27,223 research outputs found

    Smart Sensing and Performance Analysis for Cognitive Radio Networks

    Get PDF
    Static spectrum access policy has resulted in spectrum scarcity as well as low spectrum utility in today\u27s wireless communications. To utilize the limited spectrum more efficiently, cognitive radio networks have been considered a promising paradigm for future network. Due to the unique features of cognitive radio technology, cognitive radio networks not only raise new challenges, but also bring several fundamental problems back to the focus of researchers. So far, a number of problems in cognitive radio networks have remained unsolved over the past decade. The work presented in this dissertation attempts to fill some of the gaps in the research area of cognitive radio networks. It focuses primarily on spectrum sensing and performance analysis in two architectures: a single cognitive radio network and multiple co-existing cognitive radio networks. Firstly, a single cognitive radio network with one primary user is considered. A weighted cooperative spectrum sensing framework is designed, to increase the spectrum sensing accuracy. After studying the architecture of a single cognitive radio network, attention is shifted to co-existing multiple cognitive radio networks. The weakness of the conventional two-state sensing model is pointed out in this architecture. To solve the problem, a smart sensing model which consists of three states is designed. Accordingly, a method for a two-stage detection procedure is developed to accurately detect each state of the three. In the first stage, energy detection is employed to identify whether a channel is idle or occupied. If the channel is occupied, received signal is further analyzed at the second stage to determine whether the signal originates from a primary user or an secondary user. For the second stage, a statistical model is developed, which is used for distance estimation. The false alarm and miss detection probabilities for the spectrum sensing technology are theoretically analyzed. Then, how to use smart sensing, coupled with a designed media access control protocol, to achieve fairness among multiple CRNs is thoroughly investigated. The media access control protocol fully takes the PU activity into account. Afterwards, the significant performance metrics including throughput and fairness are carefully studied. In terms of fairness, the fairness dynamics from a micro-level to macro-level is evaluated among secondary users from multiple cognitive radio networks. The fundamental distinctions between the two-state model and the three-state sensing model are also addressed. Lastly, the delay performance of a cognitive radio network supporting heterogeneous traffic is examined. Various delay requirements over the packets from secondary users are fully considered. Specifically, the packets from secondary users are classified into either delay-sensitive packets or delay-insensitive packets. Moreover, a novel relative priority strategy is designed between these two types of traffic by proposing a transmission window strategy. The delay performance of both a single-primary user scenario and a multiple-primary user scenario is thoroughly investigated by employing queueing theory

    Learning-Based Approaches for Intelligent Cognitive Radio

    Get PDF
    Today with the growing demand for more data transmissions and increased network capacities, cognitive radio technology is ever more relevant. Traditional static spectrum allocation is no longer a feasible option. Through dynamic spectrum access, cognitive devices are able to tap into unused licensed spectrum bands. Thus, improving the spectrum utilization efficiency and fueling spectrum scarce applications. Cognitive Radio (CR) networks consist of smart radio devices that have the ability to sense and adapt to the rapidly changing radio environment. A cognitive device goes through a process of intelligent decision-making, which intrinsically shapes them into smart devices. Motivated by the superior performance of machine learning in various research paradigms, a cooperative Secondary Network (SN) is proposed that operates under a hybrid underlay-interweave access model. By taking advantage of both access models, the SN maximizes its throughput. A detection problem is formulated for each access model and Machine Learning (ML) techniques are applied to the SN, namely Gaussian Mixture Model (GMM), Support Vector Machine (SVM), and Naive Bayes' (NB) to classify the state of the channel. The multi-class SVM (MSVM) algorithm is reformulated and used to further classify the state of each primary user in the network. The performance of the hybrid network is evaluated based on the Receiver Operating Characteristics (ROC) and classification accuracy. In addition, we show that the accuracy of the MSVM is improved through the cooperation of the secondary users. Our results show that the proposed ML-based hybrid model is robust to low Signal-to-Noise Ratio (SNR) environments, and yields an improved performance compared with traditional cooperative sensing techniques. Moreover, we show that the Gaussian SVM surpasses other proposed learning algorithms achieving as high as an 80% detection rate with as low as 10% false alarm. Energy detection-based spectrum sensing, relies on measuring the energy level in the spectrum, and accordingly deciding the current occupancy state of the channel. Therefore, CR devices are required to determine the corresponding channel state given a measured energy level. CR networks that use supervised learning techniques to perform the sensing task require data examples of energy levels and the corresponding channel state for training purposes , i.e., labeled data. Having readily available labeled data is a complex task for CR networks, since it requires cooperation from both primary and secondary users. Such cooperation violates the ground rules for the interweave and underlay CR access models. Tackling the problem of labeled data scarcity in practical CR applications, we propose a two-stage learning framework for cooperative spectrum sensing. The algorithm combines the superior performance of the SVM algorithm and low cost training data of the GMM. Thus, rendering the two-stage learning framework suitable for practical CR applications. Finally, a system model is proposed and the performance of the system is evaluated based on the ROC for its upper and lower performance bounds. Additionally, our results show that the two-stage learning attains a higher detection performance compared with using the GMM algorithm

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Spectrum sharing security and attacks in CRNs: a review

    Get PDF
    Cognitive Radio plays a major part in communication technology by resolving the shortage of the spectrum through usage of dynamic spectrum access and artificial intelligence characteristics. The element of spectrum sharing in cognitive radio is a fundament al approach in utilising free channels. Cooperatively communicating cognitive radio devices use the common control channel of the cognitive radio medium access control to achieve spectrum sharing. Thus, the common control channel and consequently spectrum sharing security are vital to ensuring security in the subsequent data communication among cognitive radio nodes. In addition to well known security problems in wireless networks, cognitive radio networks introduce new classes of security threats and challenges, such as licensed user emulation attacks in spectrum sensing and misbehaviours in the common control channel transactions, which degrade the overall network operation and performance. This review paper briefly presents the known threats and attacks in wireless networks before it looks into the concept of cognitive radio and its main functionality. The paper then mainly focuses on spectrum sharing security and its related challenges. Since spectrum sharing is enabled through usage of the common control channel, more attention is paid to the security of the common control channel by looking into its security threats as well as protection and detection mechanisms. Finally, the pros and cons as well as the comparisons of different CR - specific security mechanisms are presented with some open research issues and challenges

    Design and Optimal Configuration of Full-Duplex MAC Protocol for Cognitive Radio Networks Considering Self-Interference

    Get PDF
    In this paper, we propose an adaptive Medium Access Control (MAC) protocol for full-duplex (FD) cognitive radio networks in which FD secondary users (SUs) perform channel contention followed by concurrent spectrum sensing and transmission, and transmission only with maximum power in two different stages (called the FD sensing and transmission stages, respectively) in each contention and access cycle. The proposed FD cognitive MAC (FDC-MAC) protocol does not require synchronization among SUs and it efficiently utilizes the spectrum and mitigates the self-interference in the FD transceiver. We then develop a mathematical model to analyze the throughput performance of the FDC-MAC protocol where both half-duplex (HD) transmission (HDTx) and FD transmission (FDTx) modes are considered in the transmission stage. Then, we study the FDC-MAC configuration optimization through adaptively controlling the spectrum sensing duration and transmit power level in the FD sensing stage where we prove that there exists optimal sensing time and transmit power to achieve the maximum throughput and we develop an algorithm to configure the proposed FDC-MAC protocol. Extensive numerical results are presented to illustrate the characteristic of the optimal FDC-MAC configuration and the impacts of protocol parameters and the self-interference cancellation quality on the throughput performance. Moreover, we demonstrate the significant throughput gains of the FDC-MAC protocol with respect to existing half-duplex MAC (HD MAC) and single-stage FD MAC protocols.Comment: To Appear, IEEE Access, 201

    Cooperative wideband spectrum sensing with multi-bit hard decision in cognitive radio

    Get PDF
    Cognitive radio offers an increasingly attractive solution to overcome the underutilization problem. A sensor network based cooperative wideband spectrum sensing is proposed in this paper. The purpose of the sensor network is to determine the frequencies of the sources and reduced the total sensing time using a multi-resolution sensing technique. The final result is computed by data fusion of multi-bit decisions made by each cooperating secondary user. Simulation results show improved performance in energy efficiency
    • …
    corecore