5 research outputs found

    An Oseen Two-Level Stabilized Mixed Finite-Element Method for the 2D/3D Stationary Navier-Stokes Equations

    Get PDF
    We investigate an Oseen two-level stabilized finite-element method based on the local pressure projection for the 2D/3D steady Navier-Stokes equations by the lowest order conforming finite-element pairs (i.e., Q1−P0 and P1−P0). Firstly, in contrast to other stabilized methods, they are parameter free, no calculation of higher-order derivatives and edge-based data structures, implemented at the element level with minimal cost. In addition, the Oseen two-level stabilized method involves solving one small nonlinear Navier-Stokes problem on the coarse mesh with mesh size H, a large general Stokes equation on the fine mesh with mesh size h=O(H)2. The Oseen two-level stabilized finite-element method provides an approximate solution (uh,ph) with the convergence rate of the same order as the usual stabilized finite-element solutions, which involves solving a large Navier-Stokes problem on a fine mesh with mesh size h. Therefore, the method presented in this paper can save a large amount of computational time. Finally, numerical tests confirm the theoretical results. Conclusion can be drawn that the Oseen two-level stabilized finite-element method is simple and efficient for solving the 2D/3D steady Navier-Stokes equations

    Two-Level Brezzi-Pitkäranta Discretization Method Based on Newton Iteration for Navier-Stokes Equations with Friction Boundary Conditions

    Get PDF
    We present a new stabilized finite element method for Navier-Stokes equations with friction slip boundary conditions based on Brezzi-Pitkäranta stabilized method. The stability and error estimates of numerical solutions in some norms are derived for standard one-level method. Combining the techniques of two-level discretization method, we propose two-level Newton iteration method and show the stability and error estimate. Finally, the numerical experiments are given to support the theoretical results and to check the efficiency of this two-level iteration method

    Stabilized Multiscale Nonconforming Finite Element Method for the Stationary Navier-Stokes Equations

    Get PDF
    We consider a stabilized multiscale nonconforming finite element method for the two-dimensional stationary incompressible Navier-Stokes problem. This method is based on the enrichment of the standard polynomial space for the velocity component with multiscale function and the nonconforming lowest equal-order finite element pair. Stability and existence uniqueness of the numerical solution are established, optimal-order error estimates are also presented. Finally, some numerical results are presented to validate the performance of the proposed method

    Two-Level Brezzi-Pitkäranta Stabilized Finite Element Methods for the Incompressible Flows

    Get PDF
    We present a new stabilized finite element method for incompressible flows based on Brezzi-Pitkäranta stabilized method. The stability and error estimates of finite element solutions are derived for classical one-level method. Combining the techniques of two-level discretizations, we propose two-level Stokes/Oseen/Newton iteration methods corresponding to three different linearization methods and show the stability and error estimates of these three methods. We also propose a new Newton correction scheme based on the above two-level iteration methods. Finally, some numerical experiments are given to support the theoretical results and to check the efficiency of these two-level iteration methods
    corecore