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We present a new stabilized finite element method for incompressible flows based on Brezzi-Pitkäranta stabilized method. The
stability and error estimates of finite element solutions are derived for classical one-level method. Combining the techniques of two-
level discretizations, we propose two-level Stokes/Oseen/Newton iteration methods corresponding to three different linearization
methods and show the stability and error estimates of these three methods. We also propose a new Newton correction scheme
based on the above two-level iteration methods. Finally, some numerical experiments are given to support the theoretical results
and to check the efficiency of these two-level iteration methods.

1. Introduction

In this paper, we consider steady Navier-Stokes equations
with homogeneous Dirichlet boundary conditions:

−𝜇Δ𝑢 + (𝑢 ⋅ ∇) 𝑢 − ∇𝑝 = 𝑓, in Ω,

div 𝑢 = 0, in Ω,

𝑢 = 0, on 𝜕Ω,

(1)

where Ω ⊂ R2 is a bounded convex domain with bound-
ary 𝜕Ω. 𝜇 > 0 represents the viscous coefficient. 𝑢 =

(𝑢

1
(𝑥), 𝑢

2
(𝑥)) denotes the velocity vector, 𝑝 = 𝑝(𝑥) the

pressure, and 𝑓 = (𝑓

1
(𝑥), 𝑓

2
(𝑥)) the prescribed body force

vector. The solenoidal condition div 𝑢 = 0 means that the
flows are incompressible.

In computational fluid dynamics, it is very important
in searching the appropriate mixed finite element approxi-
mation to solve the numerical solutions of the problem (1)
quickly and efficiently. Roughly speaking, the selected finite
element spaces are required to satisfy the inf-sup condition,
such as the finite element space constructed by the𝑃

2
−𝑃

1
pair.

However, from the computational cost point of view, the 𝑃
1
−

𝑃

1
pair is of practical importance in scientific computation

with the lower computational cost.Therefore, much attention
has been attracted by the 𝑃

1
− 𝑃

1
pair for simulating

the incompressible flow. But, in this case, the inf-sup con-
dition is not satisfied. A usual technique is to introduce
the stabilized term in the finite element variational equa-
tion such that the inf-sup condition is enforced. There
exist many stabilized methods, such as Brezzi-Pitkäranta
stabilized method [1], locally stabilized method [2, 3], pres-
sure stabilized method [4], stream upwind Petrov-Galerkin
method [5], Douglas-Wang absolutely stabilized method [6],
and pressure projection stabilized method [7, 8] and the
references cited therein. Most of these stabilized methods
necessarily introduce the stabilized parameters. Moreover,
some of these methods are conditionally stable; that is, the
stabilized parameters must satisfy some stable condition.
Therefore, the development of stabilized methods free from
stabilized parameters has become increasingly important.

In this paper, we combine the Brezzi-Pitkäranta stabilized
method, which is unconditionally stable [9], with techniques
of two-level discretizations to solve the numerical solution of
the problem (1) under the uniqueness condition. Two-level
discretization method has become a powerful tool in solving
nonlinear partial differential equations. The basic idea is to
capture “large eddies” by computing the initial approximation
on the coarsemesh and then to obtain the fine approximation
by solving a linearized problem corresponding to nonlinear
partial differential equations on the fine mesh. More details

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 698354, 14 pages
http://dx.doi.org/10.1155/2014/698354



2 Abstract and Applied Analysis

can be referred to in the works of Xu [10, 11]. There exists
a large amount of references about two-level finite element
method for Navier-Stokes equations. For details, please see
the works of An and Qiu [12], Ervin et al. [13], Franca and
Nesliturk [14], de Frutos et al. [15, 16], Girault and Lions [17],
Goswami and Damázio [18], He [19], He and Li [20], He
and Wang [21], He et al. [22], Huang et al. [23], Layton [24],
Layton and Tobiska [25], Li [26], Li and An [27, 28], Liu and
Hou [29], and Zhu and Chen [30] and the references cited
therein.

Based on the Brezzi-Pitkäranta stabilized finite element
method, in this paper, we solve the nonlinear Navier-Stokes
equations on the coarse mesh with mesh size𝐻 in Step I and
then solve a linear system according to Stokes/Oseen/Newton
iterative method on the fine mesh with mesh size ℎ in Step II.
Denote by (𝑢ℎ, 𝑝ℎ) the finite element approximation solution
on the fine mesh. If we suppose (𝑢, 𝑝) ∈ (𝐻

2
(Ω)

2
, 𝐻

1
(Ω)),

then the error estimate derived is










𝑢 − 𝑢

ℎ






𝑉
+











𝑝 − 𝑝

ℎ








≤ 𝑐 (ℎ + 𝐻

2
) , (2)

where 𝑐 > 0 is independent of ℎ and𝐻 and the norms ‖ ⋅ ‖
𝑉

and ‖ ⋅ ‖ are defined in the next section. It is obvious that if
we choose 𝐻 = 𝑂(ℎ

1/2
), then two-level method discussed

in this paper provides the same convergence order as the
classical one-level method. Finally, we propose a Newton
correction scheme on the fine mesh. The numerical solution
(𝑢

ℎ
, 𝑝

ℎ
) in Step II is as the iterative initial value.Then the finite

element approximation solution (𝑢

ℎ

⋆
, 𝑝

ℎ

⋆
) is solved in terms

of Newton iterative scheme on the fine mesh in Step III. The
error estimate derived for this Newton correction scheme is











𝑢 − 𝑢

ℎ

⋆









𝑉
+











𝑝 − 𝑝

ℎ

⋆











≤ 𝑐 (ℎ + 𝐻

4
) . (3)

Thus, if 𝐻 = 𝑂(ℎ

1/4
), then this new two-level method also

is of the same convergence order as the classical one-level
method.

This paper is organized as follows. In Section 2, we
introduce some function spaces and some classical results
about Navier-Stokes equations. In Section 3, the Brezzi-
Pitkäranta stabilized finite element approximation will be
applied and the error estimates about the velocity in𝐻1-norm
and 𝐿

2-norm and the pressure in 𝐿

2-norm are derived. In
Section 4, the two-level discretization finite element methods
are proposed and the error estimates (2) and (3) are shown.
In the final section, the numerical experiments are displaced
to support the theoretical results.

2. Navier-Stokes Equations

In what follows, we employ the standard notation𝐻𝑙(Ω) (or
𝐻

𝑙
(Ω)

2), 𝑙 ≥ 0, for the Sobolev spaces of all functions having
square integrable derivatives up to order 𝑙 in Ω. Denote the
standard Sobolev norm by ‖ ⋅ ‖

𝑙
. If 𝑙 = 0, we write 𝐿2(Ω)

(or 𝐿2(Ω)2) and ‖ ⋅ ‖ instead of 𝐻0(Ω) (or 𝐻0(Ω)2) and
‖ ⋅ ‖

0
, respectively.The symbol 𝑐 always denotes some positive

constant which is independent of the mesh parameters ℎ
and 𝐻 and can be a different constant even in the same
formulation.

Introduce the following spaces usually used in this paper:

𝑉= 𝐻

1

0
(Ω)

2
, 𝑀= 𝐿

2

0
(Ω)= {𝑞 ∈ 𝐿

2
(Ω) ; ∫

Ω

𝑞 𝑑𝑥 = 0} .

(4)

The space 𝑉 is equipped with the norm

‖V‖
𝑉
= (∫

Ω

|∇V|2𝑑𝑥)
1/2

, ∀V ∈ 𝑉. (5)

It is well known that ‖V‖
𝑉
is equivalent to ‖V‖

1
due to Poincaré

inequality. Introduce the following bilinear and trilinear
forms:

𝑎 (𝑢, V) = 𝜇∫

Ω

∇𝑢 ⋅ ∇V 𝑑𝑥, ∀𝑢, V ∈ 𝑉,

𝑑 (V, 𝑞) = ∫

Ω

𝑞 div V 𝑑𝑥, ∀V ∈ 𝑉, 𝑞 ∈ 𝑀,

𝑏 (𝑢, V, 𝑤) = ∫

Ω

(𝑢 ⋅ ∇) V ⋅ 𝑤 𝑑𝑥 −

1

2

∫

Ω

div 𝑢V ⋅ 𝑤 𝑑𝑥

=

1

2

∫

Ω

(𝑢 ⋅ ∇) V ⋅ 𝑤 𝑑𝑥 −

1

2

∫

Ω

(𝑢 ⋅ ∇)𝑤 ⋅ V 𝑑𝑥.

(6)

It is easy to check that this trilinear form satisfies the following
important properties [20, 31]:

𝑏 (𝑢, V, 𝑤) = −𝑏 (𝑢, 𝑤, V) , (7)

𝑏 (𝑢, V, 𝑤) ≤ 𝑁‖𝑢‖

𝑉‖
V‖𝑉‖𝑤‖𝑉, (8)

𝑏 (𝑢, V, 𝑤) ≤
𝑁

2

‖𝑢‖

1/2
‖𝑢‖

1/2

𝑉

× (‖V‖𝑉‖𝑤‖
1/2
‖𝑤‖

1/2

𝑉
+ ‖𝑤‖𝑉‖

V‖1/2‖V‖1/2
𝑉
) ,

(9)

for all 𝑢, V, 𝑤 ∈ 𝑉 and

|𝑏 (𝑢, V, 𝑤)| + |𝑏 (V, 𝑢, 𝑤)| + |𝑏 (𝑤, 𝑢, V)| ≤ 𝑁‖𝑢‖

𝑉‖
V‖2 ‖𝑤‖ ,

(10)

for all 𝑢 ∈ 𝑉, V ∈ 𝐻

2
(Ω)

2, and 𝑤 ∈ 𝐿

2
(Ω)

2, where 𝑁 > 0

depends only onΩ.
Given 𝑓 ∈ 𝐿

2
(Ω)

2, under the above notations, the
variational formulation of the problem (1) reads as follows:
find (𝑢, 𝑝) ∈ (𝑉,𝑀) such that for all (V, 𝑞) ∈ (𝑉,𝑀)

𝑎 (𝑢, V) + 𝑏 (𝑢, 𝑢, V) − 𝑑 (V, 𝑝) = (𝑓, V) ,

𝑑 (𝑢, 𝑞) = 0.

(11)

Define a generalized bilinear form on (𝑉,𝑀) × (𝑉,𝑀) by

B (𝑢, 𝑝; V, 𝑞) = 𝑎 (𝑢, V) − 𝑑 (V, 𝑝) + 𝑑 (𝑢, 𝑞) ; (12)

then the problem (11) also takes the following form:

B (𝑢, 𝑝; V, 𝑞) + 𝑏 (𝑢, 𝑢, V) = (𝑓, V) , ∀ (V, 𝑞) ∈ (𝑉,𝑀) .

(13)

The following existence, uniqueness, and regularity
results concerning the solution (𝑢, 𝑝) to the problem (13) are
classical [32–34].
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Theorem 1. Assuming that 𝜇 and 𝑓 satisfy the following
uniqueness condition:

2𝜇

−2
𝑁









𝑓









< 1,
(14)

then the problem (13) exists a unique solution (𝑢, 𝑝) ∈ (𝑉,𝑀)

satisfying

‖𝑢‖

𝑉
≤

1

𝜇









𝑓









<

𝜇

2𝑁

. (15)

Furthermore, if 𝜕Ω is of class 𝐶2, then the solution (𝑢, 𝑝) to the
problem (13) satisfies the following regularity property:

‖𝑢‖2
+









𝑝







1
≤ 𝑐









𝑓









. (16)

3. Stabilized Finite Element Approximation

Let T
ℎ
be a family of quasiuniform triangular partitions of

Ω into triangles. The corresponding ordered triangles are
denoted by 𝐾

1
, 𝐾

2
, . . . , 𝐾

𝑛
. Let ℎ

𝑖
= diam(𝐾

𝑖
), 𝑖 = 1, . . . , 𝑛,

and ℎ = max{ℎ
1
, ℎ

2
, . . . , ℎ

𝑛
}. For every 𝐾 ∈ T

ℎ
, let 𝑃

𝑟
(𝐾)

denote the space of the polynomials on 𝐾 of degree at most
𝑟. Consider the conforming finite element spaces 𝑉

ℎ
and𝑀

ℎ

given by

𝑉

ℎ
= {V
ℎ
∈ 𝐶(Ω)

2

∩ 𝑉, V
ℎ
|

𝐾
∈ [𝑃

1
(𝐾)]

2

, ∀𝐾 ∈ T
ℎ
} ,

𝑀

ℎ
= {𝑞

ℎ
∈ 𝐶 (Ω) ∩𝑀, 𝑞

ℎ
|

𝐾
∈ 𝑃

1
(𝐾) , ∀𝐾 ∈ T

ℎ
} .

(17)

Then the Brezzi-Pitkäranta stabilized finite element approxi-
mation of (11) is as follows: find 𝑢

ℎ
∈ 𝑉

ℎ
and 𝑝

ℎ
∈ 𝑀

ℎ
such

that for all (V
ℎ
, 𝑞

ℎ
) ∈ (𝑉

ℎ
,𝑀

ℎ
)

𝑎 (𝑢

ℎ
, V
ℎ
) + 𝑏 (𝑢

ℎ
, 𝑢

ℎ
, V
ℎ
) − 𝑑 (V

ℎ
, 𝑝

ℎ
) = (𝑓, V

ℎ
) ,

𝑑 (𝑢

ℎ
, 𝑞

ℎ
) + 𝐶

ℎ
(𝑝

ℎ
, 𝑞

ℎ
) = 0,

(18)

where the stabilized term is defined by

𝐶

ℎ
(𝑝

ℎ
, 𝑞

ℎ
) = 𝛼

𝑛

∑

𝑖=1

ℎ

2

𝑖
∫

𝐾𝑖

∇𝑝

ℎ
⋅ ∇𝑞

ℎ
𝑑𝑥, ∀𝑝

ℎ
, 𝑞

ℎ
∈ 𝑀

ℎ (19)

with some positive constant 𝛼 > 0. Define a mesh-dependent
norm [⋅]

ℎ
on𝑀
ℎ
by

[𝑞

ℎ
]

2

ℎ
=

1

𝛼

𝐶

ℎ
(𝑞

ℎ
, 𝑞

ℎ
) , ∀𝑞

ℎ
∈ 𝑀

ℎ
.

(20)

Then, it holds that 𝐶
ℎ
(𝑝

ℎ
, 𝑞

ℎ
) ≤ 𝛼[𝑝

ℎ
]

ℎ
[𝑞

ℎ
]

ℎ
for all 𝑝

ℎ
, 𝑞

ℎ
∈

𝑀

ℎ
and

𝑑 (V, 𝑞
ℎ
) ≤

𝑐

ℎ

‖V‖ [𝑞
ℎ
]

ℎ
, ∀V ∈ 𝑉, 𝑞

ℎ
∈ 𝑀

ℎ
, (21)

which has been shown by Latché and Vola [35]. Moreover,
𝐶

ℎ
(𝑝, 𝑞) also is defined for any couple of functions 𝑝, 𝑞 ∈

𝐻

1
(Ω) and satisfies

[𝑞]

ℎ
≤ 𝑐ℎ









𝑞







1
, ∀𝑞 ∈ 𝐻

1
(Ω) .

(22)

Introduce another generalized bilinear form B
ℎ
(⋅, ⋅; ⋅, ⋅)

on (𝑉
ℎ
,𝑀

ℎ
) × (𝑉

ℎ
,𝑀

ℎ
) defined by

B
ℎ
(𝑢

ℎ
, 𝑝

ℎ
; V
ℎ
, 𝑞

ℎ
) = B (𝑢

ℎ
, 𝑝

ℎ
; V
ℎ
, 𝑞

ℎ
) + 𝐶

ℎ
(𝑝

ℎ
, 𝑞

ℎ
) . (23)

Then the discrete problem (18) can be rewritten as follows:

B
ℎ
(𝑢

ℎ
, 𝑝

ℎ
; V
ℎ
, 𝑞

ℎ
) + 𝑏 (𝑢

ℎ
, 𝑢

ℎ
, V
ℎ
) = (𝑓, V

ℎ
) . (24)

Denote by 𝐼
ℎ
: 𝐻

2
(Ω)

2
∩𝑉 → 𝑉

ℎ
and 𝐽
ℎ
: 𝐻

1
(Ω)∩𝑀 →

𝑀

ℎ
the standard interpolation operators satisfying









V − 𝐼
ℎ
V




+ ℎ









V − 𝐼
ℎ
V


𝑉
≤ 𝑐ℎ

2
‖V‖2, ∀V ∈ 𝐻2(Ω)2 ∩ 𝑉,









𝑞 − 𝐽

ℎ
𝑞









≤ 𝑐ℎ









𝑞







1
, ∀𝑞 ∈ 𝐻

1
(Ω) ∩𝑀.

(25)

Moreover, we suppose that the inverse inequalities hold:









∇𝑞

ℎ







𝐾𝑖
≤ 𝑐ℎ

−1

𝑖









𝑞

ℎ







𝐾𝑖
,









∇𝑞

ℎ









≤ 𝑐ℎ

−1 






𝑞

ℎ









. (26)

First, we recall the following stable theorem [9].

Theorem 2. For any 𝛼 > 0, there exist two positive constants
𝛽

1
and 𝛽

2
independent of ℎ such thatB

ℎ
(⋅, ⋅; ⋅, ⋅) on (𝑉

ℎ
,𝑀

ℎ
) ×

(𝑉

ℎ
,𝑀

ℎ
) satisfies the following continuous property:

B
ℎ
(𝑤

ℎ
, 𝑟

ℎ
; V
ℎ
, 𝑞

ℎ
) ≤ 𝛽

1
(









𝑤

ℎ







𝑉
+









𝑟

ℎ









) (









V
ℎ







𝑉
+









𝑞

ℎ









) (27)

and the weakly coercive property:

𝛽

2
(









𝑤

ℎ







𝑉
+









𝑟

ℎ









) ≤ sup
(

Vℎ ,𝑞ℎ)∈(𝑉ℎ ,𝑀ℎ)

B
ℎ
(𝑤

ℎ
, 𝑟

ℎ
; V
ℎ
, 𝑞

ℎ
)









V
ℎ







𝑉
+









𝑞

ℎ









. (28)

A direct result of Theorem 2 is that the problem (24)
exists a unique solution. In order to derive the error estimate
between (𝑢, 𝑝) and (𝑢

ℎ
, 𝑝

ℎ
), we introduce the following

Galerkin projection operator (𝑅
ℎ
, 𝑄

ℎ
) : (𝑉,𝑀) → (𝑉

ℎ
,𝑀

ℎ
)

defined by

B
ℎ
(𝑅

ℎ
𝑤,𝑄

ℎ
𝑟; 𝑤

ℎ
, 𝑟

ℎ
) = B (𝑤, 𝑟; 𝑤

ℎ
, 𝑟

ℎ
) (29)

for each (𝑤, 𝑟) ∈ (𝑉,𝑀) and all (𝑤
ℎ
, 𝑟

ℎ
) ∈ (𝑉

ℎ
,𝑀

ℎ
).

According to Theorem 2, it is easy to check that (𝑅
ℎ
𝑤,𝑄

ℎ
𝑟)

is well defined. Moreover, there holds

B
ℎ
(𝑅

ℎ
𝑤,𝑄

ℎ
𝑟; 𝑤

ℎ
, 𝑟

ℎ
) = B

ℎ
(𝑤, 𝑟; 𝑤

ℎ
, 𝑟

ℎ
) − 𝐶

ℎ
(𝑟, 𝑟

ℎ
) .

(30)

About the Galerkin projection operator (𝑅

ℎ
, 𝑄

ℎ
), the

following approximation property has been derived in [9].

Theorem 3. For any 𝑤 ∈ 𝐻

2
(Ω)

2
∩ 𝑉 and 𝑟 ∈ 𝐻

1
(Ω) ∩ 𝑀,

there holds








𝑤 − 𝑅

ℎ
𝑤









+ ℎ









𝑤 − 𝑅

ℎ
𝑤







𝑉
+ ℎ









𝑟 − 𝑄

ℎ
𝑟









+ ℎ[𝑟 − 𝑄

ℎ
𝑟]

ℎ
≤ 𝑐ℎ

2
(‖𝑤‖2

+ ‖𝑟‖1
) .

(31)

Next, we begin to show the error estimate for the one-level
finite element approximation solution (𝑢

ℎ
, 𝑝

ℎ
).
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Theorem 4. Suppose that the uniqueness condition (14) holds.
If (𝑢, 𝑝) ∈ 𝐻2(Ω)2∩𝑉×𝐻1(Ω)∩𝑀 and (𝑢

ℎ
, 𝑝

ℎ
) ∈ (𝑉

ℎ
,𝑀

ℎ
) are

the solutions of (13) and (24), respectively, then, for any 𝛼 > 0,
the following optimal error estimate holds:









𝑢 − 𝑢

ℎ







𝑉
+









𝑝 − 𝑝

ℎ









+ [𝑝 − 𝑝

ℎ
]

ℎ
≤ 𝑐ℎ. (32)

Proof. First, we estimate ‖𝑢
ℎ
‖

𝑉
. Setting V

ℎ
= 𝑢

ℎ
and 𝑞

ℎ
= 𝑝

ℎ

in (24), using (7) and Young inequality, we obtain

𝜇









𝑢

ℎ









2

𝑉
≤ (𝑓, 𝑢

ℎ
) ≤

𝜇

2









𝑢

ℎ









2

𝑉
+

1

2𝜇









𝑓









2

. (33)

Then under the uniqueness condition (14), 𝑢
ℎ
satisfies









𝑢

ℎ







𝑉
≤

1

𝜇









𝑓









<

𝜇

2𝑁

. (34)

It follows from (30) that

𝜇









𝑢

ℎ
− 𝑅

ℎ
𝑢









2

𝑉
+ 𝛼[𝑝

ℎ
− 𝑄

ℎ
𝑝]

2

ℎ

= B
ℎ
(𝑢

ℎ
− 𝑅

ℎ
𝑢, 𝑝

ℎ
− 𝑄

ℎ
𝑝; 𝑢

ℎ
− 𝑅

ℎ
𝑢, 𝑝

ℎ
− 𝑄

ℎ
𝑝)

= B
ℎ
(𝑢

ℎ
− 𝑢, 𝑝

ℎ
− 𝑝; 𝑢

ℎ
− 𝑅

ℎ
𝑢, 𝑝

ℎ
− 𝑄

ℎ
𝑝)

+B
ℎ
(𝑢 − 𝑅

ℎ
𝑢, 𝑝 − 𝑄

ℎ
𝑝; 𝑢

ℎ
− 𝑅

ℎ
𝑢, 𝑝

ℎ
− 𝑄

ℎ
𝑝)

= 𝑏 (𝑢, 𝑢, 𝑢

ℎ
− 𝑅

ℎ
𝑢) − 𝑏 (𝑢

ℎ
, 𝑢

ℎ
, 𝑢

ℎ
− 𝑅

ℎ
𝑢) .

(35)

According to (7), (15), (34), and Young inequality, we get

𝑏 (𝑢, 𝑢, 𝑢

ℎ
− 𝑅

ℎ
𝑢) − 𝑏 (𝑢

ℎ
, 𝑢

ℎ
, 𝑢

ℎ
− 𝑅

ℎ
𝑢)

= 𝑏 (𝑢 − 𝑢

ℎ
, 𝑢, 𝑢

ℎ
− 𝑅

ℎ
𝑢) + 𝑏 (𝑢

ℎ
, 𝑢 − 𝑢

ℎ
, 𝑢

ℎ
− 𝑅

ℎ
𝑢)

= 𝑏 (𝑢 − 𝑅

ℎ
𝑢, 𝑢, 𝑢

ℎ
− 𝑅

ℎ
𝑢) + 𝑏 (𝑅

ℎ
𝑢 − 𝑢

ℎ
, 𝑢, 𝑢

ℎ
− 𝑅

ℎ
𝑢)

+ 𝑏 (𝑢

ℎ
, 𝑢 − 𝑅

ℎ
𝑢, 𝑢

ℎ
− 𝑅

ℎ
𝑢)

≤ 𝑁 (‖𝑢‖𝑉
+









𝑢

ℎ







𝑉
)









𝑢 − 𝑅

ℎ
𝑢







𝑉









𝑢

ℎ
− 𝑅

ℎ
𝑢







𝑉

+ 𝑁‖𝑢‖𝑉









𝑢

ℎ
− 𝑅

ℎ
𝑢









2

𝑉

≤ 𝜇









𝑢 − 𝑅

ℎ
𝑢







𝑉









𝑢

ℎ
− 𝑅

ℎ
𝑢







𝑉
+

𝜇

2









𝑢

ℎ
− 𝑅

ℎ
𝑢









2

𝑉

≤

𝜇

2









𝑢

ℎ
− 𝑅

ℎ
𝑢









2

𝑉
+

𝜇

4









𝑢

ℎ
− 𝑅

ℎ
𝑢









2

𝑉
+ 𝜇









𝑢 − 𝑅

ℎ
𝑢









2

𝑉
.

(36)

Thus, from (31) we obtain









𝑢 − 𝑢

ℎ







𝑉
≤









𝑢 − 𝑅

ℎ
𝑢







𝑉
+









𝑢

ℎ
− 𝑅

ℎ
𝑢







𝑉

≤ 3









𝑢 − 𝑅

ℎ
𝑢







𝑉
≤ 𝑐ℎ.

(37)

Next, we estimate ‖𝑝
ℎ
−𝑄

ℎ
𝑝‖. It follows from (15), (28), (34),

and (37) that
𝛽

2









𝑝

ℎ
− 𝑄

ℎ
𝑝









≤ sup
(

Vℎ,𝑞ℎ)∈(𝑉ℎ ,𝑀ℎ)

B
ℎ
(𝑢

ℎ
− 𝑅

ℎ
𝑢, 𝑝

ℎ
− 𝑄

ℎ
𝑝; V
ℎ
, 𝑞

ℎ
)









V
ℎ







𝑉
+









𝑞

ℎ









= sup
(

Vℎ,𝑞ℎ)∈(𝑉ℎ ,𝑀ℎ)

( (B
ℎ
(𝑢

ℎ
− 𝑢, 𝑝

ℎ
− 𝑝; V

ℎ
, 𝑞

ℎ
)

+B
ℎ
(𝑢 − 𝑅

ℎ
𝑢, 𝑝 − 𝑄

ℎ
𝑝; V
ℎ
, 𝑞

ℎ
) )

×(









V
ℎ







𝑉
+









𝑞

ℎ









)

−1

)

= sup
(

Vℎ,𝑞ℎ)∈(𝑉ℎ ,𝑀ℎ)

𝑏 (𝑢, 𝑢, V
ℎ
) − 𝑏 (𝑢

ℎ
, 𝑢

ℎ
, V
ℎ
)









V
ℎ







𝑉
+









𝑞

ℎ









= sup
(

Vℎ,𝑞ℎ)∈(𝑉ℎ ,𝑀ℎ)

𝑏 (𝑢 − 𝑢

ℎ
, 𝑢, V
ℎ
) + 𝑏 (𝑢

ℎ
, 𝑢 − 𝑢

ℎ
, V
ℎ
)









V
ℎ







𝑉
+









𝑞

ℎ









≤ 𝜇









𝑢 − 𝑢

ℎ







𝑉
.

(38)

Moreover,
[𝑝 − 𝑝

ℎ
]

ℎ
≤ [𝑝 − 𝑄

ℎ
𝑝]

ℎ
+ [𝑝

ℎ
− 𝑄

ℎ
𝑝]

ℎ

≤ [𝑝 − 𝑄

ℎ
𝑝]

ℎ
+ 𝑐









𝑢 − 𝑅

ℎ
𝑢







𝑉
≤ 𝑐ℎ.

(39)

Next, we give the 𝐿2 error estimate ‖𝑢 − 𝑢

ℎ
‖ by Aubin-

Nitsche technique. This error analysis is based on the regu-
larity assumption that the following linearized problem (40)
is (𝐻2(Ω)2, 𝐻1(Ω)) regular. Given 𝑧 ∈ 𝐿

2
(Ω)

2, find (𝑤, 𝜋) ∈
(𝑉,𝑀) such that for all (V, 𝑞) ∈ (𝑉,𝑀)

𝑎 (𝑤, V) + 𝑏 (𝑢, V, 𝑤) + 𝑏 (V, 𝑢, 𝑤) − 𝑑 (V, 𝜋) = (𝑧, V) ,

𝑑 (𝑤, 𝑞) = 0.

(40)

According to (7) and (15), it is easy to verify that the problem
(40) exists a unique solution (𝑤, 𝜋) ∈ (𝑉,𝑀).The assumption
that (40) is (𝐻2(Ω)2, 𝐻1(Ω)) regular means that (𝑤, 𝜋) also
belongs to (𝐻2(Ω)2, 𝐻1(Ω)) and the following estimate holds:

‖𝑤‖

2
+ ‖𝜋‖1

≤ 𝑐 ‖𝑧‖ . (41)

Under the above assumption, we prove the following theo-
rem.

Theorem 5. Suppose that the uniqueness condition (14) holds.
If (𝑢, 𝑝) ∈ (𝐻2(Ω)2 ∩ 𝑉,𝐻1(Ω) ∩𝑀) and (𝑢

ℎ
, 𝑝

ℎ
) ∈ (𝑉

ℎ
,𝑀

ℎ
)

are the solutions of (13) and (24), respectively, then, for any
𝛼 > 0, the following optimal 𝐿2 error estimate holds:









𝑢 − 𝑢

ℎ









≤ 𝑐ℎ

2
.

(42)

Proof. Setting 𝑧 = V = 𝑢 − 𝑢

ℎ
in the first equation of (40), it

yields








𝑢 − 𝑢

ℎ









2

= 𝑎 (𝑤, 𝑢 − 𝑢

ℎ
) + 𝑏 (𝑢, 𝑢 − 𝑢

ℎ
, 𝑤)

+ 𝑏 (𝑢 − 𝑢

ℎ
, 𝑢, 𝑤) − 𝑑 (𝑢 − 𝑢

ℎ
, 𝜋) .

(43)
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Subtracting (11) from (18) yields

𝑎 (𝑢 − 𝑢

ℎ
, V
ℎ
) + 𝑏 (𝑢, 𝑢, V

ℎ
) − 𝑏 (𝑢

ℎ
, 𝑢

ℎ
, V
ℎ
)

− 𝑑 (V
ℎ
, 𝑝 − 𝑝

ℎ
) = 0, ∀V

ℎ
∈ 𝑉

ℎ
,

𝑑 (𝑢 − 𝑢

ℎ
, 𝑞

ℎ
) − 𝐶

ℎ
(𝑝

ℎ
, 𝑞

ℎ
) = 0, ∀𝑞

ℎ
∈ 𝑀

ℎ
.

(44)

Taking V
ℎ
= 𝑅

ℎ
𝑤 and 𝑞

ℎ
= 𝑄

ℎ
𝜋 in (44) and combining them

with (43), we obtain








𝑢 − 𝑢

ℎ









2

= 𝑎 (𝑤 − 𝑅

ℎ
𝑤, 𝑢 − 𝑢

ℎ
) + 𝑏 (𝑢, 𝑢 − 𝑢

ℎ
, 𝑤)

+ 𝑏 (𝑢 − 𝑢

ℎ
, 𝑢, 𝑤) + 𝑏 (𝑢

ℎ
, 𝑢

ℎ
, 𝑅

ℎ
𝑤)

− 𝑏 (𝑢, 𝑢, 𝑅

ℎ
𝑤) + 𝑑 (𝑅

ℎ
𝑤 − 𝑤, 𝑝 − 𝑝

ℎ
)

− 𝑑 (𝑢 − 𝑢

ℎ
, 𝜋 − 𝑄

ℎ
𝜋) − 𝐶

ℎ
(𝑝

ℎ
, 𝑄

ℎ
𝜋)

= 𝐼

1
+ ⋅ ⋅ ⋅ + 𝐼

4
.

(45)

Using (31), (32), and (41), 𝐼
1
is estimated by

𝐼

1
= 𝑎 (𝑤 − 𝑅

ℎ
𝑤, 𝑢 − 𝑢

ℎ
) ≤ 𝜇









𝑢 − 𝑢

ℎ







𝑉









𝑤 − 𝑅

ℎ
𝑤







𝑉

≤ 𝑐ℎ

2
(‖𝑤‖2

+ ‖𝜋‖1
) ≤ 𝑐ℎ

2 






𝑢 − 𝑢

ℎ









.

(46)

Similarly, 𝐼
3
is estimated by

𝐼

3
= 𝑑 (𝑅

ℎ
𝑤 − 𝑤, 𝑝 − 𝑝

ℎ
) − 𝑑 (𝑢 − 𝑢

ℎ
, 𝜋 − 𝑄

ℎ
𝜋)

≤









𝑅

ℎ
𝑤 − 𝑤







𝑉









𝑝 − 𝑝

ℎ









+









𝑢 − 𝑢

ℎ







𝑉









𝜋 − 𝑄

ℎ
𝜋









≤ 𝑐ℎ

2
(‖𝑤‖2

+ ‖𝜋‖1
) ≤ 𝑐ℎ

2 






𝑢 − 𝑢

ℎ









.

(47)

About 𝐼
2
, we rewrite it as

𝐼

2
= 𝑏 (𝑢, 𝑢 − 𝑢

ℎ
, 𝑤) + 𝑏 (𝑢 − 𝑢

ℎ
, 𝑢, 𝑤)

+ 𝑏 (𝑢

ℎ
, 𝑢

ℎ
, 𝑅

ℎ
𝑤) − 𝑏 (𝑢, 𝑢, 𝑅

ℎ
𝑤)

= 𝑏 (𝑢 − 𝑢

ℎ
, 𝑢 − 𝑢

ℎ
, 𝑤) + 𝑏 (𝑢 − 𝑢

ℎ
, 𝑢, 𝑤 − 𝑅

ℎ
𝑤)

+ 𝑏 (𝑢, 𝑢 − 𝑢

ℎ
, 𝑤 − 𝑅

ℎ
𝑤)

+ 𝑏 (𝑢 − 𝑢

ℎ
, 𝑢 − 𝑢

ℎ
, 𝑅

ℎ
𝑤 − 𝑤) .

(48)

Then it follows from (8), (15), (31), (32), and (41) that

𝐼

2
≤ 𝑁









𝑢 − 𝑢

ℎ









2

𝑉
(‖𝑤‖2

+









𝑤 − 𝑅

ℎ
𝑤







𝑉
)

+ 𝑁‖𝑢‖𝑉









𝑢 − 𝑢

ℎ







𝑉









𝑤 − 𝑅

ℎ
𝑤







𝑉

≤ 𝑐ℎ

2
‖𝑤‖2

≤ 𝑐ℎ

2 






𝑢 − 𝑢

ℎ









.

(49)

Finally, using (22), (31), (32), and (41) we estimate 𝐼
4
by

𝐼

4
= −𝐶

ℎ
(𝑝

ℎ
, 𝑄

ℎ
𝜋) = 𝐶

ℎ
(𝑝 − 𝑝

ℎ
, 𝑄

ℎ
𝜋 − 𝜋) + 𝐶

ℎ
(𝑝 − 𝑝

ℎ
, 𝜋)

+ 𝐶

ℎ
(𝑝, 𝜋 − 𝑄

ℎ
𝜋) − 𝐶

ℎ
(𝑝, 𝜋) ≤ [𝑝 − 𝑝

ℎ
]

ℎ
[𝑄

ℎ
𝜋 − 𝜋]

ℎ

+ [𝑝 − 𝑝

ℎ
]

ℎ
[𝜋]ℎ

+ [𝑝]

ℎ
[𝜋 − 𝑄

ℎ
𝜋]

ℎ
+ [𝑝]

ℎ
[𝜋]ℎ

≤ 𝑐ℎ

2
(‖𝑤‖2

+ ‖𝜋‖1
) ≤ 𝑐ℎ

2 






𝑢 − 𝑢

ℎ









.

(50)

Combining these estimates for 𝐼
1
to 𝐼
4
with (45), we complete

the proof of (42).

4. Two-Level Brezzi-Pitkäranta
Stabilized Methods

In this section, the two-level Brezzi-Pitkäranta stabilized
finite element methods for (13) are proposed in terms of
Oseen/Stokes/Newton iteration method. From now on, 𝐻
and ℎ with ℎ < 𝐻 < 1 are two real positive parameters. The
coarse mesh triangulation T

𝐻
is made as like in Section 3.

And a fine mesh triangulation T
ℎ
is generated by a mesh

refinement process to T
𝐻
. The conforming finite element

space pairs (𝑉
ℎ
,𝑀

ℎ
) and (𝑉

𝐻
,𝑀

𝐻
) ⊂ (𝑉

ℎ
,𝑀

ℎ
) corresponding

to the triangulations T
ℎ
and T

𝐻
, respectively, are con-

structed as like in Section 3. With the above notations, we
propose the following two-level Brezzi-Pitkäranta stabilized
finite element methods in the next subsections.

4.1. Two-Level Oseen Iteration Method

Step I. We solve (24) on the coarse mesh; that is, find
(𝑢

𝐻
, 𝑝

𝐻
) ∈ (𝑉

𝐻
,𝑀

𝐻
) such that for all (V

𝐻
, 𝑞

𝐻
) ∈ (𝑉

𝐻
,𝑀

𝐻
)

B
𝐻
(𝑢

𝐻
, 𝑝

𝐻
; V
𝐻
, 𝑞

𝐻
) + 𝑏 (𝑢

𝐻
, 𝑢

𝐻
, V
𝐻
) = (𝑓, V

𝐻
) . (51)

Step II.Wesolve a discreteOseen problemaccording toOseen
iteration on the fine mesh; that is, find (𝑢

ℎ
, 𝑝

ℎ
) ∈ (𝑉

ℎ
,𝑀

ℎ
)

such that for all (V
ℎ
, 𝑞

ℎ
) ∈ (𝑉

ℎ
,𝑀

ℎ
)

B
ℎ
(𝑢

ℎ
, 𝑝

ℎ
; V
ℎ
, 𝑞

ℎ
) + 𝑏 (𝑢

𝐻
, 𝑢

ℎ
, V
ℎ
) = (𝑓, V

ℎ
) . (52)

First, we discuss the existence and uniqueness of the
solution to the problem (52) under the uniqueness condition
(14). In view of Theorem 2, the problem (51) exists a unique
solution (𝑢

𝐻
, 𝑝

𝐻
) ∈ (𝑉

𝐻
,𝑀

𝐻
) with









𝑢

𝐻







𝑉
≤

1

𝜇









𝑓









<

𝜇

2𝑁

. (53)

Moreover, it follows fromTheorems 4 and 5 that









𝑢 − 𝑢

𝐻









+ 𝐻









𝑢 − 𝑢

𝐻







𝑉
+ 𝐻









𝑝 − 𝑝

𝐻









≤ 𝑐𝐻

2
.

(54)

On the other hand, setting V
ℎ
= 𝑢

ℎ and 𝑞

ℎ
= 𝑝

ℎ in (52), it
yields

B
ℎ
(𝑢

ℎ
, 𝑝

ℎ
; 𝑢

ℎ
, 𝑝

ℎ
) + 𝑏 (𝑢

𝐻
, 𝑢

ℎ
, 𝑢

ℎ
) = 𝜇











𝑢

ℎ








2

𝑉
+ [𝑝

ℎ
]

2

ℎ
.

(55)

Then it is easy to show that the problem (52) also exists a
unique solution (𝑢ℎ, 𝑝ℎ) ∈ (𝑉

ℎ
,𝑀

ℎ
) such that











𝑢

ℎ






𝑉
≤

1

𝜇









𝑓









<

𝜇

2𝑁

. (56)

Next, we give the error estimate for the two-level Oseen
iteration method.
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Theorem 6. Suppose that the uniqueness condition (14) holds.
If (𝑢, 𝑝) ∈ (𝐻2(Ω)2 ∩ 𝑉,𝐻1(Ω) ∩𝑀) and (𝑢ℎ, 𝑝ℎ) ∈ (𝑉

ℎ
,𝑀

ℎ
)

are the solutions of (13) and (52), respectively, then there holds











𝑢 − 𝑢

ℎ






𝑉
+











𝑝 − 𝑝

ℎ








≤ 𝑐 (ℎ + 𝐻

2
) . (57)

Proof. In terms of the definitionB
ℎ
(⋅, ⋅; ⋅, ⋅) and (30), we get

𝜇











𝑢

ℎ
− 𝑅

ℎ
𝑢











2

𝑉
+ [𝑝

ℎ
− 𝑄

ℎ
𝑝]

2

ℎ

= B
ℎ
(𝑢

ℎ
− 𝑅

ℎ
𝑢, 𝑝

ℎ
− 𝑄

ℎ
𝑝; 𝑢

ℎ
− 𝑅

ℎ
𝑢, 𝑝

ℎ
− 𝑄

ℎ
𝑝)

= B
ℎ
(𝑢

ℎ
− 𝑢, 𝑝

ℎ
− 𝑝; 𝑢

ℎ
− 𝑅

ℎ
𝑢, 𝑝

ℎ
− 𝑄

ℎ
𝑝)

+B
ℎ
(𝑢 − 𝑅

ℎ
𝑢, 𝑝 − 𝑄

ℎ
𝑝; 𝑢

ℎ
− 𝑅

ℎ
𝑢, 𝑝

ℎ
− 𝑄

ℎ
𝑝)

= 𝑏 (𝑢, 𝑢, 𝑢

ℎ
− 𝑅

ℎ
𝑢) − 𝑏 (𝑢

𝐻
, 𝑢

ℎ
, 𝑢

ℎ
− 𝑅

ℎ
𝑢) .

(58)

We rewrite 𝑏(𝑢, 𝑢, 𝑢ℎ − 𝑅
ℎ
𝑢) − 𝑏(𝑢

𝐻
, 𝑢

ℎ
, 𝑢

ℎ
− 𝑅

ℎ
𝑢) as

𝑏 (𝑢, 𝑢, 𝑢

ℎ
− 𝑅

ℎ
𝑢) − 𝑏 (𝑢

𝐻
, 𝑢

ℎ
, 𝑢

ℎ
− 𝑅

ℎ
𝑢)

= 𝑏 (𝑢 − 𝑢

𝐻
, 𝑢, 𝑢

ℎ
− 𝑅

ℎ
𝑢) − 𝑏 (𝑢

𝐻
, 𝑢

ℎ
− 𝑢, 𝑢

ℎ
− 𝑅

ℎ
𝑢)

= 𝑏 (𝑢 − 𝑢

𝐻
, 𝑢, 𝑢

ℎ
− 𝑅

ℎ
𝑢) − 𝑏 (𝑢

𝐻
, 𝑅

ℎ
𝑢 − 𝑢, 𝑢

ℎ
− 𝑅

ℎ
𝑢) .

(59)

Then using (8), (10), and (53), we obtain

𝑏 (𝑢, 𝑢, 𝑢

ℎ
− 𝑅

ℎ
𝑢) − 𝑏 (𝑢

𝐻
, 𝑢

ℎ
, 𝑢

ℎ
− 𝑅

ℎ
𝑢)

≤ 𝑁‖𝑢‖2











𝑢

ℎ
− 𝑅

ℎ
𝑢









𝑉









𝑢 − 𝑢

𝐻









+ 𝑁









𝑢

𝐻







𝑉









𝑅

ℎ
𝑢 − 𝑢







𝑉











𝑢

ℎ
− 𝑅

ℎ
𝑢









𝑉

≤

𝜇

2











𝑢

ℎ
− 𝑅

ℎ
𝑢











2

𝑉
+

𝑁

2

𝜇

‖𝑢‖

2

2









𝑢 − 𝑢

𝐻









2

+

𝜇

4









𝑅

ℎ
𝑢 − 𝑢









2

𝑉
.

(60)

Thus, there holds











𝑢

ℎ
− 𝑅

ℎ
𝑢









𝑉
≤ 𝑐 (









𝑢 − 𝑢

𝐻









+









𝑅

ℎ
𝑢 − 𝑢







𝑉
) ≤ 𝑐 (ℎ + 𝐻

2
) ,

(61)

where we use (31) and (54). A direct consequence of the above
estimate is











𝑢 − 𝑢

ℎ






𝑉
≤ 𝑐 (ℎ + 𝐻

2
) . (62)

From (28), (30), (54), and (62), we have

𝛽

2











𝑝

ℎ
− 𝑄

ℎ
𝑝











≤ sup
(

Vℎ ,𝑞ℎ)∈(𝑉ℎ ,𝑀ℎ)

B
ℎ
(𝑢

ℎ
− 𝑅

ℎ
𝑢, 𝑝

ℎ
− 𝑄

ℎ
𝑝; V
ℎ
, 𝑞

ℎ
)









V
ℎ







𝑉
+









𝑞

ℎ









= sup
(Vℎ ,𝑞ℎ)∈(𝑉ℎ ,𝑀ℎ)

((B
ℎ
(𝑢

ℎ
− 𝑢, 𝑝

ℎ
− 𝑝; V

ℎ
, 𝑞

ℎ
)

+B
ℎ
(𝑢 − 𝑅

ℎ
𝑢, 𝑝 − 𝑄

ℎ
𝑝; V
ℎ
, 𝑞

ℎ
) )

×(









V
ℎ







𝑉
+









𝑞

ℎ









)

−1

)

= sup
(

Vℎ ,𝑞ℎ)∈(𝑉ℎ ,𝑀ℎ)

𝑏 (𝑢, 𝑢, V
ℎ
) − 𝑏 (𝑢

𝐻
, 𝑢

ℎ
, V
ℎ
)









V
ℎ







𝑉
+









𝑞

ℎ









= sup
(

Vℎ ,𝑞ℎ)∈(𝑉ℎ ,𝑀ℎ)

𝑏 (𝑢 − 𝑢

𝐻
, 𝑢, V
ℎ
) + 𝑏 (𝑢

𝐻
, 𝑢 − 𝑢

ℎ
, V
ℎ
)









V
ℎ







𝑉
+









𝑞

ℎ









≤ 𝑐 (









𝑢 − 𝑢

𝐻









+











𝑢 − 𝑢

ℎ






𝑉
) ≤ 𝑐 (ℎ + 𝐻

2
) ,

(63)

which together with (31) yields











𝑝 − 𝑝

ℎ








≤ 𝑐 (ℎ + 𝐻

2
) . (64)

4.2. Two-Level Stokes Iteration Method

Step I. We solve (24) on the coarse mesh; that is, find
(𝑢

𝐻
, 𝑝

𝐻
) ∈ (𝑉

𝐻
,𝑀

𝐻
) such that for all (V

𝐻
, 𝑞

𝐻
) ∈ (𝑉

𝐻
,𝑀

𝐻
)

B
𝐻
(𝑢

𝐻
, 𝑝

𝐻
; V
𝐻
, 𝑞

𝐻
) + 𝑏 (𝑢

𝐻
, 𝑢

𝐻
, V
𝐻
) = (𝑓, V

𝐻
) . (65)

Step II. We solve a discrete Stokes problem according to
Stokes iteration on the fine mesh; that is, find (𝑢

ℎ
, 𝑝

ℎ
) ∈

(𝑉

ℎ
,𝑀

ℎ
) such that for all (V

ℎ
, 𝑞

ℎ
) ∈ (𝑉

ℎ
,𝑀

ℎ
)

B
ℎ
(𝑢

ℎ
, 𝑝

ℎ
; V
ℎ
, 𝑞

ℎ
) + 𝑏 (𝑢

𝐻
, 𝑢

𝐻
, V
ℎ
) = (𝑓, V

ℎ
) . (66)

In this subsection, we assume that the following unique-
ness conditions hold:

3𝜇

−2
𝑁









𝑓









< 1.
(67)

Proceeding the argument as in Section 4.1, the problem (65)
exists a unique solution (𝑢

𝐻
, 𝑝

𝐻
) ∈ (𝑉

𝐻
,𝑀

𝐻
) and 𝑢

𝐻
satisfies

‖𝑢

𝐻
‖

𝑉
≤ (1/𝜇)‖𝑓‖ < 𝜇/3𝑁. According to the definition
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of B
ℎ
(⋅, ⋅; ⋅, ⋅), the discrete Stokes problem (66) also exists a

unique solution (𝑢ℎ, 𝑝ℎ) ∈ (𝑉
ℎ
,𝑀

ℎ
). Moreover, 𝑢ℎ satisfies











𝑢

ℎ






𝑉
≤

1

𝜇









𝑓









+

𝑁

𝜇









𝑢

𝐻









2

𝑉

≤

1

𝜇









𝑓









+

1

3









𝑢

𝐻







𝑉

≤

4

3𝜇









𝑓









≤

4𝜇

9𝑁

<

𝜇

2𝑁

.

(68)

Then the error estimate for two-level Stokes iterationmethod
is derived in the following theorem.

Theorem 7. Suppose that the uniqueness condition (67) holds.
If (𝑢, 𝑝) ∈ (𝐻2(Ω)2 ∩ 𝑉,𝐻1(Ω) ∩𝑀) and (𝑢ℎ, 𝑝ℎ) ∈ (𝑉

ℎ
,𝑀

ℎ
)

are the solutions of (13) and (66), respectively, then one has










𝑢 − 𝑢

ℎ






𝑉
+











𝑝 − 𝑝

ℎ








≤ 𝑐 (ℎ + 𝐻

2
) . (69)

Proof. Subtracting (13) from (66), we get

B
ℎ
(𝑢

ℎ
− 𝑢, 𝑝

ℎ
− 𝑝; V

ℎ
, 𝑞

ℎ
)

= 𝑏 (𝑢, 𝑢, V
ℎ
) − 𝑏 (𝑢

𝐻
, 𝑢

𝐻
, V
ℎ
) − 𝐶

ℎ
(𝑝, 𝑞

ℎ
) .

(70)

Then, from (10), (28), (30), and (54), we have

𝛽

2
(











𝑢

ℎ
− 𝑅

ℎ
𝑢









𝑉
+











𝑝

ℎ
− 𝑄

ℎ
𝑝











)

≤ sup
(

Vℎ ,𝑞ℎ)∈(𝑉ℎ,𝑀ℎ)

B
ℎ
(𝑢

ℎ
− 𝑅

ℎ
𝑢, 𝑝

ℎ
− 𝑄

ℎ
𝑝; V
ℎ
, 𝑞

ℎ
)









V
ℎ







𝑉
+









𝑞

ℎ









= sup
(

Vℎ ,𝑞ℎ)∈(𝑉ℎ,𝑀ℎ)

((B
ℎ
(𝑢

ℎ
− 𝑢, 𝑝

ℎ
− 𝑝; V

ℎ
, 𝑞

ℎ
)

+B
ℎ
(𝑢 − 𝑅

ℎ
𝑢, 𝑝 − 𝑄

ℎ
𝑝; V
ℎ
, 𝑞

ℎ
) )

× (









V
ℎ







𝑉
+









𝑞

ℎ









)

−1

)

= sup
(

Vℎ ,𝑞ℎ)∈(𝑉ℎ,𝑀ℎ)

𝑏 (𝑢, 𝑢, V
ℎ
) − 𝑏 (𝑢

𝐻
, 𝑢

𝐻
, V
ℎ
)









V
ℎ







𝑉
+









𝑞

ℎ









= sup
(

Vℎ ,𝑞ℎ)∈(𝑉ℎ,𝑀ℎ)

( (𝑏 (𝑢 − 𝑢

𝐻
, 𝑢, V
ℎ
) + 𝑏 (𝑢, 𝑢 − 𝑢

𝐻
, V
ℎ
)

−𝑏 (𝑢 − 𝑢

𝐻
, 𝑢 − 𝑢

𝐻
, V
ℎ
) )

×(









V
ℎ







𝑉
+









𝑞

ℎ









)

−1

)

≤ 2𝑁‖𝑢‖2









𝑢 − 𝑢

𝐻









+ 𝑁









𝑢 − 𝑢

𝐻









2

𝑉
≤ 𝑐𝐻

2
,

(71)
which together with (31) completes the proof of (69).

4.3. Two-Level Newton Iteration Method

Step I. We solve (24) on the coarse mesh; that is, find
(𝑢

𝐻
, 𝑝

𝐻
) ∈ (𝑉

𝐻
,𝑀

𝐻
) such that for all (V

𝐻
, 𝑞

𝐻
) ∈ (𝑉

𝐻
,𝑀

𝐻
)

B
𝐻
(𝑢

𝐻
, 𝑝

𝐻
; V
𝐻
, 𝑞

𝐻
) + 𝑏 (𝑢

𝐻
, 𝑢

𝐻
, V
𝐻
) = (𝑓, V

𝐻
) . (72)

Step II. We solve discrete linearized Navier-Stokes equations
according to Newton iteration on the fine mesh; that is, find
(𝑢

ℎ
, 𝑝

ℎ
) ∈ (𝑉

ℎ
,𝑀

ℎ
) such that for all (V

ℎ
, 𝑞

ℎ
) ∈ (𝑉

ℎ
,𝑀

ℎ
)

B
ℎ
(𝑢

ℎ
, 𝑝

ℎ
; V
ℎ
, 𝑞

ℎ
) + 𝑏 (𝑢

𝐻
, 𝑢

ℎ
, V
ℎ
) + 𝑏 (𝑢

ℎ
, 𝑢

𝐻
, V
ℎ
)

= (𝑓, V
ℎ
) + 𝑏 (𝑢

𝐻
, 𝑢

𝐻
, V
ℎ
) .

(73)

As in Section 4.2, we modify the uniqueness condition as

4𝜇

−2
𝑁









𝑓









< 1.
(74)

In this case, the solution 𝑢

𝐻
of the problem (72) satisfies

‖𝑢

𝐻
‖

𝑉
≤ (1/𝜇)‖𝑓‖ < 𝜇/4𝑁. Setting V

ℎ
= 𝑢

ℎ and 𝑞

ℎ
= 𝑝

ℎ

in (73), we have

B
ℎ
(𝑢

ℎ
, 𝑝

ℎ
; 𝑢

ℎ
, 𝑝

ℎ
) + 𝑏 (𝑢

ℎ
, 𝑢

𝐻
, 𝑢

ℎ
) + 𝑏 (𝑢

𝐻
, 𝑢

ℎ
, 𝑢

ℎ
)

≥ 𝜇











𝑢

ℎ








2

𝑉
+ [𝑝

ℎ
]

2

ℎ
− 𝑁









𝑢

𝐻







𝑉











𝑢

ℎ








2

𝑉

≥

3𝜇

4











𝑢

ℎ








2

𝑉
+ [𝑝

ℎ
]

2

ℎ
.

(75)

Moreover, we can estimate 𝑢ℎ by











𝑢

ℎ






𝑉
≤

4

3𝜇









𝑓









+

4𝑁

3𝜇









𝑢

𝐻









2

𝑉

≤

4

3𝜇









𝑓









+

1

3









𝑢

𝐻







𝑉

≤

5

3𝜇









𝑓









≤

5𝜇

12𝑁

<

𝜇

2𝑁

.

(76)

The error estimate for two-level Newton iteration method is
derived in the following theorem.

Theorem 8. Suppose that the uniqueness condition (74) holds.
If (𝑢, 𝑝) ∈ (𝐻2(Ω)2 ∩ 𝑉,𝐻1(Ω) ∩𝑀) and (𝑢ℎ, 𝑝ℎ) ∈ (𝑉

ℎ
,𝑀

ℎ
)

are the solutions of (13) and (73), respectively, then one has











𝑢 − 𝑢

ℎ






𝑉
+











𝑝 − 𝑝

ℎ








≤ 𝑐 (ℎ + 𝐻

2
) . (77)

Proof. Proceeding as in the proof of Theorem 7, we have

𝜇











𝑢

ℎ
− 𝑅

ℎ
𝑢











2

𝑉
+ [𝑝

ℎ
− 𝑄

ℎ
𝑝]

2

ℎ

= B
ℎ
(𝑢

ℎ
− 𝑅

ℎ
𝑢, 𝑝

ℎ
− 𝑄

ℎ
𝑝; 𝑢

ℎ
− 𝑅

ℎ
𝑢, 𝑝

ℎ
− 𝑄

ℎ
𝑝)

= B
ℎ
(𝑢

ℎ
− 𝑢, 𝑝

ℎ
− 𝑝; 𝑢

ℎ
− 𝑅

ℎ
𝑢, 𝑝

ℎ
− 𝑄

ℎ
𝑝)

+B
ℎ
(𝑢 − 𝑅

ℎ
𝑢, 𝑝 − 𝑄

ℎ
𝑝; 𝑢

ℎ
− 𝑅

ℎ
𝑢, 𝑝

ℎ
− 𝑄

ℎ
𝑝)

= 𝑏 (𝑢, 𝑢, 𝑢

ℎ
− 𝑅

ℎ
𝑢) − 𝑏 (𝑢

𝐻
, 𝑢

ℎ
, 𝑢

ℎ
− 𝑅

ℎ
𝑢)

− 𝑏 (𝑢

ℎ
, 𝑢

𝐻
, 𝑢

ℎ
− 𝑅

ℎ
𝑢) + 𝑏 (𝑢

𝐻
, 𝑢

𝐻
, 𝑢

ℎ
− 𝑅

ℎ
𝑢) .

(78)
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We rewrite the right-hand side of the above identity as
follows:

𝑏 (𝑢, 𝑢, 𝑢

ℎ
− 𝑅

ℎ
𝑢) − 𝑏 (𝑢

𝐻
, 𝑢

ℎ
, 𝑢

ℎ
− 𝑅

ℎ
𝑢)

− 𝑏 (𝑢

ℎ
, 𝑢

𝐻
, 𝑢

ℎ
− 𝑅

ℎ
𝑢) + 𝑏 (𝑢

𝐻
, 𝑢

𝐻
, 𝑢

ℎ
− 𝑅

ℎ
𝑢)

= 𝑏 (𝑢 − 𝑢

ℎ
, 𝑢, 𝑢

ℎ
− 𝑅

ℎ
𝑢) + 𝑏 (𝑢

ℎ
, 𝑢 − 𝑢

ℎ
, 𝑢

ℎ
− 𝑅

ℎ
𝑢)

+ 𝑏 (𝑢

ℎ
− 𝑢

𝐻
, 𝑢

ℎ
− 𝑢

𝐻
, 𝑢

ℎ
− 𝑅

ℎ
𝑢)

= 𝑏 (𝑢 − 𝑅

ℎ
𝑢, 𝑢, 𝑢

ℎ
− 𝑅

ℎ
𝑢) + 𝑏 (𝑅

ℎ
𝑢 − 𝑢

ℎ
, 𝑢, 𝑢

ℎ
− 𝑅

ℎ
𝑢)

+ 𝑏 (𝑢

ℎ
, 𝑢 − 𝑅

ℎ
𝑢, 𝑢

ℎ
− 𝑅

ℎ
𝑢)

+ 𝑏 (𝑢

ℎ
− 𝑢

𝐻
, 𝑅

ℎ
𝑢 − 𝑢

𝐻
, 𝑢

ℎ
− 𝑅

ℎ
𝑢) = 𝐽

1
+ ⋅ ⋅ ⋅ + 𝐽

4
.

(79)

Using (8) and (15), we have

𝐽

1
= 𝑏 (𝑢 − 𝑅

ℎ
𝑢, 𝑢, 𝑢

ℎ
− 𝑅

ℎ
𝑢)

≤ 𝑁‖𝑢‖𝑉









𝑢 − 𝑅

ℎ
𝑢







𝑉











𝑢

ℎ
− 𝑅

ℎ
𝑢









𝑉

≤

𝜇

2









𝑢 − 𝑅

ℎ
𝑢







𝑉











𝑢

ℎ
− 𝑅

ℎ
𝑢









𝑉

≤

𝜇

8











𝑢

ℎ
− 𝑅

ℎ
𝑢











2

𝑉
+ 8𝜇









𝑢 − 𝑅

ℎ
𝑢









2

𝑉
.

(80)

Similarly, 𝐽
2
and 𝐽
3
can be estimated, respectively, by

𝐽

2
= 𝑏 (𝑅

ℎ
𝑢 − 𝑢

ℎ
, 𝑢, 𝑢

ℎ
− 𝑅

ℎ
𝑢)

= 𝑁‖𝑢‖𝑉











𝑢

ℎ
− 𝑅

ℎ
𝑢











2

𝑉
≤

𝜇

2











𝑢

ℎ
− 𝑅

ℎ
𝑢











2

𝑉
,

𝐽

3
= 𝑏 (𝑢

ℎ
, 𝑢 − 𝑅

ℎ
𝑢, 𝑢

ℎ
− 𝑅

ℎ
𝑢)

≤ 𝑁











𝑢

ℎ






𝑉









𝑢 − 𝑅

ℎ
𝑢







𝑉











𝑢

ℎ
− 𝑅

ℎ
𝑢









𝑉

≤

𝜇

2









𝑢 − 𝑅

ℎ
𝑢







𝑉











𝑢

ℎ
− 𝑅

ℎ
𝑢









𝑉

≤

𝜇

8











𝑢

ℎ
− 𝑅

ℎ
𝑢











2

𝑉
+ 8𝜇









𝑢 − 𝑅

ℎ
𝑢









2

𝑉
.

(81)

Finally, we estimate 𝐽
4
by

𝐽

4
= 𝑏 (𝑢

ℎ
− 𝑢

𝐻
, 𝑅

ℎ
𝑢 − 𝑢

𝐻
, 𝑢

ℎ
− 𝑅

ℎ
𝑢)

= 𝑏 (𝑢

ℎ
− 𝑅

ℎ
𝑢, 𝑅

ℎ
𝑢 − 𝑢

𝐻
, 𝑢

ℎ
− 𝑅

ℎ
𝑢)

+ 𝑏 (𝑅

ℎ
𝑢 − 𝑢

𝐻
, 𝑅

ℎ
𝑢 − 𝑢

𝐻
, 𝑢

ℎ
− 𝑅

ℎ
𝑢)

≤ 𝑁









𝑅

ℎ
𝑢 − 𝑢

𝐻







𝑉











𝑢

ℎ
− 𝑅

ℎ
𝑢











2

𝑉

+ 𝑁









𝑅

ℎ
𝑢 − 𝑢

𝐻









2

𝑉











𝑢

ℎ
− 𝑅

ℎ
𝑢









𝑉

≤ 𝑐𝐻











𝑢

ℎ
− 𝑅

ℎ
𝑢











2

𝑉
+

𝜇

8











𝑢

ℎ
− 𝑅

ℎ
𝑢











2

𝑉
+ 𝑐









𝑅

ℎ
𝑢 − 𝑢

𝐻









4

𝑉
.

(82)

Combining these estimates for 𝐽
1
to 𝐽

4
with (79), for suffi-

ciently small𝐻, we get











𝑢

ℎ
− 𝑅

ℎ
𝑢









𝑉
≤ 𝑐 (









𝑢 − 𝑅

ℎ
𝑢







𝑉
+









𝑅

ℎ
𝑢 − 𝑢

𝐻









2

𝑉
)

≤ 𝑐 (









𝑢 − 𝑅

ℎ
𝑢







𝑉
+









𝑅

ℎ
𝑢 − 𝑢









2

𝑉
+









𝑢 − 𝑢

𝐻









2

𝑉
)

≤ 𝑐 (ℎ + 𝐻

2
) ,

(83)

which implies that











𝑢 − 𝑢

ℎ






𝑉
≤ 𝑐 (ℎ + 𝐻

2
) . (84)

From (28) and (30), we have

𝛽

2











𝑝

ℎ
− 𝑄

ℎ
𝑝











≤ sup
(

Vℎ ,𝑞ℎ)∈(𝑉ℎ,𝑀ℎ)

B
ℎ
(𝑢

ℎ
− 𝑅

ℎ
𝑢, 𝑝

ℎ
− 𝑄

ℎ
𝑝; V
ℎ
, 𝑞

ℎ
)









V
ℎ







𝑉
+









𝑞

ℎ









= sup
(

Vℎ ,𝑞ℎ)∈(𝑉ℎ,𝑀ℎ)

((B
ℎ
(𝑢

ℎ
− 𝑢, 𝑝

ℎ
− 𝑝; V

ℎ
, 𝑞

ℎ
)

+B
ℎ
(𝑢 − 𝑅

ℎ
𝑢, 𝑝 − 𝑄

ℎ
𝑝; V
ℎ
, 𝑞

ℎ
) )

×(









V
ℎ







𝑉
+









𝑞

ℎ









)

−1

)

= sup
(Vℎ ,𝑞ℎ)∈(𝑉ℎ ,𝑀ℎ)

((𝑏 (𝑢, 𝑢, V
ℎ
) − 𝑏 (𝑢

𝐻
, 𝑢

ℎ
, V
ℎ
)

−𝑏 (𝑢

ℎ
, 𝑢

𝐻
, V
ℎ
) + 𝑏 (𝑢

𝐻
, 𝑢

𝐻
, V
ℎ
))

×(









V
ℎ







𝑉
+









𝑞

ℎ









)

−1

) .

(85)

Since

𝑏 (𝑢, 𝑢, V
ℎ
)

− 𝑏 (𝑢

𝐻
, 𝑢

ℎ
, V
ℎ
) − 𝑏 (𝑢

ℎ
, 𝑢

𝐻
, V
ℎ
) + 𝑏 (𝑢

𝐻
, 𝑢

𝐻
, V
ℎ
)

= 𝑏 (𝑢 − 𝑢

ℎ
, 𝑢, V
ℎ
) + 𝑏 (𝑢, 𝑢 − 𝑅

ℎ
𝑢, V
ℎ
)

− 𝑏 (𝑢 − 𝑢

ℎ
, 𝑢 − 𝑅

ℎ
𝑢, V
ℎ
) + 𝑏 (𝑢

ℎ
− 𝑢

𝐻
, 𝑅

ℎ
𝑢 − 𝑢

𝐻
, V
ℎ
)

− 𝑏 (𝑢

𝐻
, 𝑢

ℎ
− 𝑅

ℎ
𝑢, V
ℎ
)

≤ 𝑁‖𝑢‖𝑉
(











𝑢 − 𝑢

ℎ






𝑉
+









𝑢 − 𝑅

ℎ
𝑢







𝑉
)









V
ℎ







𝑉

+ 𝑁











𝑢 − 𝑢

ℎ






𝑉









𝑢 − 𝑅

ℎ
𝑢







𝑉









V
ℎ







𝑉

+ 𝑁









𝑢

𝐻







𝑉











𝑢

ℎ
− 𝑅

ℎ
𝑢









𝑉









V
ℎ







𝑉

+ 𝑁(











𝑢 − 𝑢

ℎ






𝑉
+









𝑢 − 𝑢

𝐻







𝑉
)

× (









𝑢 − 𝑅

ℎ
𝑢







𝑉
+









𝑢 − 𝑢

𝐻







𝑉
)









V
ℎ







𝑉
,

(86)
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then using (31), (54), (83), and (84), we obtain











𝑝

ℎ
− 𝑄

ℎ
𝑝











≤ 𝑁‖𝑢‖

𝑉
(











𝑢 − 𝑢

ℎ






𝑉
+









𝑢 − 𝑅

ℎ
𝑢







𝑉
)

+ 𝑁











𝑢 − 𝑢

ℎ






𝑉









𝑢 − 𝑅

ℎ
𝑢







𝑉
+ 𝑁









𝑢

𝐻







𝑉











𝑢

ℎ
− 𝑅

ℎ
𝑢









𝑉

+ 𝑁(











𝑢 − 𝑢

ℎ






𝑉
+









𝑢 − 𝑢

𝐻







𝑉
)

× (









𝑢 − 𝑅

ℎ
𝑢







𝑉
+









𝑢 − 𝑢

𝐻







𝑉
) ≤ 𝑐 (ℎ + 𝐻

2
) ,

(87)

which together with (31) yields











𝑝 − 𝑝

ℎ








≤ 𝑐 (ℎ + 𝐻

2
) . (88)

4.4. Newton Correction Scheme. As a result of Theo-
rems 6–8, if we choose 𝐻 = 𝑂(ℎ

1/2
), then two-level

Stokes/Oseen/Newton iteration methods in the above sub-
sections provide the same convergence order as the usual
one-level finite element method (24). In this subsection, we
propose a newNewton correction scheme.The error estimate
for this scheme implies that if 𝐻 = 𝑂(ℎ

1/4
), then this

correction scheme also provides the same convergence order
as the usual one-level finite element method (24).

Step I. Solve (𝑢
𝐻
, 𝑝

𝐻
) ∈ (𝑉

𝐻
,𝑀

𝐻
) on the coarse mesh by the

problem (51).

Step II. Solve (𝑢ℎ, 𝑝ℎ) ∈ (𝑉

ℎ
,𝑀

ℎ
) on the fine mesh by the

problem (52) or (66) or (73).

Step III. Solve a Newton correction solution (𝑢

ℎ

⋆
, 𝑝

ℎ

⋆
) on the

fine mesh; that is, find (𝑢

ℎ

⋆
, 𝑝

ℎ

⋆
) ∈ (𝑉

ℎ
,𝑀

ℎ
) such that for all

(V
ℎ
, 𝑞

ℎ
) ∈ (𝑉

ℎ
,𝑀

ℎ
)

B
ℎ
(𝑢

ℎ

⋆
, 𝑝

ℎ

⋆
; V
ℎ
, 𝑞

ℎ
) + 𝑏 (𝑢

ℎ
, 𝑢

ℎ

⋆
, V
ℎ
) + 𝑏 (𝑢

ℎ

⋆
, 𝑢

ℎ
, V
ℎ
)

= (𝑓, V
ℎ
) + 𝑏 (𝑢

ℎ
, 𝑢

ℎ
, V
ℎ
) .

(89)

First, we discuss the existence and uniqueness of the
solution (𝑢ℎ

⋆
, 𝑝

ℎ

⋆
) to the problem (89). In terms of (56), (83),

and (76), the solution 𝑢ℎ to the problem (52) or (66) or (73)
satisfies ‖𝑢ℎ‖

𝑉
≤ 𝜇/2𝑁. Then taking V

ℎ
= 𝑢

ℎ

⋆
and 𝑞
ℎ
= 𝑝

ℎ

⋆
in

(89), we get

B
ℎ
(𝑢

ℎ

⋆
, 𝑝

ℎ

⋆
; 𝑢

ℎ

⋆
, 𝑝

ℎ

⋆
) + 𝑏 (𝑢

ℎ
, 𝑢

ℎ

⋆
, 𝑢

ℎ

⋆
) + 𝑏 (𝑢

ℎ

⋆
, 𝑢

ℎ
, 𝑢

ℎ

⋆
)

≥ 𝜇











𝑢

ℎ

⋆











2

𝑉
+ [𝑝

ℎ

⋆
]

2

ℎ
− 𝑁











𝑢

ℎ






𝑉











𝑢

ℎ

⋆











2

𝑉

≥

𝜇

2











𝑢

ℎ

⋆











2

𝑉
+ [𝑝

ℎ

⋆
]

2

ℎ
.

(90)

Thus, we conclude that the problem (89) exists a unique
solution (𝑢

ℎ

⋆
, 𝑝

ℎ

⋆
) ∈ (𝑉

ℎ
,𝑀

ℎ
). Moreover, it is easy to check

that 𝑢ℎ
⋆
satisfies











𝑢

ℎ

⋆









𝑉
≤

2

𝜇









𝑓









+

𝜇

2𝑁

≤

3𝜇

2𝑁

. (91)

Theorem9. Suppose that the uniqueness condition (14) or (67)
or (74) holds. If (𝑢

ℎ
, 𝑝

ℎ
) ∈ (𝑉

ℎ
,𝑀

ℎ
) and (𝑢ℎ

⋆
, 𝑝

ℎ

⋆
) ∈ (𝑉

ℎ
,𝑀

ℎ
)

are the solutions of (24) and (89), respectively, then one has











𝑢

ℎ
− 𝑢

ℎ

⋆









𝑉
+











𝑝

ℎ
− 𝑝

ℎ

⋆











≤ 𝑐











𝑢

ℎ
− 𝑢

ℎ








2

𝑉
,

(92)

where 𝑢ℎ is the solution to the problem (52) or (66) or (73).

Proof. Subtracting (24) from (89), we get

B
ℎ
(𝑢

ℎ
− 𝑢

ℎ

⋆
, 𝑝

ℎ
− 𝑝

ℎ

⋆
; V
ℎ
, 𝑞

ℎ
)

= 𝑏 (𝑢

ℎ
, 𝑢

ℎ

⋆
, V
ℎ
) + 𝑏 (𝑢

ℎ

⋆
, 𝑢

ℎ
, V
ℎ
) − 𝑏 (𝑢

ℎ
, 𝑢

ℎ
, V
ℎ
)

− 𝑏 (𝑢

ℎ
, 𝑢

ℎ
, V
ℎ
) = 𝑏 (𝑢

ℎ

⋆
− 𝑢

ℎ
, 𝑢

ℎ
, V
ℎ
)

+ 𝑏 (𝑢

ℎ
, 𝑢

ℎ

⋆
− 𝑢

ℎ
, V
ℎ
) − 𝑏 (𝑢

ℎ
− 𝑢

ℎ
, 𝑢

ℎ
− 𝑢

ℎ
, V
ℎ
) .

(93)

Setting V
ℎ
= 𝑢

ℎ
− 𝑢

ℎ

⋆
and 𝑞
ℎ
= 𝑝

ℎ
− 𝑝

ℎ

⋆
in (93) and using (56),

it yields

𝜇











𝑢

ℎ
− 𝑢

ℎ

⋆











2

𝑉

≤ 𝑏 (𝑢

ℎ

⋆
− 𝑢

ℎ
, 𝑢

ℎ
, 𝑢

ℎ
− 𝑢

ℎ

⋆
) − 𝑏 (𝑢

ℎ
− 𝑢

ℎ
, 𝑢

ℎ
− 𝑢

ℎ
, 𝑢

ℎ
− 𝑢

ℎ

⋆
)

≤ 𝑁











𝑢

ℎ






𝑉











𝑢

ℎ
− 𝑢

ℎ

⋆











2

𝑉
+ 𝑁











𝑢

ℎ
− 𝑢

ℎ








2

𝑉











𝑢

ℎ
− 𝑢

ℎ

⋆









𝑉

≤

𝜇

2











𝑢

ℎ
− 𝑢

ℎ

⋆











2

𝑉
+

𝜇

4











𝑢

ℎ
− 𝑢

ℎ

⋆











2

𝑉
+

𝑁

2

𝜇











𝑢

ℎ
− 𝑢

ℎ








4

𝑉
.

(94)

Thus, we obtain











𝑢

ℎ
− 𝑢

ℎ

⋆









𝑉
≤

2𝑁

𝜇











𝑢

ℎ
− 𝑢

ℎ








2

𝑉
. (95)
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Iso value
0.000300702
0.000902107
0.00150351
0.00210492
0.00270632
0.00330773
0.00390913
0.00451054
0.00511194
0.00571335

−0.00571335
−0.00511194
−0.00451054
−0.00390913
−0.00330773
−0.00270632
−0.00210492
−0.00150351
−0.000902107
−0.000300702

(a)

Iso value
0.000300702
0.000902107
0.00150351
0.00210492
0.00270632
0.00330773
0.00390913
0.00451054
0.00511194
0.00571335

−0.00571335
−0.00511194
−0.00451054
−0.00390913
−0.00330773
−0.00270632
−0.00210492
−0.00150351
−0.000902107
−0.000300702

(b)

Iso value
0.05
0.15
0.25
0.35
0.45
0.55
0.65
0.75
0.85
0.95

−0.95
−0.85
−0.75
−0.65
−0.55
−0.45
−0.35
−0.25
−0.15
−0.05

(c)

Figure 1: Contour plots of exact solution. From left to right: two components of velocity and pressure.

Iso value
0.000301028
0.000902418
0.00150381
0.0021052
0.00270659
0.00330798
0.00390937
0.00451075
0.00511214
0.00571353

−0.00571287
−0.00511148
−0.00451009

−0.00330731
−0.00270592
−0.00210453
−0.00150314
−0.000901751
−0.000300361

−0.0039087

(a)

Iso value
0.000300362
0.000901752
0.00150314
0.00210453
0.00270592
0.00330731
0.0039087
0.00451009
0.00511148
0.00571287

−0.00571353
−0.00511214
−0.00451075
−0.00390936
−0.00330797
−0.00270658
−0.0021052
−0.00150381
−0.000902417
−0.000301027

(b)

Iso value
0.0499699
0.14991
0.24985
0.349789
0.449729
0.549669
0.649609
0.749549
0.849489
0.949428

−0.949428
−0.849489
−0.749549
−0.649609
−0.549669
−0.449729
−0.349789
−0.24985
−0.14991
−0.0499699

(c)

Figure 2: Contour plots of numerical solution by one-level stabilized method. From left to right: two components of velocity and pressure.



Abstract and Applied Analysis 11

Iso value
0.000301015
0.000902405
0.00150379
0.00210518
0.00270657
0.00330796
0.00390935
0.00451074
0.00511213
0.00571352

−0.00571288
−0.00511149
−0.0045101
−0.00390871
−0.00330732
−0.00270593
−0.00210454
−0.00150315
−0.000901764
−0.000300374

(a)

Iso value
0.000300376
0.000901765
0.00150315
0.00210454
0.00270593
0.00330732
0.00390871
0.0045101
0.00511149
0.00571288

−0.00571352
−0.00511213
−0.00451074
−0.00390935
−0.00330796
−0.00270657
−0.00210518
−0.00150379
−0.000902403
−0.000301013

(b)

Iso value
0.0499699
0.14991
0.24985
0.349789
0.449729
0.549669
0.649609
0.749549
0.849489
0.949428

−0.949429
−0.849489
−0.749549
−0.649609
−0.549669
−0.449729
−0.349789
−0.24985
−0.14991
−0.04997

(c)

Figure 3: Contour plots of numerical solution by two-level Newton iteration method. From left to right: two components of velocity and
pressure.

Table 1: Convergence of one-level method.

1/ℎ ‖𝑢 − 𝑢

ℎ
‖/‖𝑢‖ Rate ‖𝑢 − 𝑢

ℎ
‖

𝑉
/‖𝑢‖

𝑉
Rate ‖𝑝 − 𝑝

ℎ
‖/‖𝑝‖ Rate CPU (s)

4

2
5.05728𝑒 − 02 / 2.04342𝑒 − 01 / 7.00342𝑒 − 03 / 0.271

6

2
9.71970𝑒 − 03 2.0338 8.42186𝑒 − 02 1.0930 1.74965𝑒 − 03 1.7104 1.211

8

2
3.03424𝑒 − 03 2.0234 4.57602𝑒 − 02 1.0602 6.91717𝑒 − 04 1.6129 4.526

10

2
1.23515𝑒 − 03 2.0139 2.87904𝑒 − 02 1.0383 3.42162𝑒 − 04 1.5772 10.509

12

2
5.94367𝑒 − 04 2.0059 1.98039𝑒 − 02 1.0261 1.93897𝑒 − 04 1.5576 22.588

14

2
3.21053𝑒 − 04 1.9977 1.44653𝑒 − 02 1.0189 1.20442𝑒 − 04 1.5445 44.181

16

2
1.88826𝑒 − 04 1.9875 1.10329𝑒 − 02 1.0143 7.99308𝑒 − 05 1.5352 80.286

18

2 OUT OF MEMORY

Table 2: Convergence of two-level Oseen iteration method.

1/𝐻 1/ℎ ‖𝑢 − 𝑢

ℎ
‖/‖𝑢‖ Rate ‖𝑢 − 𝑢

ℎ
‖

𝑉
/‖𝑢‖

𝑉
Rate ‖𝑝 − 𝑝

ℎ
‖/‖𝑝‖ Rate CPU (s)

4 4

2
5.05858𝑒 − 02 / 2.04349𝑒 − 01 / 7.00341𝑒 − 03 / 0.179

6 6

2
9.73019𝑒 − 03 2.0328 8.42217𝑒 − 02 1.0930 1.74965𝑒 − 03 1.7104 0.738

8 8

2
3.04358𝑒 − 03 2.0199 4.57618𝑒 − 02 1.0602 6.91725𝑒 − 04 1.6129 2.105

10 10

2
1.24408𝑒 − 03 2.0046 2.87914𝑒 − 02 1.0383 3.42169𝑒 − 04 1.5772 5.081

12 12

2
6.03073𝑒 − 04 1.9858 1.98046𝑒 − 02 1.0261 1.93904𝑒 − 04 1.5575 10.546

14 14

2
3.29574𝑒 − 04 1.9599 1.44658𝑒 − 02 1.0189 1.20448𝑒 − 04 1.5444 19.846

16 16

2
1.97162𝑒 − 04 1.9238 1.10332𝑒 − 02 1.0143 7.99367𝑒 − 05 1.5352 36.305

18 18

2
1.26739𝑒 − 04 1.8759 8.69472𝑒 − 03 1.0112 5.57676𝑒 − 05 1.5284 56.658
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Table 3: Convergence of two-level Stokes iteration method.

1/𝐻 1/ℎ ‖𝑢 − 𝑢

ℎ
‖/‖𝑢‖ Rate ‖𝑢 − 𝑢

ℎ
‖

𝑉
/‖𝑢‖

𝑉
Rate ‖𝑝 − 𝑝

ℎ
‖/‖𝑝‖ Rate CPU (s)

4 4

2
5.05773𝑒 − 02 / 2.04346𝑒 − 01 / 7.00344𝑒 − 03 / 0.163

6 6

2
9.72434𝑒 − 03 2.0333 8.42205𝑒 − 02 1.0930 1.74968𝑒 − 03 1.7103 0.606

8 8

2
3.03897𝑒 − 03 2.0215 4.57613𝑒 − 02 1.0602 6.91743𝑒 − 04 1.6128 1.808

10 10

2
1.23981𝑒 − 03 2.0089 2.87911𝑒 − 02 1.0383 3.42185𝑒 − 04 1.5772 4.451

12 12

2
5.98991𝑒 − 04 1.9950 1.98044𝑒 − 02 1.0261 1.93918𝑒 − 04 1.5575 9.314

14 14

2
3.25639𝑒 − 04 1.9768 1.44657𝑒 − 02 1.0189 1.20460𝑒 − 04 1.5443 17.481

16 16

2
1.93359𝑒 − 04 1.9518 1.10331𝑒 − 02 1.0143 7.99470𝑒 − 05 1.5350 30.246

18 18

2
1.23069𝑒 − 04 1.9179 8.69461𝑒 − 03 1.0112 5.57768𝑒 − 05 1.5283 49.980

Table 4: Convergence of two-level Newton iteration method.

1/𝐻 1/ℎ ‖𝑢 − 𝑢

ℎ
‖/‖𝑢‖ Rate ‖𝑢 − 𝑢

ℎ
‖

𝑉
/‖𝑢‖

𝑉
Rate ‖𝑝 − 𝑝

ℎ
‖/‖𝑝‖ Rate CPU (s)

4 4

2
5.05710𝑒 − 02 / 2.04342𝑒 − 01 / 7.00340𝑒 − 03 / 0.204

6 6

2
9.71757𝑒 − 03 2.0340 8.42186𝑒 − 02 1.0930 1.74964𝑒 − 03 1.7104 0.848

8 8

2
3.03203𝑒 − 03 2.0243 4.57601𝑒 − 02 1.0602 6.91711𝑒 − 04 1.6129 2.768

10 10

2
1.23292𝑒 − 03 2.0163 2.87903𝑒 − 02 1.0383 3.42158𝑒 − 04 1.5772 6.316

12 12

2
5.92128𝑒 − 04 2.0113 1.98039𝑒 − 02 1.0261 1.93895𝑒 − 04 1.5576 13.269

14 14

2
3.18804𝑒 − 04 2.0083 1.44653𝑒 − 02 1.0189 1.20440𝑒 − 04 1.5445 24.717

16 16

2
1.86566𝑒 − 04 2.0062 1.10328𝑒 − 02 1.0143 7.99295𝑒 − 05 1.5352 42.030

18 18

2
1.16338𝑒 − 04 2.0049 8.69440𝑒 − 03 1.0112 5.57612𝑒 − 05 1.5285 69.469

It follows from (28), (93), and (95) that
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(96)

Combining Theorem 9 with Theorems 6–8 and Theo-
rem 4, we obtain the following error estimate between the
solutions (𝑢, 𝑝) and (𝑢

ℎ

⋆
, 𝑝

ℎ

⋆
) to the problems (13) and (89),

respectively.

Theorem 10. Under the assumption in Theorem 9, if (𝑢, 𝑝) ∈
(𝐻

2
(Ω)

2
∩ 𝑉,𝐻

1
(Ω) ∩ 𝑀) and (𝑢

ℎ

⋆
, 𝑝

ℎ

⋆
) ∈ (𝑉

ℎ
,𝑀

ℎ
) are the

solutions of (13) and (89), respectively, then one has











𝑢 − 𝑢

ℎ

⋆









𝑉
+











𝑝 − 𝑝

ℎ

⋆











≤ 𝑐 (ℎ + 𝐻

4
) . (97)

5. Numerical Experiments

In this section, we make some numerical experiments to
support the theoretical results derived in Section 4.The body
force 𝑓 is appropriately selected such that the exact solution
of the problem (1) is given by

𝑢 (𝑥, 𝑦) = (𝑢

1
(𝑥, 𝑦) , 𝑢

2
(𝑥, 𝑦)) , 𝑝 (𝑥, 𝑦) = 𝑥

2
− 𝑦

2
,

𝑢

1
(𝑥, 𝑦) = 𝑥

2
(𝑥 − 1)

2
𝑦 (𝑦 − 1) (2𝑦 − 1) ,

𝑢

2
(𝑥, 𝑦) = −𝑥 (𝑥 − 1) (2𝑥 − 1) 𝑦

2
(𝑦 − 1)

2

(98)

in the unit squareΩ = (0, 1) × (0, 1).
In all experiments, we choose the viscous coefficient 𝜇 =

0.1 and stabilized parameter 𝛼 = 0.01 in (18). According to
Theorems 6–8, we choose 𝐻 = ℎ

1/2; then two-level finite
element approximation solution is of the following optimal
error estimate:











𝑢 − 𝑢

ℎ






𝑉
+











𝑝 − 𝑝

ℎ








≤ 𝑐ℎ. (99)
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Table 5: Convergence of two-level Newton correction scheme.

1/𝐻 1/ℎ ‖𝑢 − 𝑢

ℎ

⋆
‖/‖𝑢‖ Rate ‖𝑢 − 𝑢

ℎ

⋆
‖

𝑉
/‖𝑢‖

𝑉
Rate ‖𝑝 − 𝑝

ℎ

⋆
‖/‖𝑝‖ Rate CPU (s)

2 4

2
5.05706𝑒 − 02 / 2.04341𝑒 − 01 / 7.00308𝑒 − 03 / 0.263

2 6

2
9.71752𝑒 − 03 2.0340 8.42185𝑒 − 02 1.0930 1.74964𝑒 − 03 1.7104 1.206

3 8

2
3.03204𝑒 − 03 2.0243 4.57601𝑒 − 02 1.0602 6.91710𝑒 − 04 1.6129 3.729

3 10

2
1.23293𝑒 − 03 2.0163 2.87903𝑒 − 02 1.0383 3.42158𝑒 − 04 1.5772 9.294

3 12

2
5.92131𝑒 − 04 2.0113 1.98039𝑒 − 02 1.0261 1.93895𝑒 − 04 1.5576 19.497

4 14

2
3.18806𝑒 − 04 2.0082 1.44653𝑒 − 02 1.0189 1.20440𝑒 − 04 1.5445 37.133

4 16

2
1.86567𝑒 − 04 2.0062 1.10328𝑒 − 02 1.0143 7.99295𝑒 − 05 1.5352 65.678

4 18

2 OUT OF MEMORY

Here we select eight fine mesh values ℎ = 1/4

2
, 1/6

2
, . . . ,

1/18

2. Then the corresponding coarse mesh values are
obtained. These fine mesh values also are used in the
numerical experiment for one-level finite element method.
The numerical results are displayed in Tables 1, 2, 3, and 4,
from which the observations and conclusions are presented
as follows.

(i) Based on Table 1, the numerical convergence orders
reach the optimal orders which coincide with the
theoretical results derived in Theorems 4 and 5,
namely, 𝑂(ℎ) for the velocity in 𝐻

1-norm and the
pressure in 𝐿2-norm and 𝑂(ℎ2) for the velocity in 𝐿2-
norm. We also observe that if ℎ = 1/18

2, in this case,
the standard one-level method can not work and does
not obtain the predicted numerical results.

(ii) From Tables 2–4, we can see that if 𝐻 = ℎ

1/2,
all three two-level Stokes/Oseen/Newton iteration
methods can reach the optimal convergence orders
of 𝑂(ℎ) for both velocity and pressure, in 𝐻

1-norm
and 𝐿2-norm, respectively, as proven inTheorems 6–
8. Besides, we find that these methods can achieve the
optimal convergence orders of 𝑂(ℎ2) for velocity in
the sense of 𝐿2-norm as expected.

(iii) From the view of computational cost, we can obvi-
ously observe by comparing Table 1 and Tables 2–
4 that these two-level iteration methods significantly
save CPU time compared with the one-level method
and, meanwhile, obtain nearly the same approxima-
tion results.

The numerical results for two-level Newton correction
method also are displayed in Table 5. Based on Theorem 10,
the optimal convergence order 𝑂(ℎ) for the velocity in 𝐻

1-
norm and the pressure in 𝐿

2-norm can be reached as 𝐻 ≈

ℎ

1/4, which has been reflected in Table 5. However, this
Newton correction method only can save about 85%CPU
time compared with the one-level method.The reason is that
the Newton correction method needs two-step computation
in the fine mesh.

Finally, we show the contour plots of the exact solution
and the numerical solution to exhibit the approximation
profiles. Figures 1 and 2 display the exact solution and the
numerical solution by one-level stabilized method. Besides,
as to the two-level method, here only the numerical solution

by Newton iteration method is displayed in Figure 3. From
these three groups of contour plots, we can observe the good
coincidence with each other to illustrate the stability of the
present stabilized methods.
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