88,641 research outputs found

    Two-variable Logic with Counting and a Linear Order

    Get PDF
    We study the finite satisfiability problem for the two-variable fragment of first-order logic extended with counting quantifiers (C2) and interpreted over linearly ordered structures. We show that the problem is undecidable in the case of two linear orders (in the presence of two other binary symbols). In the case of one linear order it is NEXPTIME-complete, even in the presence of the successor relation. Surprisingly, the complexity of the problem explodes when we add one binary symbol more: C2 with one linear order and in the presence of other binary predicate symbols is equivalent, under elementary reductions, to the emptiness problem for multicounter automata

    Monadic second order finite satisfiability and unbounded tree-width

    Get PDF
    The finite satisfiability problem of monadic second order logic is decidable only on classes of structures of bounded tree-width by the classic result of Seese (1991). We prove the following problem is decidable: Input: (i) A monadic second order logic sentence α\alpha, and (ii) a sentence β\beta in the two-variable fragment of first order logic extended with counting quantifiers. The vocabularies of α\alpha and β\beta may intersect. Output: Is there a finite structure which satisfies α∧β\alpha\land\beta such that the restriction of the structure to the vocabulary of α\alpha has bounded tree-width? (The tree-width of the desired structure is not bounded.) As a consequence, we prove the decidability of the satisfiability problem by a finite structure of bounded tree-width of a logic extending monadic second order logic with linear cardinality constraints of the form ∣X1∣+⋯+∣Xr∣<∣Y1∣+⋯+∣Ys∣|X_{1}|+\cdots+|X_{r}|<|Y_{1}|+\cdots+|Y_{s}|, where the XiX_{i} and YjY_{j} are monadic second order variables. We prove the decidability of a similar extension of WS1S

    Graphs Identified by Logics with Counting

    Full text link
    We classify graphs and, more generally, finite relational structures that are identified by C2, that is, two-variable first-order logic with counting. Using this classification, we show that it can be decided in almost linear time whether a structure is identified by C2. Our classification implies that for every graph identified by this logic, all vertex-colored versions of it are also identified. A similar statement is true for finite relational structures. We provide constructions that solve the inversion problem for finite structures in linear time. This problem has previously been shown to be polynomial time solvable by Martin Otto. For graphs, we conclude that every C2-equivalence class contains a graph whose orbits are exactly the classes of the C2-partition of its vertex set and which has a single automorphism witnessing this fact. For general k, we show that such statements are not true by providing examples of graphs of size linear in k which are identified by C3 but for which the orbit partition is strictly finer than the Ck-partition. We also provide identified graphs which have vertex-colored versions that are not identified by Ck.Comment: 33 pages, 8 Figure

    The Logic of Counting Query Answers

    Full text link
    We consider the problem of counting the number of answers to a first-order formula on a finite structure. We present and study an extension of first-order logic in which algorithms for this counting problem can be naturally and conveniently expressed, in senses that are made precise and that are motivated by the wish to understand tractable cases of the counting problem

    Definability of linear equation systems over groups and rings

    Get PDF
    Motivated by the quest for a logic for PTIME and recent insights that the descriptive complexity of problems from linear algebra is a crucial aspect of this problem, we study the solvability of linear equation systems over finite groups and rings from the viewpoint of logical (inter-)definability. All problems that we consider are decidable in polynomial time, but not expressible in fixed-point logic with counting. They also provide natural candidates for a separation of polynomial time from rank logics, which extend fixed-point logics by operators for determining the rank of definable matrices and which are sufficient for solvability problems over fields. Based on the structure theory of finite rings, we establish logical reductions among various solvability problems. Our results indicate that all solvability problems for linear equation systems that separate fixed-point logic with counting from PTIME can be reduced to solvability over commutative rings. Moreover, we prove closure properties for classes of queries that reduce to solvability over rings, which provides normal forms for logics extended with solvability operators. We conclude by studying the extent to which fixed-point logic with counting can express problems in linear algebra over finite commutative rings, generalising known results on the logical definability of linear-algebraic problems over finite fields

    On Spatial Conjunction as Second-Order Logic

    Full text link
    Spatial conjunction is a powerful construct for reasoning about dynamically allocated data structures, as well as concurrent, distributed and mobile computation. While researchers have identified many uses of spatial conjunction, its precise expressive power compared to traditional logical constructs was not previously known. In this paper we establish the expressive power of spatial conjunction. We construct an embedding from first-order logic with spatial conjunction into second-order logic, and more surprisingly, an embedding from full second order logic into first-order logic with spatial conjunction. These embeddings show that the satisfiability of formulas in first-order logic with spatial conjunction is equivalent to the satisfiability of formulas in second-order logic. These results explain the great expressive power of spatial conjunction and can be used to show that adding unrestricted spatial conjunction to a decidable logic leads to an undecidable logic. As one example, we show that adding unrestricted spatial conjunction to two-variable logic leads to undecidability. On the side of decidability, the embedding into second-order logic immediately implies the decidability of first-order logic with a form of spatial conjunction over trees. The embedding into spatial conjunction also has useful consequences: because a restricted form of spatial conjunction in two-variable logic preserves decidability, we obtain that a correspondingly restricted form of second-order quantification in two-variable logic is decidable. The resulting language generalizes the first-order theory of boolean algebra over sets and is useful in reasoning about the contents of data structures in object-oriented languages.Comment: 16 page

    On Role Logic

    Full text link
    We present role logic, a notation for describing properties of relational structures in shape analysis, databases, and knowledge bases. We construct role logic using the ideas of de Bruijn's notation for lambda calculus, an encoding of first-order logic in lambda calculus, and a simple rule for implicit arguments of unary and binary predicates. The unrestricted version of role logic has the expressive power of first-order logic with transitive closure. Using a syntactic restriction on role logic formulas, we identify a natural fragment RL^2 of role logic. We show that the RL^2 fragment has the same expressive power as two-variable logic with counting C^2 and is therefore decidable. We present a translation of an imperative language into the decidable fragment RL^2, which allows compositional verification of programs that manipulate relational structures. In addition, we show how RL^2 encodes boolean shape analysis constraints and an expressive description logic.Comment: 20 pages. Our later SAS 2004 result builds on this wor
    • …
    corecore