecological and geomorphic change at Diego Garcia Atoll across a 38-year period (1967–2005). This remarkable collection of spatially referenced information offered an opportunity to advance our understanding of the nature and extent of environmental change that has taken place with the construction of the military airbase at Diego Garcia. Changes assessed included movements of the lagoon rim shorelines, changes in the terrestrial vegetation on the lagoon rim and amendments to the bathymetry of the lagoon basin through dredging activities. Data compiled included detailed shoreline and vegetation maps produced as part of the H.M.S. Vidal Indian Ocean Expedition (1967), three Ikonos satellite images acquired in 2005 that collectively covered the complete Atoll area, a ground truthing field dataset collected in the northern section of the lagoon for the purpose of seafloor mapping (2005), observational evidence of shoreline erosion including photographs and descriptions of seawater inundations and bathymetric soundings from five independent surveys of the lagoon floor (1967, 1985, 1987, 1988 and 1997). Results indicated that much of the change along the lagoon rim is associated with the expansion of the inner lagoon shoreline as a result of the construction of the military airbase, with an estimated increase in land area of 3.01 km2 in this portion of the atoll rim. Comparisons of 69 rim width transects measured from 1967 and 2005 indicated that shorelines are both eroding (26 transects) and accreting (43 transects). Within a total vegetated area of 24 km2, there was a notable transition from Cocos Woodland to Broadleaf Woodland for a land area of 5.6 km2. From the hydrographic surveys, it was estimated that approximately 0.55 km3 of carbonate sediment material has been removed from the northwest quadrant of the lagoon, particularly in the vicinity of the Main Passage. As no previous record of benthic character exists, a complete benthic habitat map of the atoll was derived through classification of the three IKONOS satellite images. Management implications arising from this overall appraisal of geomorphic and ecological change at Diego Garcia included the need for ongoing monitoring of shoreline change at a representative set of sites around the atoll rim, monitoring of the water flow regime through the northern channels between the open ocean and the lagoon basin and an ongoing mapping campaign to record periodic changes in the character of the benthic surface ecology.BLUE Marine Foundatio

    Monitoring small scale explosive activity as a precursor to periods of heightened volcanic unrest

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2014Volcanic activity can pose a threat to the public and infrastructure. This threat is mitigated by monitoring volcanoes and volcanic activity. In many places this can be hindered by remote location and high cost. Satellite remote sensing is a tool that can be used to safely monitor volcanic activity and aid in the mitigation of hazards and the implementation of hazard preparedness. Small scale explosive activity is often a precursor to periods of heightened volcanic activity. This activity is typified by distinct small explosions that eject hot material onto the flanks of a volcano and can be detected as thermal anomalies by satellite sensors. The aim of this study is to develop a monitoring tool to detect changes in the frequency of small explosions leading up to periods of activity with ash plumes and other volcanic activity. Development of this method was carried out on Stromboli Volcano in Italy, a very reliably eruptive volcano with a wide variety of other monitoring instrumentation collecting data. Once developed, the method was applied to three remote volcanoes in the North Pacific: (1) Chuginadak (Mt. Cleveland) and (2) Shishaldin in Alaska, USA; and (3) Karymsky Volcano in Kamchatka, Russia. The results produced at all four of these volcanoes showed distinct trends in activity, unique to each volcano, prior to periods of heightened eruptive activity. The method provides a baseline for the detection of precursory activity and these trends can be used on other volcanoes undergoing similar types and patterns of eruptive activity

    Navigation/traffic control satellite mission study. Volume 3 - System concepts

    Get PDF
    Satellite network for air traffic control, solar flare warning, and collision avoidanc

    CLIVAR Exchanges No. 2

    Get PDF

    Preventing and Mitigating Natural Disasters

    Get PDF
    This report highlights the importance of developing and sharing information on natural hazards, ensuring that the disaster-management community, decision-makers and the public understand the risks posed by these hazards and recognize the onset of hazardous weather and its impact on safety and survival procedures. Educational levels: High school, Undergraduate lower division, Undergraduate upper division, Graduate or professional, Informal education, General public
    • …
    corecore