66 research outputs found

    Spectrum Sensing and Multiple Access Schemes for Cognitive Radio Networks

    Get PDF
    Increasing demands on the radio spectrum have driven wireless engineers to rethink approaches by which devices should access this natural, and arguably scarce, re- source. Cognitive Radio (CR) has arisen as a new wireless communication paradigm aimed at solving the spectrum underutilization problem. In this thesis, we explore a novel variety of techniques aimed at spectrum sensing which serves as a fundamental mechanism to find unused portions of the electromagnetic spectrum. We present several spectrum sensing methods based on multiple antennas and evaluate their receiving operating characteristics. We study a cyclostationary feature detection technique by means of multiple cyclic frequencies. We make use of a spec- trum sensing method called sequential analysis that allows us to significantly decrease the time needed for detecting the presence of a licensed user. We extend this scheme allowing each CR user to perform the sequential analysis algorithm and send their local decision to a fusion centre. This enables for an average faster and more accurate detection. We present an original technique for accounting for spatial and temporal cor- relation influence in spectrum sensing. This reflects on the impact of the scattering environment on detection methods using multiple antennas. The approach is based on the scattering geometry and resulting correlation properties of the received signal at each CR device. Finally, the problem of spectrum sharing for CR networks is addressed in or- der to take advantage of the detected unused frequency bands. We proposed a new multiple access scheme based on the Game Theory. We examine the scenario where a random number of CR users (considered as players) compete to access the radio spec- trum. We calculate the optimal probability of transmission which maximizes the CR throughput along with the minimum harm caused to the licensed users’ performance

    Performance of MIMO Cognitive Ad-hoc Networks

    Get PDF
    Cognitive ad-hoc networks are able to share primary user frequency bands following certain interference preconditions. For considered cognitive network, cognitive communication is limited by the interference imposed on the primary user. Probability of channel availability for cognitive nodes for such opportunistic access is determined. Furthermore, this probability of channel availability is used for the performance analysis purpose. A Carrier Sense Multiple Access (CSMA) Media Access Control (MAC) protocol for the cognitive network is considered and for that the embedded Markov model of cognitive nodes is determined. This Markov model is used to determine the average channel access delay, throughput and service rate of cognitive nodes. This network is further extended to consider multiple frequency bands for cognitive access. For this propose algorithms are proposed to address the channel allocation and fairness issues of multi-band multiuser cognitive ad-hoc networks. Nodes in the network have unequal channel access probability and have no prior information about the offered bandwidth or number of users in the multiple access system. In that, nodes use reinforcement learning algorithm to predict future channel selection probability from the past experience and reach an equilibrium state. Proof of convergence of this multi party stochastic game is established. Nevertheless, cognitive nodes can reduce the convergence time by exchanging channel selection information and thus further improve the network performance. To further improve the spectrum utilization, this study is extended to include Multiple-input Multiple-output (MIMO) techniques. To improve the transmission efficiency of the MIMO system, a cross-layer antenna selection algorithm is proposed. The proposed cross-layer antenna selection and beamforming algorithm works as the data link layer efficiency information is used for antenna selection purpose to achieve high efficiency at the data link layer. Having analyzed the cognitive network, to consider more realistic scenario primary users identification method is proposed. An artificial intelligent method has been adopted for this purpose. Numerical results are presented for the algorithm and compare these results with the theoretical ones

    Power-efficient distributed resource allocation under goodput QoS constraints for heterogeneous networks

    Get PDF
    This work proposes a distributed resource allocation (RA) algorithm for packet bit-interleaved coded OFDM transmissions in the uplink of heterogeneous networks (HetNets), characterized by small cells deployed over a macrocell area and sharing the same band. Every user allocates its transmission resources, i.e., bits per active subcarrier, coding rate, and power per subcarrier, to minimize the power consumption while both guaranteeing a target quality of service (QoS) and accounting for the interference inflicted by other users transmitting over the same band. The QoS consists of the number of information bits delivered in error-free packets per unit of time, or goodput (GP), estimated at the transmitter by resorting to an efficient effective SNR mapping technique. First, the RA problem is solved in the point-to-point case, thus deriving an approximate yet accurate closed-form expression for the power allocation (PA). Then, the interference-limited HetNet case is examined, where the RA problem is described as a non-cooperative game, providing a solution in terms of generalized Nash equilibrium. Thanks to the closed-form of the PA, the solution analysis is based on the best response concept. Hence, sufficient conditions for existence and uniqueness of the solution are analytically derived, along with a distributed algorithm capable of reaching the game equilibrium

    D13.2 Techniques and performance analysis on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.2 del projecte europeu NEWCOM#The report presents the status of the research work of the various Joint Research Activities (JRA) in WP1.3 and the results that were developed up to the second year of the project. For each activity there is a description, an illustration of the adherence to and relevance with the identified fundamental open issues, a short presentation of the main results, and a roadmap for the future joint research. In the Annex, for each JRA, the main technical details on specific scientific activities are described in detail.Peer ReviewedPostprint (published version
    • …
    corecore