33,579 research outputs found

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors

    IDMoB: IoT Data Marketplace on Blockchain

    Full text link
    Today, Internet of Things (IoT) devices are the powerhouse of data generation with their ever-increasing numbers and widespread penetration. Similarly, artificial intelligence (AI) and machine learning (ML) solutions are getting integrated to all kinds of services, making products significantly more "smarter". The centerpiece of these technologies is "data". IoT device vendors should be able keep up with the increased throughput and come up with new business models. On the other hand, AI/ML solutions will produce better results if training data is diverse and plentiful. In this paper, we propose a blockchain-based, decentralized and trustless data marketplace where IoT device vendors and AI/ML solution providers may interact and collaborate. By facilitating a transparent data exchange platform, access to consented data will be democratized and the variety of services targeting end-users will increase. Proposed data marketplace is implemented as a smart contract on Ethereum blockchain and Swarm is used as the distributed storage platform.Comment: Presented at Crypto Valley Conference on Blockchain Technology (CVCBT 2018), 20-22 June 2018 - published version may diffe

    Applying Science Models for Search

    Full text link
    The paper proposes three different kinds of science models as value-added services that are integrated in the retrieval process to enhance retrieval quality. The paper discusses the approaches Search Term Recommendation, Bradfordizing and Author Centrality on a general level and addresses implementation issues of the models within a real-life retrieval environment.Comment: 14 pages, 3 figures, ISI 201

    Network service chaining with efficient network function mapping based on service decompositions

    Get PDF
    Network Service Chaining (NSC) is a service concept which promises increased flexibility and cost-efficiency for future carrier networks. The two recent developments, Network Function Virtualization (NFV) and Software-Defined Networking (SDN), are opportunities for service providers to simplify the service chaining and provisioning process and reduce the cost (in CAPEX and OPEX) while introducing new services as well. One of the challenging tasks regarding NFV-based services is to efficiently map them to the components of a physical network based on the services specifications/constraints. In this paper, we propose an efficient cost-effective algorithm to map NSCs composed of Network Functions (NF) to the network infrastructure while taking possible decompositions of NFs into account. NF decomposition refers to converting an abstract NF to more refined NFs interconnected in form of a graph with the same external interfaces as the higher-level NF. The proposed algorithm tries to minimize the cost of the mapping based on the NSCs requirements and infrastructure capabilities by making a reasonable selection of the NFs decompositions. Our experimental evaluations show that the proposed scheme increases the acceptance ratio significantly while decreasing the mapping cost in the long run, compared to schemes in which NF decompositions are selected randomly
    corecore