2,844 research outputs found

    Nonparallel Emotional Speech Conversion

    Full text link
    We propose a nonparallel data-driven emotional speech conversion method. It enables the transfer of emotion-related characteristics of a speech signal while preserving the speaker's identity and linguistic content. Most existing approaches require parallel data and time alignment, which is not available in most real applications. We achieve nonparallel training based on an unsupervised style transfer technique, which learns a translation model between two distributions instead of a deterministic one-to-one mapping between paired examples. The conversion model consists of an encoder and a decoder for each emotion domain. We assume that the speech signal can be decomposed into an emotion-invariant content code and an emotion-related style code in latent space. Emotion conversion is performed by extracting and recombining the content code of the source speech and the style code of the target emotion. We tested our method on a nonparallel corpora with four emotions. Both subjective and objective evaluations show the effectiveness of our approach.Comment: Published in INTERSPEECH 2019, 5 pages, 6 figures. Simulation available at http://www.jian-gao.org/emoga

    An overview & analysis of sequence-to-sequence emotional voice conversion

    Get PDF
    Emotional voice conversion (EVC) focuses on converting a speech utterance from a source to a target emotion; it can thus be a key enabling technology for human-computer interaction applications and beyond. However, EVC remains an unsolved research problem with several challenges. In particular, as speech rate and rhythm are two key factors of emotional conversion, models have to generate output sequences of differing length. Sequence-to-sequence modelling is recently emerging as a competitive paradigm for models that can overcome those challenges. In an attempt to stimulate further research in this promising new direction, recent sequence-to-sequence EVC papers were systematically investigated and reviewed from six perspectives: their motivation, training strategies, model architectures, datasets, model inputs, and evaluation methods. This information is organised to provide the research community with an easily digestible overview of the current state-of-the-art. Finally, we discuss existing challenges of sequence-to-sequence EVC

    Sequence to Sequence Neural Speech Synthesis with Prosody Modification Capabilities

    Full text link
    Modern sequence to sequence neural TTS systems provide close to natural speech quality. Such systems usually comprise a network converting linguistic/phonetic features sequence to an acoustic features sequence, cascaded with a neural vocoder. The generated speech prosody (i.e. phoneme durations, pitch and loudness) is implicitly present in the acoustic features, being mixed with spectral information. Although the speech sounds natural, its prosody realization is randomly chosen and cannot be easily altered. The prosody control becomes an even more difficult task if no prosodic labeling is present in the training data. Recently, much progress has been achieved in unsupervised speaking style learning and generation, however human inspection is still required after the training for discovery and interpretation of the speaking styles learned by the system. In this work we introduce a fully automatic method that makes the system aware of the prosody and enables sentence-wise speaking pace and expressiveness control on a continuous scale. While being useful by itself in many applications, the proposed prosody control can also improve the overall quality and expressiveness of the synthesized speech, as demonstrated by subjective listening evaluations. We also propose a novel augmented attention mechanism, that facilitates better pace control sensitivity and faster attention convergence.Comment: published at 10th ISCA Speech Synthesis Workshop (SSW-10, 2019

    Make-A-Voice: Unified Voice Synthesis With Discrete Representation

    Full text link
    Various applications of voice synthesis have been developed independently despite the fact that they generate "voice" as output in common. In addition, the majority of voice synthesis models currently rely on annotated audio data, but it is crucial to scale them to self-supervised datasets in order to effectively capture the wide range of acoustic variations present in human voice, including speaker identity, emotion, and prosody. In this work, we propose Make-A-Voice, a unified framework for synthesizing and manipulating voice signals from discrete representations. Make-A-Voice leverages a "coarse-to-fine" approach to model the human voice, which involves three stages: 1) semantic stage: model high-level transformation between linguistic content and self-supervised semantic tokens, 2) acoustic stage: introduce varying control signals as acoustic conditions for semantic-to-acoustic modeling, and 3) generation stage: synthesize high-fidelity waveforms from acoustic tokens. Make-A-Voice offers notable benefits as a unified voice synthesis framework: 1) Data scalability: the major backbone (i.e., acoustic and generation stage) does not require any annotations, and thus the training data could be scaled up. 2) Controllability and conditioning flexibility: we investigate different conditioning mechanisms and effectively handle three voice synthesis applications, including text-to-speech (TTS), voice conversion (VC), and singing voice synthesis (SVS) by re-synthesizing the discrete voice representations with prompt guidance. Experimental results demonstrate that Make-A-Voice exhibits superior audio quality and style similarity compared with competitive baseline models. Audio samples are available at https://Make-A-Voice.github.i
    • …
    corecore