1,483 research outputs found

    Droplet breakup driven by shear thinning solutions in a microfluidic T-Junction

    Get PDF
    Droplet-based microfluidics turned out to be an efficient and adjustable platform for digital analysis, encapsulation of cells, drug formulation, and polymerase chain reaction. Typically, for most biomedical applications, the handling of complex, non-Newtonian fluids is involved, e.g. synovial and salivary fluids, collagen, and gel scaffolds. In this study we investigate the problem of droplet formation occurring in a microfluidic T-shaped junction, when the continuous phase is made of shear thinning liquids. At first, we review in detail the breakup process providing extensive, side-by-side comparisons between Newtonian and non-Newtonian liquids over unexplored ranges of flow conditions and viscous responses. The non-Newtonian liquid carrying the droplets is made of Xanthan solutions, a stiff rod-like polysaccharide displaying a marked shear thinning rheology. By defining an effective Capillary number, a simple yet effective methodology is used to account for the shear-dependent viscous response occurring at the breakup. The droplet size can be predicted over a wide range of flow conditions simply by knowing the rheology of the bulk continuous phase. Experimental results are complemented with numerical simulations of purely shear thinning fluids using Lattice Boltzmann models. The good agreement between the experimental and numerical data confirm the validity of the proposed rescaling with the effective Capillary number.Comment: Manuscript: 11 pages 5 figures, 65 References. Textual Supplemental Material: 6 pages 3 figure. Video Supplemental Materials: 2 movie

    Effects of viscoelasticity on droplet dynamics and break-up in microfluidic T-Junctions: a lattice Boltzmann study

    Full text link
    The effects of viscoelasticity on the dynamics and break-up of fluid threads in microfluidic T-junctions are investigated using numerical simulations of dilute polymer solutions at changing the Capillary number (\mbox {Ca}), i.e. at changing the balance between the viscous forces and the surface tension at the interface, up to \mbox{Ca} \approx 3 \times 10^{-2}. A Navier-Stokes (NS) description of the solvent based on the lattice Boltzmann models (LBM) is here coupled to constitutive equations for finite extensible non-linear elastic dumbbells with the closure proposed by Peterlin (FENE-P model). We present the results of three-dimensional simulations in a range of \mbox{Ca} which is broad enough to characterize all the three characteristic mechanisms of breakup in the confined T-junction, i.e. squeezing{\it squeezing}, dripping{\it dripping} and jetting{\it jetting} regimes. The various model parameters of the FENE-P constitutive equations, including the polymer relaxation time τP\tau_P and the finite extensibility parameter L2L^2, are changed to provide quantitative details on how the dynamics and break-up properties are affected by viscoelasticity. We will analyze cases with Droplet Viscoelasticity{\it Droplet ~Viscoelasticity} (DV), where viscoelastic properties are confined in the dispersed (d) phase, as well as cases with Matrix Viscoelasticity{\it Matrix ~Viscoelasticity} (MV), where viscoelastic properties are confined in the continuous (c) phase. Moderate flow-rate ratios Q≈O(1)Q \approx {\cal O}(1) of the two phases are considered in the present study. Overall, we find that the effects are more pronounced in the case with MV, as the flow driving the break-up process upstream of the emerging thread can be sensibly perturbed by the polymer stresses.Comment: 16 pages, 14 figures; This Work applies the Numerical Methodology described in arXiv:1406.2686 to the Problem of Droplet Generation in Microfluidic T-Junctions. arXiv admin note: substantial text overlap with arXiv:1508.0055

    Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem

    Get PDF
    The breakup dynamics in non-Newtonian multiphase microsystems is associated with a variety of industrial applications such as food production and biomedical engineering. In this study, we numerically and experimentally characterize the dripping-to-jetting transition under various flow conditions in a Newtonian/shear-thinning multiphase microsystem. Our work can help to predict the formation of undesirable satellite droplets, which is one of the challenges in dispensing non-Newtonian fluids. We also demonstrate the variations in breakup dynamics between shear-thinning and Newtonian fluids under the same flow conditions. For shear-thinning fluids, the droplet size increases when the capillary number is smaller than a critical value, while it decreases when the capillary number is beyond the critical value. The variations highlight the importance of rheological effects in flows with a non-Newtonian fluid. The viscosity of shear-thinning fluids significantly affects the control over the droplet size, therefore necessitating the manipulation of the shear rate through adjusting the flow rate and the dimensions of the nozzle. Consequently, the droplet size can be tuned in a controlled manner. Our findings can guide the design of novel microdevices for generating droplets of shear-thinning fluids with a predetermined droplet size. This enhances the ability to fabricate functional particles using an emulsion-templated approach. Moreover, elastic effects are also investigated experimentally using a model shear-thinning fluid that also exhibits elastic behaviors: droplets are increasingly deformed with increasing elasticity of the continuous phase. The overall understanding in the model multiphase microsystem will facilitate the use of a droplet-based approach for non-Newtonian multiphase applications ranging from energy to biomedical sciences.postprin

    Fluid characterisation and drop impact in inkjet printing for organic semiconductor devices

    Get PDF
    An inkjet printer can deposit a very small volume of liquid with high positional accuracy, high speed and low cost. As a maskless, non-contact additive patterning method, inkjet printing technology is increasingly being explored as an alternative to lithography, etching and vapour deposition processes to pattern electrical conductors and thin films with applications in printed electronic devices. The functional inks used in many of the applications involve non-linear viscoelasticity and their behaviours in the context of inkjet printing have not been fully understood. This thesis aims to characterise Newtonian and non-Newtonian properties of inkjet fluids and identify the key parameters affecting drop impact and spreading processes. Various fluid characterisation techniques such as the filament stretching rheometer and piezoelectric axial vibrator are explored. We propose an experimental method to assess the jettability of non-Newtonian inkjet fluids, without using an inkjet print head. The oblique collision of two continuous liquid jets leads to the formation of a thin oval liquid sheet bounded by a thicker rim which disintegrates into ligaments and droplets. Under certain conditions the flow structure exhibits a remarkably symmetrical “fishbone” pattern composed of a regular succession of longitudinal ligaments and droplets. Good correlation was found between the maximum included angle of the fishbone pattern and the maximum ligament length in the jetting experiments, which suggests that a test based on oblique impinging jets may be useful in the development of fluids for ink jet printing. High-speed imaging is used to analyse the impact and spreading of sub-30 μm drops of diethyl phthalate or polystyrene solutions in diethyl phthalate on to smooth glass surfaces with controlled wettability at speeds from 3 to 8 m s-1, under conditions representative of drop-on-demand inkjet printing. Data on drop height and spreading diameter are generated with high time and spatial resolution, over eight orders of magnitude in timescale. The effects of fluid viscosity and elasticity, which significantly affect jetting performance, are negligible throughout the whole deposition process, with no significant difference between spreading curves. The values of the fluid surface tension and the substrate wettability also have no effect on the kinematic, spreading or relaxation phases, but a marked influence on the wetting phase, in terms of the speed of expansion of the contact diameter and the final spreading factor
    • …
    corecore