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Abstract 
In this paper we introduce an experimental protocol to reliably determine extensional 

relaxation times from capillary thinning experiments of weakly-elastic dilute polymer 

solutions. Relaxation times for polystyrene in diethyl phthalate solutions as low as 80 µs are 

reported: the lowest relaxation times in uniaxial extensional flows that have been assessed so 

far. These data are compared to the linear viscoelastic relaxation times that are obtained from 

fitting the Zimm spectrum to high frequency oscillatory squeeze flow data measured with a 

piezo-axial vibrator (PAV). This comparison demonstrates that the extensional relaxation time 

reduced by the Zimm time, ext/ z, is not solely a function of the reduced concentration c/c* , 

as is commonly stated in the literature: an additional dependence on the molecular weight is 

observed. 
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1. Introduction 

Stretching a liquid drop into a filament and following the thinning dynamics is a meaning of 

probing the resistance of a fluid to a uniaxial stretching deformation.  This fundamental 

material property is referred to as the extensional viscosity ext which is, for a Newtonian 

liquid, constant and related to the shear viscosity 0 via the Trouton ratio ext/ 0 = 3.The 

addition of a dissolved polymer to the liquid, however, increases ext and introduces a 

relaxation spectrum; reviews by McKinley (2005), McKinley and Sridhar (2002) and Bach et 

al. (2003) provide detailed information on both experiments and modelling for a range of such 

viscoelastic polymer solution systems in extensional flows.   

In  comparison  to  the  shear  flow of  polymer  solutions,  the  experimental  investigation  of  the  

viscoelastic properties in extensional flows has proven to be experimentally much more 

challenging [Nguyen and Kausch (1999)]. Over the last two decades, filament stretching and 

filament thinning methods have been developed for purely uniaxial extensional flows [Sridhar 

(1990)].  One of the advantages of these experimental  techniques is  that  they are viable also 

for low viscosity fluids.  Both the filament stretching and filament thinning experiment stretch 

a fluid sample placed between two circular pistons into a filament and follow the thinning 

dynamics. A filament stretching device moves at least one of the pistons in a controlled 

manner so that the extension rate experienced by the fluid filament can be controlled while the 

stress response of the fluid to the stretching deformation is determined via a force transducer. 

In  such  a  configuration,  the  piston  velocity  is  often  exponentially  increased  to  ensure  a  

constant stretch rate at the mid-filament [see for example Spiegelberg et al. (1996); 

Spiegelberg and McKinley (1996); Gupta et al. (2000); Anna et al. (2001)].  The three main 

limitations that are associated with this technique are (i) the maximum stretch rate that can be 

imposed to the filament (limited by the accessible piston velocities), (ii) the maximum 

achievable filament stretching Hencky strain (limited by the stretching distance) [Anna et al. 
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(2001)], and (iii) the sensitivity of the force transducer.  As a result, this technique is 

particularly suited for higher viscosity polymer solutions or melts (> 1Pa.s). 

In contrast to this, a filament thinning experiment creates an unstable filament of fluid by 

imposing an initial sudden step-stretch deformation to the fluid and then follows the evolution 

of the mid-filament diameter Dmid(t). The thinning of the filament is controlled by a balance 

between inertial, viscous, elastic, gravitational and capillary forces.  Transient viscoelastic 

properties  can  be  extracted  from  the  observed  rate  of  decay  of  Dmid(t), as reviewed by 

McKinley (2005). In a filament thinning experiment, the extension rate cannot be 

independently controlled by the experimentalist: the rate of thinning is determined by the 

developing balance of forces in the fluid thread.  However, as shown in the seminal work of 

Entov and Hinch (1997), this type of experiment enables the precise determination of the 

longest relaxation time in the relaxation spectrum of a viscoelastic solution in an extensional 

flow. In this case, the thinning dynamics of a thread of a viscoelastic solution  reaches an 

elasto-capillary balance in which the extension rate is constant and determined by this longest 

relaxation time of the spectrum. 

Filament thinning experiments can also be performed on low viscosity polymer solutions. The 

main limitation lies in the fact that the elastic stresses caused by the unravelling of the 

polymer chain require some deformation of the fluid before they have grown large enough to 

overcome  solvent  stresses  and  deliver  sufficient  elastic  resistance  to  establish  an  elasto-

capillary balance [Campo-Deaño and Clasen (2010)]. For low concentrations, the required 

polymer deformations can be large and a visible effect of the polymer on the thinning 

dynamics (in comparison to the pure solvent) may occur when the finite extensibility limit is 

already approached.  Nonetheless, filament thinning experiments have been proven to be very 

useful to interrogate the extensional properties of low viscosity and/or low viscoelasticity 

solutions [Plog et al. (2005); Rodd et al. (2005); Yesilata et al. (2006); Sattler et al. (2008); 
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Vadillo et al. (2010a); Campo-Deaño and Clasen (2010)] and for small fluid volumes [Kojic 

et al. (2006); Erni et al. (2011)].  Rodd et al. (2005),  for  example,  realized  a  series  of  

experiments on aqueous PEO solutions and established a lower limit of viscosity of 70 mPa.s 

for a purely Newtonian fluid and lowest relaxation time  1 ms for a viscoelastic fluid when 

using a commercially available capillary break up extensional rheometer (CaBER). Another 

limitation of the filament thinning method for the investigation of low viscosity liquids is the 

initial velocity of the piston.  In order to observe the filament thinning, the time t0 to achieve 

a given stretching distance must be shorter than the break up time tbu of the filament. 

Recently, Vadillo et al. (2010) introduced with the “Cambridge Trimaster” (CTM) a fast 

capillary thinning extensional rheometer that can probe break-up time as short as 5 ms and 

therefore fluids with viscosities down to 10 mPa.s and relaxation times as short as  200 s. 

However, those authors also indicated that, similar to the observations of Rodd et al.  (2005), 

at the necessary high stretching velocities and large strain rates, the inertia of the fluid cannot 

be neglected and leads to oscillations of the filament.  Recently, Campo-Deaño and Clasen 

(2010) introduced the slow retraction method (SRM) as an alternative way to investigate 

filament thinning mechanism of fluids with viscosities of order of water and very short 

relaxation times.  This technique consists in slowly separating the pistons close to the critical 

separation distance at which a statically stable liquid bridge still exists.  Subsequently the 

filament is very slowly further extended until the filament becomes unstable and the thinning 

and breaking process is initiated. This avoids inertia effects due to fast stretching motions and 

pistons  oscillations.   Using  this  alternative  technique,  the  authors  have  been  able  to  extract  

relaxation as short as 200 s for dilute aqueous solutions of poly(ethylene oxide) with a 

molecular weight of 106 g/mol and viscosities between 1 and 3 mPa.s. Recent experiments by 

Sharma et al. (2010) on the breakup of weakly viscoelastic jets of dilute aqueous solutions of 

poly(ethylene oxide) with a molecular weight of 3×105 g/mol, viscosity of 3.7 mPa.s 



 5

demonstrated that such jetting flows can also be used to extract extensional relaxation times 

as short as 170 s.  

Still, many industrial processes involve fluids with low viscosities and shorter polymer 

molecules leading to even shorter relaxation times then the ones reported above. The 

electrospinning process for example involves sub-millisecond relaxation processes of polymer 

solutions [Regev et al. 2010]. In inkjet printing, the fluid viscosity typically lies between 3 

and 20 mPa.s, and low molecular weight polymer additives are used to stabilize the droplet 

ligature and prevent satellite formation [Hoath et al. (2009)].  A downside of the addition of 

polymers is the increase of the extensional viscosity of the fluid and consequently the 

significant reduction of jetting speed and increase of the length of the droplet filament. An 

optimization of the polymer addition to balance an extensional viscosity increase and the 

satellite formation requires techniques that allow determination of very short relaxation times, 

down to even the microsecond level.  

The linear viscoelastic  properties  of  fluids  with  such  short  relaxation  times  can  be  assessed  

with high frequency oscillatory rheometry and it has been demonstrated that dilute polymer 

solutions can exhibit linear viscoelastic relaxations time that are comparable with jetting 

processes (  30 s) [Vadillo et al. (2010b)]. However, filament thinning processes are 

generally highly non-linear and the addition of low amounts of polymer leads to relaxation 

spectra in extensional deformation that are different from linear deformations.  For very dilute 

solutions Clasen et al. (2006a) demonstrated that, for high molecular weight polystyrene, the 

extensional  relaxation  time  is  of  same  order  of  magnitude  as  the  shear  relaxation  time  and  

comparable to the longest Zimm relaxation time. However, for concentrations just below the 

critical coil overlap concentration c*, the relaxation times in extension have been reported to 

be orders of magnitude larger than shear relaxation times [Entov and Yarin (1984); 

Basilevsky et al. (2001); Stelter et al. (2002); Tirtaatmadja et al. (2006); Clasen et al. 
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(2006a)]. For dilute solutions of lower molecular weight polymers this deviation of relaxation 

times in shear and extension is also expected, but so far not investigated due to the discussed 

experimental limitations of determining very short relaxation times in extensional flows.  

The present work is therefore focusing on the experimental determination of the very short 

extensional relaxation times of dilute, low molecular weight polymer solutions using the 

CTM.  The  paper  firstly  focuses  on  the  presentation  of  the  experimental  techniques  and  the  

samples used. In a second part, high frequency linear viscoelastic characterisation of the 

samples was performed.  In the third part, the experimental requirements are presented, to 

investigate the thinning dynamics of weakly elastic dilute polymer fluids and reliably to 

determine relaxation times on the microsecond level and we compare them to the linear 

viscoelastic relaxation times obtained from high frequency PAV measurements. In the last 

section, we are focussing on dilute polymer solutions with similar overlap concentrations c/c* 

but different molecular weights.  

2. Materials and methods 

2.1 Linear viscoelastic measurements  

The low viscosity fluids investigated here exhibit relaxation times of milliseconds or below. 

Regular rotational rheometry can therefore not be used to characterize their relaxation 

behaviour, in particular since the applicability of time-temperature superposition is limited 

due to the low flow activation energy of polymer solutions [Vananroye et al. (2011)] and the 

sensitive nature of these fluids prevents measurements over a wide temperature range. In 

order to access the low relaxation times in the present work, a piezo-axial vibrator (PAV) has 

been used.  The PAV (Fig. 1) is a dynamic squeeze flow rheometer used to characterise the 

linear viscoelastic (LVE) response of liquids with viscosities as low as 1 mPa.s over a range 

of frequencies from 0.1 Hz to 10000 Hz [Crassous et al. (2005), Hoath et al. (2009), Vadillo 
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et al. (2010b)].  The current set up uses piezoelectric elements (PZTs) to exert a vibrational 

force F to the cylindrical fluid sample confined (5-200 µm) between the upper and lower plate 

(Fig. 1). The resulting displacement of the excited lower plate with an amplitude of  5 nm is 

determined with a second set of PZTs and the resulting phase shift and amplitude x0 for the 

unloaded and x for the sample loaded PAV are determined with a lock-in amplifier (SR 850, 

Stanford Research Systems). The phase shift and the ratio x /x0 are then used to calculate the 

stiffness of the fluid K* that can be related to the complex modulus G* using standard 

squeeze flow linear viscoelastic analysis [Kirschenmann (2003)]: 

 (1) 

where  is the sample density,  the angular frequency of oscillation and G* the complex 

modulus of the test fluid with G* = G’ + iG” where G’ is the storage modulus and G” is the 

loss modulus. The denominator in eq. (1) represents the first order series development of the 

inertia  contribution  that  has  to  be  taken  into  account  at  high  frequency.  This  fist  order  

approximation is sufficient as long as  < 0.35. The gap distances between the upper and 

lower plate used in the following were 25 and 35 µm, corresponding to a maximum strain of 

0.02 % with which the experiments were performed within the linear response regime for all 

tested fluids over the measured frequency range. A detailed description of the PAV and the 

signal analysis can be found elsewhere [Groß et al. (2002); Kirschenmann (2003); Crassous et 

al. (2005); Vadillo et al. (2010b)].   
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2.2 Capillary thinning extensional rheometry 

The capillary thinning experiments were performed using the Cambridge Trimaster [Vadillo 

et al. (2010a)].  This apparatus rapidly stretches a cylinder of fluid initially placed between 

two pistons which symmetrically move in an opposite (z-) direction (Fig. 2).  The symmetric 

movement means the mid-point of the filament  remains at a fixed position and the diameter is 

therefore observed more easily with high-speed imaging.  Filament thinning experiments were 

performed at ambient temperature by placing the sample fluid between pistons with a 

diameter of D0 = 1.2 mm and stretching it from an initial piston separation distance L0 to a 

final  distance  Lf.  A high  speed  camera  (Photron  Fastcam 1024 PCI)  was  used  to  record  the  

filament profile D(z,t) evolution and to determine in particular the thinning of the mid-

filament Dmid(t) and the minimum filament diameter Dmin(t).   The  resolution  and  frame rate  

used were 1024x1024 square pixels at 1000 frames per second, and 32x32 square pixels at 105 

frames/s with a minimum shutter time of 3 µs.  The illumination was provided by a 

continuous fibre optic light source.  The spatial resolution of the optical setup is of order of 

5.6 m/pixel which means that the extensional rheology of the fluid can be determined up to a 

maximum Hencky strain of 10.7.  Further details on the Cambridge Trimaster capabilities and 

limitations can be found in Vadillo et al. (2010a).  

The obtained images were subsequently analysed with an algorithm based on the Matlab 

image processing toolbox in order to locate the edges of the filament and find the position and 

magnitude of the minimum filament diameter Dmin(t).  The edges were identified by a 

modified Marr-Hildreth algorithm with a Gaussian low pass filter with a standard deviation of 

1.0 to achieve edge detection with sub-pixel accuracy (Marr and Hildreth (1980), Huertas and 

Medioni (1986)).  Since the use of this small standard deviation makes the image detection 

rather susceptible to noise, the actual filament edges are subsequently distinguished from the 

background noise by a line detection algorithm using the a priori knowledge of the shape of 

the filament. 
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In order to obtain viscoelastic material functions from the diameter data of the thinning 

filament one has to identify which fluid property is resisting the capillary forces.  For the 

thinning of a low viscosity fluid, the main initial resistance against the capillary forces are 

originating from the inertia of rearranging fluid elements (rather than from the fluid 

viscosity).  In this case of an inertia-capillary balance, the diameter decay follows a power law 

with a characteristic exponent of 2/3 [Brenner et al. (1996), Day et al. (1998), Rodd et al. 

(2005)]:  

 (2) 

where  is the surface tension,  the density and tbu the time at filament break-up.  The 

addition of polymer results in the appearance of an extra tensile stress p that eventually 

slows the thinning dynamics of the inertia-capillary balance.  In the case that this polymeric 

stress p  becomes large enough to balance the surface pressure in the thinning filament, the 

mid-filament diameter has been predicted to decay exponentially [Basilevski et al. (1990); 

Reynardy (1994, 1995); Brenner et al. (1996); Bazilevksi et al. (1997); Eggers (1997); Entov 

and Hinch (1997)].  The theoretical prediction of an elasto-capillary balance has been 

observed experimentally for high-viscosity polymer solutions [Bazilevsky et al. (1990); Liang 

and Mackley (1994); Kolte et al. (1999); Anna and McKinley (2001); McKinley (2005); Ma 

et al. (2008); Miller et al. (2009); Clasen (2010)] as well as low viscosity polymer solutions 

[Rodd et al. (2005), Tuladhar and Mackley (2008), Vadillo et al. (2010a); Campo-Deaño and 

Clasen (2010)].  The decay rate in the measured diameter depends only on the longest 

extensional relaxation time ext and is given for dilute polymer solutions by [Entov and Hinch 

(1997); Clasen et al. (2006b)]: 

 (3) 

where G = cRT/Mw is the modulus of the dilute solution.  The longest extensional relaxation 

time ext can then easily be extracted from fitting the exponential thinning regime of the 

diameter evolution. The conditions for a transition from an inertia-capillary to an elasto-
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capillary balance depend on the polymer concentration and molecular weight. The discussion 

of  whether  it  is  actually  possible  to  see  this  transition  in  practice  and  to  perform a  valid  fit  

with eq. (3) is considered in detail in the Results and Discussion section.   

Independent from the choice of the dominant balancing force, it is always possible to 

formulate an apparent extensional viscosity e,app from the mid filament diameter evolution 

by taking the ratio between the capillary pressure  within the filament and the 

strain rate 

, (4) 

to give [Anna and McKinley (2001)]: 

 (5) 

In order to perform the required differentiation of experimental data in eqs. (4) and (5), the 

filament diameter data were further processed using a Savitzky-Golay filter with a fifth order 

polynomial and a fitting window of 15 points. This technique has been preferred to a 

weighted adjacent averaging as it tends to better preserve features of the data. 

2.3 Sample preparation and characterization 

The test fluids were multiple series of monodisperse polystyrene dissolved in diethyl 

phthalate (DEP).  Five stock solutions of monodisperse polystyrene (PS) with different 

molecular weight dissolved at 10 wt% in diethyl phthalate (DEP) were prepared by adding the 

PS to the DEP at ambient temperature.  The resulting solution was heated to 180°C and stirred 

for several hours until the polymer was fully dissolved. Five concentration series (referred to 

as  series  I-V)  over  a  range  of  0.02  –  10  wt%  were  prepared  by  subsequent  dilution  of  the  

respective stock solution. The series I was prepared from PS with a molecular weight of Mw = 

70 kg/mol (PS70) manufactured by Sigma-Aldrich. The four other PS samples with Mw of 

110 kg/mol (PS110), 210 kg/mol (PS210), 306 kg/mol (PS306) and 488 kg/mol (PS488), 
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were manufactured by Dow and were used to formulate dilution series II, III, IV and V 

respectively. A sixth solution series (VI) with different Mw and polymer concentration c but 

the same zero-shear viscosity of 0  12 mPa.s was prepared for the filament thinning 

experiments.  The four samples of series VI were PS110 at 0.5wt%, PS210 at 0.4wt%, PS306 

at 0.2wt% and PS488 at 0.1wt% in DEP respectively. Mass and number average molecular 

weights Mw and Mn as  well  as  polydispersity  Mw/Mn were determined using gel permeation 

chromatography (GPC) with THF as the solvent. All polymer and polymer solution properties 

are summarised in Table 1. 

The surface tension was measured using a Wilhelmy plate (NIMA DST 9005, NIMA 

Technology, England) and a “SITA, pro-line t15” bubble pressure tensiometer (Messtechnik 

GmbH, Germany).  A constant value of 37 mN/m was obtained for both the pure DEP and the 

PS in DEP solutions up to 5 wt% (PS110 in DEP).   

The intrinsic viscosity [ ], the critical overlap concentration of entanglement c*, and the 

radius of gyration of the carbon-carbon bonds Rg were obtained for the different molecular 

weights (Fig. 3) as described in Anna et al. [(2001)] and Clasen et al. [(2006a)].  The intrinsic 

viscosity [ ] was obtained from the zero-shear viscosities  of the different concentration 

series using the Huggins–Kramer extrapolation of the viscosity data to infinite dilution: 

0

2
1

...s
Hk c

c
 (6) 

where s is the solvent viscosity (with a viscosity of the pure solvent DEP of s = 9.9 mPa.s) 

and kH is the Huggins coefficient.  The viscosities 0 of the solutions were determined from 

PAV low frequency complex viscosity * data within the terminal relaxation regime, and for 

lower polymer concentrations with an Ubbelohde capillary viscometer (the viscosities for the 

different concentration series are shown in Fig. 5a). The radius of gyration Rg was  then  

obtained from the Flory–Fox equation:  
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where Mw is the molecular weight and 0 is the Flory constant equal to 3.67.1024 mol-1.  The 

critical polymer overlap concentrations c* were calculated from the ideal volume requirement 
34 3gR  of a polymer coil, using the radius obtained from the experimentally determined 

intrinsic viscosity via the Flory Fox equation of eq. (7) [Graessley (1980); Harrison et al. 

(1998)]: 
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         (8) 

where  NA is the Avogadro number equal to 6.02 1023 mol-1 and therefore 03 4 AN  

1.45. 

The polymer extensibility L, representing the ratio of a fully extended polymer (dumbbell) to 

its equilibrium length can be described in terms of molecular parameters as: 

 (9) 

where  is C-C bond angle, j is the number of bonds of a monomer of molar mass Mu, C  is 

the characteristic ratio for a given polymer-solvent system and is the excluded volume 

exponent.   For  polystyrene,  the  values  are   =  109.5°,  j  =  2,  Mu = 104g/mol, and C  =  9.6  

[Anna et al. (2001); Clasen et al. (2006a)]. The different polymer solution properties are 

summarised in Table 1. 

The excluded volume exponent for PS in DEP has been obtained from the relation

. For this, the intrinsic viscosity data of Table 1 are completed by data provided in 

Clasen et al. [(2006a)] for polystyrene with higher molecular weights of 2.84, 5.67 and 8.27 

106 g/mol in DEP.  Figure 3 shows the intrinsic viscosity (and radius of gyration) obtained as 
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a function of the different molecular weights. The fit of these data to (or

respectively) results in an excluded volume exponent of 0.555 for polystyrene in DEP in 

good agreement with Clasen et al. [(2006a)]. 

 

Series Polymer 

Mw 

(kg/mol) 

Mn 

(kg/mol) 

Mw/Mn 

 

c 

(wt%) 

c* 

(wt%) 

Rg 

(nm) 

] 

(ml/g) 

L 

 

 

(kg/m3) 

z 

(µs) 

I PS70 70 71 1.056 1-5 6.96 7.24 25 12.2 1120 3.3 

II PS110 110 105 1.128 0.1-10 3.74 10.35 37 14.8 1120 7.8 

III PS210 210 181.4 1.146 0.1 – 10 2.80 14.15 49.54 21.3 1120 20.0 

IV PS306 306 260.8 1.169 0.04 – 10 2.49 16.67 55.57 25.2 1120 32.9 

V PS488 488 410.15 1.191 0.02 - 10 1.53 22.93 90.7 31.0 1120 83.8 

Table 1: Characteristic parameters of the polystyrene samples dissolved in diethyl phthalate. 

Surface tension was consistently measured at  = 37mN/m 

 

3. Results and discussion 

3.1 High frequency shear rheology 

The  PAV was  used  to  characterize  the  high  frequency  behaviour  with  the  aim to  obtain  the  

linear viscoelastic (LVE) relaxation times of the samples. Experimental results obtained for 

series II (PS110 in DEP) are used as an example of the behaviour of the different series and 

are presented in Fig. 4. The loss modulus G’’ and the storage modulus G’ approach the 

terminal relaxation regime at low frequencies, with the expected scalings of a power of 1 for 

the loss modulus, 2 for the storage modulus, and a constant complex viscosity in this 

regime.  These experimental observations are valid for all the series of fluids although the 

data are not explicitly reported here.  

13~][ wM wg MR ~
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The longest relaxation time was determined by fitting the Zimm model for dilute polymer 

solutions to the measured PAV data of the linear viscoelastic moduli G’( ) and G”( ): 

modes
2

0
24 2

1 0

N

i
G G

i
  

modes 2
0

24 2
1 0

N

s
i

i
G G

i
 (10) 

where wG cRT M  is the modulus, R = 8.314 J/mol.K is the universal gas constant,  is the 

angular frequency, T is the absolute temperature, and  is the measure of the hydrodynamic 

interaction between the segments of the polymer chain and the surrounding solvent. This 

parameter was determined to be = -0.335 from the approximation  [Anna et al. 

2001)]. In the terminal relaxation regime eq. (10) reduces to: 

modes2
0 4 20 1

1lim
N

i
G G

i
 

modes

0 20 1

1lim
N

s
i

G G
i

 (11) 

Examples of the fits of eqs. (10) and (11) to the PAV data of the fluids of series II are given in 

Fig. 4, and a good agreement could be obtained when using at least eight modes. The longest 

relaxation times 0,fit obtained from these fits for the five different samples and concentration 

series are given in Fig. 5b as the reduced values 0,fit / z. The theoretical concentration 

independent Zimm relaxation time 

modes

2
1

1
1

s w
z N

i

M
RT

i

 (12) 

that  is  observed  as  the  lower  limit  for  dilute  solutions  is  also  given  in  Table  1.   The  sum  
modes

2
1

1N

i i
 in eq. (12) is equivalent to U ,  the  universal  ratio  of  the  characteristic  relaxation  

time 0 s G of a dilute polymer system to the longest relaxation time , and U = 

= 2.11 for the polymer solutions in this paper [Öttinger (1996)]. 

~23

0
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The  onset  of  increase  of  the  longest  relaxation  time  of  the  LVE  experiments  0 with 

concentration above the lowest limit of the Zimm relaxation time z can be estimated from the 

increase of the polymer contribution to the viscosity 0p s  with the concentration. 

Inserting in 0 pU G  for example the Martin equation  in 

combination with eqs. (8) and (12) [Clasen et al. (2006a)] gives:  

0 exp 1.46
*z M

ck
c

 (13) 

where kM is the Martin coefficient [Kulicke and Clasen (2004)]. Figure 5a shows a fit of the 

Martin equation to the zero-shear viscosity of dilution series in this study and a kM of 0.37 has 

been obtained.  This value is consistent with a kM of 0.35 reported previously for polystyrene 

of higher molecular weight in DEP [Clasen et al. (2006a)]. Equation (13) indicates that the 

increase of the longest relaxation 0/ z will be solely a function of the overlap parameter c/c*. 

Figure 5b shows that, at least for the LVE measurements, this is also experimentally observed.  

The same assumption (that 0/ z is constant for the same overlap parameter c/c*, independent 

of the molecular weight of the polymer) has also been made for the longest extensional 

relaxation time in several publications [e.g. Plog et al. (2005); Tirtaatmadja et al. (2006); 

Clasen et al. (2006a); Arnolds et al. (2010)]. In order to probe this assumption, a series of 

c/c*-matched solutions of different molecular weights but maintaining c/c*  0.1 was 

prepared for different polymer molecular weights. From eqs. (6) and (8) it follows that these 

solutions have the same zero shear viscosity and are thus ‘viscosity matched’. 

The PAV data for this viscosity matched series VI are presented in Fig. 6.  The similarity of 

the  loss  modulus  G”  for  different  molecular  weights  in  the  terminal  relaxation  regime  (and  

therefore also of the complex viscosity) indicates that the viscosity of the samples is indeed 

similar for the same c/c*.  The G’ data shows, as expected, differences between the samples  

and the resulting different longest relaxation times 0,fit obtained from fitting the terminal 

expp s Mc k c
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relaxation  regime  of  G’  and  G”  in  Fig.  6  with  eq.  (11)  are  given  in  Table  2  (and  are  also  

included in Fig. 5b). Despite the differences in 0,fit from the LVE data, the reduced data 

0,fit/ Z in Fig 5b and Table 2 are similar for the different molecular weights as expected from 

eq. (13). 

With this set of viscosity matched fluids it is therefore possible to investigate the validity of 

the assumption that is often made, that 0/ Z is also constant for the same c/c* in an uniaxial 

extensional flow. This comparison is done in the following section. 

Mw 
(kg/mol) 

c 
(wt%) 

clow 
(wt%) (mPa.s) 

0,fit 
( s) 

0,fit/ Z ext 
( s) 

S.D. 
( s)

ext/ Z

110 0.5 0.081 12.4 11 1.41 197  16 25.2 

210 0.4 0.046 12.5 22 1.10 92  14 4.6 

306 0.2 0.041 11.6 42 1.28  30)   0.93) 

488 0.1 0.029 11 80 0.95 83  5 1.03 

Table 2: Rheological parameters of the fluids of series VI.  

 

3.2 Capillary thinning 

Experimental requirements 

The visualization of filament thinning of low viscosity weak elastic fluids requires several 

experimental conditions to be met: (i) the filament stretching must be fast enough so that the 

filament  does  not  break  before  the  piston  stops,  (ii)  the  optical  magnification  must  be  high  

enough to resolve the filament diameter, (iii) the capture frame rate must be fast enough to 

observe an elasticity controlled exponential filament decay.   

(i) The filament thinning velocity of a fluid is controlled by the competition between its 

surface tension, which is the driving thinning force, and viscosity, inertia, and elasticity which 

stabilise the filament.  This competition can be summarised using three dimensionless 

numbers, namely the Ohnesorge number Oh that represents the competition between viscosity 
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and inertia, the Deborah number De for elasticity and inertia, and the elasto-capillary number 

Ec that compares elasticity and viscosity [McKinley (2005), Clasen et al. (2011)]:  

3
, ,Oh De Ec

RR R
,     (14) 

where  is the surface tension, R is the filament radius,  is the density,  is the viscosity and 

 is the fluid longest relaxation time. For fluids of series VI, the low initial Ohnesorge number 

Oh   0.06  and  (with  an  estimated  relaxation  time   of  100 s) the low elasto-capillary 

number Ec  0.06 indicate that the fluids will behave inviscidly. Furthermore, the low 

Deborah number (De  0.04) of these inviscid fluids indicates that they will show an initially 

inertia controlled filament thinning [Clasen et al. (2009); Clasen et al. (2011)]. This explains 

the top and bottom break-up previously reported for similar solution of PS in DEP [Vadillo et 

al. (2010a)]. The time to break-up of such an inertia controlled thinning is given by

 [Rodd et al. (2005)] and will be for the fluids of series VI  5 ms. The time 

 required by the apparatus to perform the axial stretching distance (Lf - L0) must 

then be shorter than this critical time scale for inertio-capillary break-up. For a stretching 

distance of 0.8 mm, this requires a piston velocity Vp > 150 mm/s.  

(ii) The dissolved polymer will eventually cause the onset of an elasto-capillary balance in the 

thinning process. In order to resolve for very small filaments the expected exponential decay 

of the radius following eq. (3), the optical resolution of the images needs to be sufficiently 

high. A comparison of the stabilization effects on the filament via the Deborah number of eq. 

(14) indicates a transition from an inertial to an elasticity controlled thinning at a critical 

Deborah number of De  1 [Clasen et al. (2011)]. From this and with an estimated relaxation 

time of  100 s for the investigated critical system, one expects the transition to an 

exponential thinning regime to occur for filament radii  =  70 m. Balancing the 

spatial resolution and the field of view of the imaging system, an adequate resolution of 5 

m/pixel is chosen for the weakly elastic fluids in this study. 

3
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(iii) The third condition relates to the experimental capability to observe the exponential 

decay predicted by eq. (3), or in another words the capture frame rate (or time between two 

consecutive pictures ts) needs to be sufficiently high to resolve the exponential decay regime.  

Rodd et al. (2005) gave an estimation of the lower detection limit for the relaxation time  

accessible using the minimum resolvable diameter (condition ii), the final aspect ratio and ts:   

 (15) 

where D0 is the diameter of the pistons, f= Lf/D0 is the final filament aspect ratio and Dmin is 

the smallest diameter detectable.  The prefactor 10 corresponds to the number of frames (or 

diameters  measured)  required  to  fit  the  exponential  decay.  In  this  work,  the  samples  were  

stretched from an initial separation distance L0 = 600 µm to a final distance Lf = 1400 µm.  

This corresponded to a final filament aspect ratio of = 1.16. With the estimated relaxation 

time to be measured of  100 µs and a minimum measurable diameter Dmin of 6 m one can 

solve eq. (15) for the time between two consecutive pictures ts =  31 s or a frame rate of 

32200 fps. The final filament thinning and breaking was therefore measured at a frame rate of 

45000 fps (and a decreased images size of 64x128 square pixels required to reach these high 

frame rates).   

The ratio between the Bond number and the capillary number, defined as , 

was found to be  0.28 ensuring that gravity does not drag the fluid below the mid-filament 

[Anna and McKinley (2001)].  The initial cylindrical form of the filament is ensured by an 

initial filament length L0 smaller  that  the  capillary  Lcap, defined as and 

estimated at 1.8 mm here.  

 

Filament stretching and thinning transient profiles 

The fluids of series VI have been deliberately matched in terms of viscosity (and inertia). As a 

consequence, the Ohnesorge number of eq. (14) will be constant for the fluids of series VI and 
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differences observed on the experimental filament thinning transient profiles can directly be 

associated  with  the  nonlinear  response  of  the  polymer  chains  in  extensional  flow.   Figure  7  

presents a series of images of the capillary breakup experiments using the conditions 

described in the experimental section. The overall break up time for all samples was  9.5 ms 

and longer than the piston motion time (  5.3 ms).  The high speed images in Fig. 7 show that 

the filament initially thins as predicted as an inviscid, inertia controlled fluid (Oh < 0.2) with a 

non-uniform geometry where the filament at the top and bottom end thins faster than the mid-

point.  This eventually resulted in the formation of a single central droplet [Vadillo et al. 

(2010a)] the diameter of which increased with increasing polymer molecular weight (see 

images at t = -22 s  in  Fig.  7a  and  7d).   The  necking  points  above  and  below  the  droplet  

develop into long lasting threads with increase of molecular weight.  Close examination of the 

last photograph of fluids with molecular weight 306 and 488 kg/mol show the formation of 

beads on the thin filament thread that eventually lead to the formation of secondary droplets 

with diameter of order of one hundredth of the central droplet.   

Extensional rheology 

The extensional relaxation time is usually extracted from the mid-filament diameter  Dmid 

evolution using eq. (3). In the present case, an exponential thinning is observed in both 

filaments above and below the central droplet. As a consequence, not Dmid but the minimum 

diameter Dmin of the filaments is used in eq. (3) and (5) to extract the fluid extensional 

relaxation time and viscosity.  

These minimum filament diameters Dmin obtained  from the  high  speed  movies  of  Fig.  7  are  

presented in Fig. 8 as a function of time. The thinning data of the different concentration 

series overlap until t  1.25 ms or Dmin  60 m, following an inertia controlled thinning (eq. 

(2), solid line in Fig. 8). After this point, which relates to a local Deborah number of De(t)  

1, the curves diverge, following an exponential thinning with time. The longest extensional 

relaxation times are obtained by fitting this exponential regime with eq. (3) (dotted lines in 

Fig. 8) and the data are reported in Table 2. The reproducibility of these measurements was 
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confirmed with at least three repeat experiments, and the standard deviation (S.D.) of the 

extracted relaxation time ext is indicated in Table 2.  

The longest relaxation time in extension obtained for PS110, PS220 and PS488 of 197 s, 92 

s and 83 s are the lowest reliably obtained values in uniaxial extensional flows reported so 

far.  For all  three solutions,  the Deborah number (eq.  (14)) is  at  the onset of the exponential  

thinning regime at D  70 m rising above unity and therefore a true elasto-capillary balance 

with a constant extension rate is observed. This is confirmed in Fig. 9 where a constant 

Weissenberg number 2 3extWi expected for an elasto-capillary balance [Entov and 

Hinch (1997)] is clearly observed with a strong increase in the apparent extensional viscosity 

(eq. (5)).  For the solution of PS306 only the onset of an elasto-capillary balance could be 

observed with a few data points of increasing viscosity at the lower resolution limit of the 

experiment close to the breaking point, indicating a possible relaxation time as low as  30 s.  

However, for this solution an even higher optical magnification and faster recording 

frequency is required to improve the reliability of the observation of such short relaxation 

times. It should be noted that the strongly increasing apparent viscosity e,inf in Fig. 9 in the 

elasto-capillary balance regime represents a true transient extensional viscosity of the fluid, 

caused by the increasing resistance of the unravelling of the polymer chains in the uniaxial 

extensional flow. However, this is not the case for the apparent viscosity of the early inertio-

capillary balance regime where the diameter evolution follows eq. (2) and the resistance 

against thinning is not related to a viscoelastic material property. Furthermore it is clear from 

Fig. 9 that at late times it was not possible, within the resolution limits of the setup, to reach 

the limiting theoretically predicted extensional viscosity limit of  when 

approaching the finite extensibility limit of the polymer chains [Entov and Hinch (1997)]. 

To ensure the reliability of the extracted extensional relaxation times, one has to ensure that 

the polymer chains have not yet reached their finite extensibility limit L before the onset of 

the elasto-capillary balance. Recently, Campo-Deaño and Clasen (2010) proposed an 

expression of a minimum concentration, clow, below which it is not possible to determine a 

2
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relaxation time as polymer chains will be fully stretched before their elastic stresses can 

balance the capillary pressure: 

 (16) 

Using the Zimm relaxation time z as an estimate for the fluid relaxation time , the 

concentration clow for the different polystyrene samples has been estimated (Table 2) and 

found to be significantly lower than the actual concentration. This also indicates that the 

observed exponential filament diameter decay is a true elasto-capillary balance. It should be 

noted that clow is  different  from  the  lower  concentration  limit  cmin proposed in Clasen et al. 

(2006a). While the (lower) cmin indicates the critical concentration necessary to see an effect 

of the polymer on the thinning dynamics at all, clow indicates the (higher) minimal 

concentration above which not only an effect on the thinning but a true elasto-capillary 

balance is observable. 

This  set  of  reliable  extensional  relaxation  times  can  now  be  compared  to  0 from  the  LVE  

measurements. A comparison of ext to  the  LVE relaxation  times  in  Table  2  shows that  the  

extensional relaxation times are up to an order of magnitude larger than the LVE data.  This 

result is consistent with the previously reported work of Clasen et al. [(2006a)] for 

polystyrene of much higher molecular weights between 1.8 103 kg/mol and 8.27 103 kg/mol 

dissolved in DEP and in styrene oligomers. However, a direct comparison of the reduced 

extensional relaxation times ext/ z shows that the assumption that ext/ z is constant for the 

same c/c* is not valid anymore.  Figure 10 compares ext/ z for different molecular weights to 

the LVE data. For the higher molecular weights, the extensional relaxation times still agree 

with the LVE relaxation times. However, when lowering the molecular weight the extensional 

relaxation time starts to increase above the LVE relaxation time (up to a factor 25 for the Mw 

= 110.000 g/mol sample), even though c/c* is kept constant. This observation does not 

invalidate previously published observations that ext/ z will eventually rise above 0/ z with 

increasing c/c* for a single molecular weight. However, it indicates that the onset of this 
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increase is not solely a function of c/c*, but also depends on the molecular weight (with the 

implication that the onset shifts with increasing molecular weight to higher values of c/c*).  

A possible explanation for the observed influence of the molecular weight on the extensional 

relaxation time in Fig. 10 could be that the long-chain limit for which the power-law 
3 1~ M  strictly holds is not yet reached for the molecular weights of order 105 g/mol used 

in series IV [Larson (2005)]. Although the experimentally determined intrinsic viscosities and 

their dependence on Mw in Fig. 3 do not seem to show the onset of a crossover to 0.5~ M  

at the lowest molecular weights, the polymer coil expansion  that can be obtained from 
3 3 1.5K K M  (with K  84 × 10-3 ml/g for polystyrene at theta conditions from 

[Kulicke and Clasen (2004)] indicates a crossover molecular weight of  50000 g/mol, and 

also the solvent quality  z  0.3 (obtained from 3 1.13  for the lowest molecular weight of 

series VI via the Brownian dynamics simulations of [Kumar and Prakash (2003)] for z  of 

polystyrene) indicates the proximity to the crossover regime. The universal ratio used in eq. 

(12) to calculate the Zimm time and ext/ z will therefore be slightly overestimated for the 

lowest molecular weights of series VI in Fig. 10. 

However, the coil expansion is in our investigation not calculated using a (solvent quality 

depending) universal function [Kumar and Prakash (2003); Sunthar and Prakash (2005)], but 

the intrinsic viscosity (and thus c*) is directly experimentally determined and used to 

calculate the reduced concentrations at which the material functions of different molecular 

weight are compared with each other. One could argue that, since the excluded volume (EV) 

interactions are decaying with the polymer chain approaching full stretch, the measured coil 

expansion at equilibrium (that includes the EV at equilibrium) are therefore not representative 

for the stretching chain. More specifically, since the expansion and EV interactions at 

equilibrium depend on the solvent quality and thus on the molecular weight, and since these 

wM  dependent EV interactions are getting smaller during the coil elongation, we should 

expect differences for the material functions that depend on the state of deformation (as the 

relaxation time in Fig. 10) with decreasing wM  at the same c/c*. 
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Similarly, the idea of a conformation dependent drag and therefore a dependence of the 

hydrodynamic interactions (HI) on the elongation of the polymer chain has been used to 

explain an increase of the relaxation time of the stretching chain in comparison to the coiled 

state at rest [Hsieh et al. (2003); Schroeder et al. (2004); Hsieh and Larson (2005); Sunthar 

and Prakash (2005) ; Szabo et al. (2012)]. For the case of a capillary thinning experiment 

Prabakhar et al. [ (2006)] have shown that including deformation dependent HI in their 

simulations predict a deviation of the critical Weissenberg number extWi  at the coil-

stretch transition from the predicted value of 2/3 [Entov and Hinch (1997)] due to a deviation 

of the critical extension rate. However, recent Brownian dynamics simulations by Somani et 

al. [ (2010)] on the elongational flow of dilute polymer solutions, that take into account EV as 

well  as  conformation  dependent  HI,  indicate  that  not  only  the  rate  at  which  the  coil  stretch  

transition is observed is effected by solvent quality and wM  but also the longest relaxation 

time. Moreover, their simulations indicate that the product of the two, so the Weissenberg 

number at which the coil-stretch transition is taking place, remains independent of changes to 

the molecular weight and solvent quality at Wi = 2/3. The relaxation times that are thus 

extracted from capillary breakup experiments with eq. (3) that is based on the concept of a 

constant Wi  number should thus be independent of the changes in solvent quality originating 

from the varying molecular weights used in the present study, at  least  for the case of dilute 

solutions.  

The question that remains is if the solutions of series VI can be considered with c/c* = 0.1 as 

truly dilute. The concept of a self-concentration of the expanding polymer chains in an 

extensional flow [Clasen et al. (2006a); Stoltz et al. (2006)] could lead even for c/c* = 0.1 to a 

non-dilute regime in which the molecular weight independence of the critical Weissenberg 

does not hold, or better, at which the reduced concentration c/c* at equilibrium conditions 

does not reflect the conditions at the onset of an expanding coil interactions. Recent Brownian 

simulations by [Prabakhar et al., (2011)] take into account the effect of self concentration in 

addition to conformation dependent HI and EV, however they have looked so far only at 

higher molecular weights closer to the long-chain limit than the wM  used in Fig. of this study.  
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4. Conclusion 

This paper investigated the viscoelastic behaviour of low viscosity polymer solutions with the 

aim to (a) demonstrate a reliable determination of very short relaxation times in uniaxial 

extension and in small amplitude oscillations, and (b) use this reliable data to compare the 

relaxation  times  in  shear  and  extension  for  different  molecular  weights  at  the  same overlap  

concentration  c/c*.  Relaxation  times  in  the  LVE  limit  were  obtained  with  high  frequency  

SAOS experiments using the Piezo Axial Vibrator (PAV) whereas extensional data have been 

obtained from filament thinning experiments using the Cambridge “Trimaster” and high speed 

visualisation. Concentration series of monodisperse low molecular weight polystyrenes 

dissolved in DEP have been characterised within the terminal relaxation regime to obtain 

intrinsic viscosities and critical concentrations c*. The longest shear relaxation times have 

been obtained from fitting the LVE data with the Zimm relaxation spectra and it was possible 

to  obtain  shear  relaxation  times  down  to  values  of  10  s.  With  this  data  set  it  was  

reconfirmed that, within the LVE limit, also for weakly elastic fluids the reduced longest 

relaxation time 0/ z is solely a function of the overlap parameter c/c*.  

The longest relaxation times in extensional flow ext were determined from capillary thinning 

experiments for a series of solutions with varying molecular weight but a constant overlap 

parameter c/c*  0.1 (and therefore matched shear viscosity, of 12 mPa.s at 25°C). For these 

solutions, extensional relaxation times could reliably be obtained down to values of  80 s, 

which are the lowest value of relaxation times in extension measured to date from capillary 

thinning experiments. It has been shown that, in contrast to LVE relaxation times, the reduced 

relaxation times ext/ z are not constant for a single overlap parameter c/c*, but also depend 

on the molecular weight. Comparing ext with 0 at  a  constant  c/c*shows  that  ext/ 0 is 

increasing with decreasing Mw. 
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This experimental capability of measuring very short relaxation time can bring new insight in 

the understanding of the fluid microstructure of low viscosity polymer solutions, as well as 

providing experimental data to an area of rheology limited until now to simulations. 
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a)         b)  

 

Figure 1: (a) Image and (b) schematic drawing of the PAV (reproduced from Kirschenmann 

(2003) and Crassous et al. (2005)). 
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Figure 2: Principle of a capillary thinning experiment.  
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Figure 3: Intrinsic viscosity [ ] and gyration radius Rg as a function of molecular weight for 

polystyrene  in  diethyl  phthalate.  Data  for  Mw > 106 g/mol are taken from Clasen et al. 

(2006a). 
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Figure 4: Loss modulus G”, storage modulus G’ and complex viscosity * as a function of the 

frequency  for  the  dilution  series  II  (PS with  Mw = 110 000 g/mol in DEP). The solid lines 

represent fits of the Zimm spectrum of eq. (10) to the G’ and G’’ data, the dashed lines are fits 

of solely the terminal relaxation regime using eq. (11) in order to extract the longest 

relaxation time as the only fitting parameter.   
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a) 

 

b)  

 

Figure 5: (a) Specific viscosity p s as a function of the overlap parameter c[ ] for PS in DEP 

for the dilution series I-V. The solid line is a fit of the Martin equation ][][ cK
sp

Mec .  (b) 

Reduced relaxation time 0,fit/ z (obtained from fitting the LVE data of the PAV experiments 
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with eq. (11)) as a function of the reduced concentration c/c* for the dilution series I-VI. The 

solid line is the theoretical prediction of eq. (13). 
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Figure  6:  Loss  modulus  G”  and  storage  modulus  G’  as  a  function  of  the  frequency  for  the  

dilution series VI (PS in DEP with different molecular weights and concentrations, but similar 

reduced concentration of c/c* ~ 0.1 and similar zero-shear viscosity of 0 ~ 12 mPas). The 

solid lines represent fits of the Zimm spectrum of eq. (10) to the G’ and G’’ data, the dashed 

lines  are  fits  of  solely  the  terminal  relaxation  regime  using  eq.  (11)  in  order  to  extract  the  

longest relaxation time as the only fitting parameter. 
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Figure 7: Images from the last 1.3 ms of the capillary break up of the dilution series VI of PS 

in DEP: (a) PS110 at 0.5wt%, (b) PS210 at 0.4wt%, (c) PS306 at 0.2wt%, (d) PS488 at 0.1wt. 

Images are taken from high speed movies recorded at 45000 fps with an exposure time of 3 

µs. Time of the picture are, from left to right, 0ms, -1.31ms, -0.98ms, -0.64ms, -0.31ms, 

0.089ms, 0.067ms, -0.044ms and -0.022ms, using the break up time as time reference. 
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Figure 8: Evolution of the minimum filament diameter Dmin, obtained from the processed 

images of the high speed movies of Fig. 7, as a function of time. The solid line represents a 

purely inertia controlled thinning following eq. (2). Dotted lines represent fits of the elasto-

capillary balance regime with eq. (3). 
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Figure 9: Apparent extensional viscosity e,app as a function of the Weissenberg number 

extWi t t  calculated with eqs. (5) and (4) from the diameter data of Fig. 8.  The dashed 
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line represents the natural Weissenberg number for the filament thinning in the elasto-

capillary balance regime of Wi = 2/3. 
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Figure 10: Comparison of the reduced relaxation times in LVE shear and uniaxial extension 

as a function of the molecular weight at a constant reduced concentration c/c*. 

 

 

 


