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Abstract
Emotional voice conversion (EVC) focuses on converting a
speech utterance from a source to a target emotion; it can thus
be a key enabling technology for human-computer interaction
applications and beyond. However, EVC remains an unsolved re-
search problem with several challenges. In particular, as speech
rate and rhythm are two key factors of emotional conversion,
models have to generate output sequences of differing length.
Sequence-to-sequence modelling is recently emerging as a com-
petitive paradigm for models that can overcome those challenges.
In an attempt to stimulate further research in this promising new
direction, recent sequence-to-sequence EVC papers were system-
atically investigated and reviewed from six perspectives: their
motivation, training strategies, model architectures, datasets,
model inputs, and evaluation methods. This information is or-
ganised to provide the research community with an easily di-
gestible overview of the current state-of-the-art. Finally, we
discuss existing challenges of sequence-to-sequence EVC.
Index Terms: affective computing, emotional text-to-speech,
emotional voice conversion, sequence-to-sequence

1. Introduction
Speech technology has come a long way in the quest to enable
human-like interactions with machines, with research increas-
ingly addressing challenges, originally introduced in the field of
affective computing [1]. However, while humans easily convey
and react to emotions in interpersonal conversations, today’s
machines still struggle to synthesise basic emotional speech.

Emotional text-to-speech (ETTS), emotional voice synthesis
(EVS), and emotional voice conversion (EVC) would provide
user experience designers a powerful new tool to manage and
navigate the challenging emotional context in conversational
speech interfaces with humans [2]. Ultimately, emotional speech
generation and conversion is able to drastically change the value
of many products with speech interfaces. ETTS or EVS [3, 4,
5] aim to directly synthesise speech with emotional expressivity
from text – which is a key aspect of text-to-speech (TTS) nat-
uralness that is currently missing. Meanwhile, EVC [6] aims
to convert the state of a spoken utterance from one emotion to
another, while preserving the linguistic information and speaker
identity. One could argue that EVC takes a ‘shortcut’ compared
to ETTS, since it endows an existing utterance with emotional
intonation, rather than synthesising one from the ground up.
This allows EVC to be added as an extra step in a traditional
TTS pipeline – first synthesise, and then convert to the target
emotion. This decomposition into two constituents can reduce
computational complexity and dependence on data.

Previous surveys have largely concentrated on ETTS [7, 8];
however, these are mostly outdated as they refer to literature prior
to the significant milestones achieved by neural speech synthesis.
Moreover, recent surveys that incorporate the deep learning (DL)
paradigm have been targeted to ‘standard’ TTS (i. e. without emo-
tional information) [9]. The most relevant survey is that of [6],
which provides a comprehensive overview of EVC. However, it
devotes little attention to sequence-to-sequence (seq2seq) mod-
els, and largely concentrates on generative adversarial networks
(GANs) or spectrum and prosody mapping techniques. Thus, it
leaves a small –but noteworthy– gap of DL-based approaches
for EVC that this contribution attempts to fill.

Frame-to-frame spectral mapping is the mainstream in pre-
vious studies [10, 11, 12], however, emotion is inherently supra-
segmental and complex with multiple signal attributes concern-
ing both the spectrum and prosody. Thus, frame-based mapping
of spectral features of the source and target is insufficient to
convert the emotion. Recently, the seq2seq speech synthesis
framework raises much interests in EVC.

This research field has recently benefited from the advent
of new machine learning techniques such as deep neural net-
works. Therefore, this paper aims to give an overview of recent
developments, pointing out the inherent properties of the vari-
ous synthesis techniques used, summarising the prosody rules
employed, and analysing the evaluation paradigms. Finally, an
attempt is made to discuss the existing challenges in EVC.

2. Overview
Seq2seq learning was initially proposed for machine translation
by Sutskever et al. [13] and has since proved its competitive-
ness in several natural language processing tasks [14, 15, 16].
Seq2seq models consist of two main modules: the encoder and
the decoder. Unlike the decoder taking the output of the encoder
like in a standard autoencoder model [17], seq2seq models gen-
erate the prediction of the timestep t by using the prediction of
the timestep t − 1 as the input of the decoder [13]. Therefore,
seq2seq models are able to generate outputs with different, vari-
able length. Conventional EVC, from the basic neural network
architecture [10] to the recent research with GANs [11, 12, 18],
applied frame-to-frame conversion on the spectrum and prosody,
which indicates that the converted speech has the same length
with the source speech. However, one of the vital characteris-
tic of emotion expression is speech rate [19], which cannot be
expressed within the fixed length obtained by using the frame-
to-frame EVC [20]. Meanwhile, the dependency between the
spectrum and prosody leads to respective conversion mistakes,
such as the mismatch when doing a separate study on them [21].
Furthermore, the emotional expression in an utterance often
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shows only on part of the utterance (e. g. in only some, but not
all, words). Seq2seq models can naturally handle this require-
ment by adding attention [22], which makes it possible to focus
on only those relevant parts [23]. For these reasons, seq2seq
models show promising performance compared to conventional
methods.

To summarise, there are three main advantages of seq2seq
EVC models:

1. Seq2seq models are able to learn feature mapping, align-
ment, and duration prediction simultaneously;

2. Seq2seq models avoid mistakes caused by the respective
mapping of spectrum and prosody;

3. The attention mechanism helps seq2seq models focus on
the emotionally emphasised parts in the utterance.

On the other hand, seq2seq training always requires a large-
sized dataset [24]. Moreover, the training data should be parallel,
which means the same content should be expressed in different
emotion categories by the same speaker – a requirement not
necessary for other models, like GANs [12, 18]. This represents
the major challenge for such models, which has so far prevented
the seq2seq paradigm from becoming the dominant one in the
field of EVC. As a result, at the time of writing, only 6 papers
exist which use seq2seq EVC [20, 21, 23, 25, 26, 27]. These
works constitute the background material for this review, and will
be comprehensively analysed in the following sections. Table 1
contains the important information in a condensed form.

2.1. Motivation

Robinson et al. [26] were the first to introduce a seq2seq model
to the EVC task. They presented a model based on converting
F0 of the speech. A three-step procedure, including F0 extrac-
tion, transformation, and subsequent application of the resulting
contour on the signal, is able to convert any neutral speech to
the speech with one specific emotional category. In other words,
this is a one-to-one neutral-to-emotional EVC model.

Kim et al. [25] addressed a major problem plaguing both
voice conversion (VC) and EVC tasks – mispronunciation. In-
stead of text-supervision [28], TTS was introduced to seq2seq
EVC for guiding the linguistic information [25]. Furthermore,
this was the first many-to-many EVC system based on a seq2seq
mechanism, which was facilitated by feeding a reference speech
with the target emotion.

A one-to-many seq2seq VC model was presented by Zhao et
al. [27]. The authors focused on training efficiency and stability
by manually balancing the word distribution and increasing the
proportion of uncommon words in the dataset. In this way, the
size of the training dataset could be also decreased to achieve
a similar or even better performance. With the implementation
of an emotion encoder, the model is able to convert high-quality
emotional speech.

Considering the fact that it is impractical to find a large-
sized parallel emotional dataset suitable for seq2seq training,
Zhou et al. [23] presented in their recent paper a training strategy
called ‘two-stage training’, including style initialisation with
a TTS dataset and emotion training. This is able to help the
many-to-many EVC model improve its performance by using
only a small-sized parallel emotional dataset.

Finally, the last two papers focus on emotional intensity
control. A key difference is that Choi and Hahn [20] required
a parallel multi-speaker emotional dataset with the help of a
speaker encoder, while the most recent solution in Zhou et al.

[21] only requires a small-sized parallel single-speaker emotional
dataset. However, Choi and Hahn [20] used a weight to control
the emotional intensity by multiplying it with the emotion em-
bedding, while Zhou et al. [21] trained the model with variations
of intensity without any annotation on it (cf. Section 2.3).

2.2. Training Strategies

One of the most common training strategies utilised for seq2seq
models is called teacher forcing. In seq2seq training, the gener-
ated frame of the previous timestep will be fed into the decoder
to generate the frame of the current timestep (using the pre-
defined start of the sentence token to generate the frame of the
first timestep) [13]. However, this causes a problem when train-
ing, because the error will be accumulated during generating.
Moreover, the generating takes a long time, since the generating
is frame-by-frame. Teacher forcing feeds the ground truth frame
instead of the generated frame in the training phase. Therefore, it
has the ability to help the model learn faster and more accurately,
especially at the beginning of the training [15].

However, specific challenges arising in EVC require spe-
cialised training regiments. In order to solve mispronunciation
and training instability without explicit alignment mechanisms,
Kim et al. [25] applied multi-task learning by introducing TTS
to the EVC task. Besides the content encoder which generates
linguistic embedding by using the source speech, a text encoder
was implemented to encode the input text to a linguistic embed-
ding. Then, during training, the model was randomly tasked to
perform either EVC or TTS – a form of alternating multi-task
learning which helped it avoid mispronunciation errors.

Since it is impractical to use a large-sized parallel dataset
to fulfil the requirements of seq2seq EVC training, Zhou et al.
[23] proposed a two-stage training strategy, which begins with a
style initialisation phase with a large-sized TTS corpus before
doing emotional fine-tuning on a small-sized emotional dataset.
Moreover, an emotion classifier was utilised in adversarial fash-
ion to eliminate the emotional information in the linguistic em-
bedding [23]. This adversarial training strategy was aimed to
optimise the performance on disentangling the style/emotional
information and the linguistic information. Zhao et al. [27] pre-
sented a similar work by utilising an emotional embedding to
the pre-trained VC model.

Zhou et al. [21] improved their model by adding emotion su-
pervision training with a pre-trained speech emotion recognition
(SER) module. Accounting for the fact that the reconstruction
loss between the target speech and the converted speech does
not incorporate human emotional perception, a SER module was
introduced to compute two perceptual losses: emotion classifica-
tion loss and emotion embedding similarity loss, thus optimising
the emotional perception of the converted speech.

2.3. Model Architectures

As the first to explore seq2seq EVC, Robinson et al. [26] used
the simplest model architecture, comprising one encoder, one
decoder, and one attention module. The encoder accepts the
extracted features as the input and generates the context vector,
while the decoder uses this vector and the previous frames to
generate the converted features frame by frame. The attention
mechanism is used to provide an explicit alignment between the
input (source) and the output (converted).

Compared to the basic architecture above, Kim et al. [25]
modified it on the encoder by using three encoders instead of one:
a style, a content, and a text one. In the training phase, reference
speech was sent to the style encoder for the style embedding,
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Table 1: Information of all sequence-to-sequence EVC papers. Abbreviations: ABX: ABX test, BWS: Best-Worst Scaling, CER:
Character Error Rate, CS: Cosine Similarity, CTC: Connectionist Temporal Classification, DDUR: Differences of Duration, FFE: F0
Frame Error, GPE: Gross Pitch Error, MCD: Mel-cepstral Distortion, MOS: Mean Opinion Score, SSER: Subjective Speech Emotion
Recognition, VDE: Voicing Decision Error, WER: Word Error Rate.

Paper Highlights Feature Set
& Vocoder

Emotional
Dataset Language Emotional

Model
Evaluation
Methods

Public
Code

[26] First work
Syllable-level conversion

F0
SuperVP

∼1 100
syllables French One-to-one SSER ✓1

[25] Multi-task learning Log Mel-spectrogram
Griffin-Lim Algorithm

21 000
utterances Korean Many-to-many WER CS

MOS ABX ✓2

[27]
Data redundancy reduction

CTC leverage
EVC fine-tuning

Log Mel-spectrogram
HiFi-GAN

6 000
utterances Chinese One-to-many WER CER

MOS ✗

[20]
Multi-speaker emo. dataset

Context preservation
Emotional intensity

Log Mel-spectrogram
Parallel WaveGAN

4 000
utterances Korean One-to-many

MCD VDE
GPE FFE

MOS ABX SSER
✗

[23] Two-stage training
Small emo. dataset

Log Mel-spectrogram
WaveRNN

350
utterances English Many-to-many MCD DDUR

MOS BWS ✓3

[21]

Style-pretraining
Emotion supervision training

Small emo. dataset
Emotional intensity

Log Mel-spectrogram
Parallel WaveGAN

350
utterances English Many-to-Many MCD DDUR

MOS BWS ✓4

1 https://github.com/carl-robinson/voice-emotion-seq2seq
2 https://github.com/ktho22/vctts
3 https://github.com/KunZhou9646/seq2seq-EVC
4 https://github.com/KunZhou9646/Emovox

while the contents encoder and the text encoder generated the
linguistic embedding from the source speech and the input text,
respectively. Then, the style embedding along with the linguistic
embedding from either the speech or the text were fed into the
decoder to construct the converted emotional speech, in a multi-
task way (cf. Section 2.2). In the end, this model has the ability
to perform both an EVC task (without the text encoder) and an
emotional TTS task (without the content encoder).

Zhou et al. [23] also used three encoders: a style/emotion en-
coder for style/emotion information, seq2seq automatic speech
recognition (ASR) utilised for linguistic information from speech
features, and a text encoder which is also used to capture for
linguistic information but from the input text instead. Further-
more, an emotion classifier was applied to optimise the linguistic
embedding obtained from the source speech.

Following up on this, Zhou et al. [21] added two extra mod-
ules to control the emotional intensity and improve the emotional
expressivity of the output speech. Based on the assumption that
the emotional intensity can be regarded as the relative differ-
ence from the neutral speech (zero intensity) to the emotional
speech, relative attributes were applied to train the emotional in-
tensity modelling without any explicit labels. Subsequently, the
intensity embedding, which can be derived from the reference
speech or given manually, was concatenated with the emotion
embedding and the resulting embedding was fed into the decoder
to reconstruct the emotional speech with the required intensity.
Furthermore, they added a pre-trained SER model and used it to
generate two perceptual losses to improve performance. An emo-
tion classification loss was computed by the converted emotional
speech being classified by the SER model and compared with the
ground truth emotional category, whereas an emotion embedding

similarity loss was computed by using the emotion embedding
obtained from the emotion encoder and the SER embedding
obtained by sending the converted speech to the SER model. Vi-
sualised results showed the perceptual losses helped the emotion
encoder discriminate the different emotion categories.

Finally, Choi and Hahn [20] and Zhao et al. [27] both applied
a speaker encoder, which is used for disentangling the speaker
information and makes the use of a multi-speaker emotional
dataset possible. Moreover, Choi and Hahn [20] implemented
one source decoder and one target decoder in the training phase,
to make sure that the content embedding of the source and the
target speech preserve the contextual information by comparing
the output of these decoders with the source and the target speech,
respectively. On the other hand, Zhao et al. [27] applied a length
regulator module for the length alignment between the encoders
and the decoder, and used a connectionist temporal classification
(CTC) recogniser [29] after the decoder to guide the alignment
between the text and the speech to improve the performance of
the EVC model.

2.4. Datasets

To achieve a decent performance by using seq2seq training, a
large-sized dataset is very essential [24]. Specifically, seq2seq
EVC training requires a large-sized, parallel, one-speaker, emo-
tional dataset. For instance, Kim et al. [25] utilised a Korean
emotional dataset (mKETTS) including 3 000 utterances per
emotional category pronounced by one male speaker, and there
are 7 different emotions in total (neutral, anger, disgust, fear,
happiness, sadness, and surprise). In Robinson et al. [26], the
dataset used contains only 200 emotional utterances (10 sen-
tences × 4 emotional category × 5 levels of intensity, anger,
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joy, fear, and sadness) recorded by one French actress. However,
the researched conversion in this work was on the syllable-level.
Thus, the model was trained by using around 1 100 syllable pairs
after forced alignment [30].

A speaker encoder allows the use of a multi-speaker dataset
– a method utilised by both Zhao et al. [27] and Choi and Hahn
[20]. Zhao et al. [27] used a Chinese emotional dataset including
three speakers, three emotional categories (anger, happiness, and
sadness) and 6 hours of recording to fine-tune their pre-trained
VC model. Similarly, the dataset in Choi and Hahn [20] includes
100 sentences in 4 different emotional categories (neutral, anger,
happiness, and sadness) pronounced by 5 Korean actors and 5
Korean actresses, for a total of 4 000 utterances.

Instead of using a speaker encoder to expand the range of
usable emotional datasets, Zhou et al. [21, 23] utilised two-stage
training on the model to reduce its dependency on the size of
the emotional dataset. At the first stage, about 30 hours of
recordings recorded by 99 speakers from a multi-speaker corpus
called VCTK [31] were applied to pre-train the model. Then,
only 350 pairs of emotional speeches from ESD [6] were used
to fine-tune, enabling them to improve their performance.

2.5. Model Inputs

Most seq2seq EVC research uses log Mel-spectrograms [20,
21, 23, 25, 27], and the applied vocoders include Parallel Wave-
GAN [32], WaveRNN [33], and HiFi-GAN [34]. Since Robinson
et al. [26] focused on F0 conversion on the syllable-level, they es-
timated the source F0 contour and used the converted F0 contour
to synthesise the speech with the SuperVP vocoder.

An important consideration concerns the control of the target
emotion. Besides the simple one-to-one EVC [26], there are
three different methods to bring the information of the target
emotion to the model. The most direct method is feeding an
emotion ID to the emotion encoder [27]. In Kim et al. [25], an
emotion-reference speech was utilised in the inference phase to
guide the model. Emotional embeddings were also used [20,
21, 23], where they were calculated by the average of a set of
emotional speech embeddings from the same emotional category.

2.6. Evaluation Methods

There are two types of evaluation methods applied in this field:
objective and subjective ones. In general, objective evaluation
entails the calculation of some measure of difference or correla-
tion between the output and the target. For example, Kim et al.
[25] used word error rate (WER) for the linguistic consistency
and cosine similarity for the performance on emotion conver-
sion. Similarly, both WER and character error rate (CER) were
applied in [27]. Zhou et al. [21, 23] preferred using Mel-cepstral
distortion (MCD) to measure the spectral changes during the
conversion, and the differences of duration (DDUR) for the
performance on the duration of the converted speech. Besides
MCD, Choi and Hahn [20] applied three other objective evalu-
ation methods: voicing decision error (VDE), gross pitch error
(GPE), and F0 frame error (FFE), for a more comprehensive
analysis of their results.

Moreover, several different subjective evaluation methods
were applied: Robinson et al. [26] did a subjective emotion
recognition survey with 87 participants to measure the perfor-
mance of the EVC model from a human perspective. Addition-
ally, mean opinion score (MOS) [20, 21, 23, 27], ABX test
(identifying whether sample X is from class A or B) [20], and
best worst scaling (BWS) [21, 23] on the naturalness, clarity,
and similarity were also applied in prior works.

3. Challenges and Conclusion
Although an alternative solution was proposed by Zhou et al.
[21, 23] to alleviate the requirement on a large-sized parallel
emotional dataset, the main challenge of seq2seq EVC task re-
mains the availability of appropriate public datasets. Existing
datasets are small or lacking in quality. For example, the newly
published dataset ESD [6] is a clean, parallel dataset but includes
only 350 utterances per speaker. EmoV-DB [35] has more pairs
of samples; however, there are non-speech utterances included,
such as laughter and yawn. The collection and release of suit-
able datasets to the public would foster further research in this
promising field and help improve the performance.

Another remaining challenge is the difficulty in comparing
different EVC models. Objective evaluation methods are not
intuitive enough because they only indicate how ‘close’ or ‘simi-
lar’ the converted speech and the target speech are with respect
to some metric – however, this is not a guarantee that human
perception will also consider them as close. Using evaluation
methods based on combinations of pre-trained SER and ASR
models, or trying to predict subjective evaluation scores –as is
the target of the INTERSPEECH 2022 VoiceMOS challenge1–
are both promising methods of mitigating this challenge. How-
ever, until those methods mature enough to enable their usage
for practical applications, subjective annotations will remain the
gold-standard for EVC evaluations.

Nevertheless, those come with their own drawbacks, for ex-
ample, when participants between studies are biased (e. g. due
to different cultural backgrounds). Using different validation
sentences from different datasets is another problem, since con-
text strongly affects the emotion that humans experience [36].
Finally, different evaluation methods on the same criteria can
make it more challenging to compare. For example, Choi and
Hahn [20] applied MOS while Zhou et al. [21] utilised BWS on
the speech similarity assessment. With improvements in EVC
quality, there will be a need to move away from simple MOS
to evaluate utterances which are detached from any context or
interaction scenarios. New qualitative evaluation methods will
be needed to identify fine grained differences between different
EVC solutions, considering conversation contexts and speaker
intents in more detail. To this end, inspiration can also be taken
from related fields, especially the field of Human-Robot Interac-
tion, where researchers usually evaluate the affect of robots in
interactive settings, analysing both users’ immediate reactions
and their preferences. For example, Ritschel et al. [37] have
evaluated the effect of a robot converting non-ironic utterances
into ironic utterances in small talks with users in order to be
more likeable.

In conclusion, seq2seq EVC is a promising, rapidly maturing
research field. While there still remain several challenges (which
are not unique to this paradigm), these models have the potential
to improve the performance of EVC applications, thus leading
to more intelligent human-computer interactions. We presented
a short, concise review of recent approaches, which we hope to
also fuel novel approaches.
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