11,238 research outputs found

    Two-hop Communication with Energy Harvesting

    Full text link
    Communication nodes with the ability to harvest energy from the environment have the potential to operate beyond the timeframe limited by the finite capacity of their batteries; and accordingly, to extend the overall network lifetime. However, the optimization of the communication system in the presence of energy harvesting devices requires a new paradigm in terms of power allocation since the energy becomes available over time. In this paper, we consider the problem of two-hop relaying in the presence of energy harvesting nodes. We identify the optimal offline transmission scheme for energy harvesting source and relay when the relay operates in the full-duplex mode. In the case of a half-duplex relay, we provide the optimal transmission scheme when the source has a single energy packet.Comment: 4 pages, 3 figures. To be presented at the 4th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Dec. 201

    Optimal Scheduling and Power Allocation for Two-Hop Energy Harvesting Communication Systems

    Full text link
    Energy harvesting (EH) has recently emerged as a promising technique for green communications. To realize its potential, communication protocols need to be redesigned to combat the randomness of the harvested energy. In this paper, we investigate how to apply relaying to improve the short-term performance of EH communication systems. With an EH source and a non-EH half-duplex relay, we consider two different design objectives: 1) short-term throughput maximization; and 2) transmission completion time minimization. Both problems are joint scheduling and power allocation problems, rendered quite challenging by the half-duplex constraint at the relay. A key finding is that directional water-filling (DWF), which is the optimal power allocation algorithm for the single-hop EH system, can serve as guideline for the design of two-hop communication systems, as it not only determines the value of the optimal performance, but also forms the basis to derive optimal solutions for both design problems. Based on a relaxed energy profile along with the DWF algorithm, we derive key properties of the optimal solutions for both problems and thereafter propose efficient algorithms. Simulation results will show that both scheduling and power allocation optimizations are necessary in two-hop EH communication systems.Comment: Submitted to IEEE Transaction on Wireless Communicatio

    Age-Minimal Transmission in Energy Harvesting Two-hop Networks

    Full text link
    We consider an energy harvesting two-hop network where a source is communicating to a destination through a relay. During a given communication session time, the source collects measurement updates from a physical phenomenon and sends them to the relay, which then forwards them to the destination. The objective is to send these updates to the destination as timely as possible; namely, such that the total age of information is minimized by the end of the communication session, subject to energy causality constraints at the source and the relay, and data causality constraints at the relay. Both the source and the relay use fixed, yet possibly different, transmission rates. Hence, each update packet incurs fixed non-zero transmission delays. We first solve the single-hop version of this problem, and then show that the two-hop problem is solved by treating the source and relay nodes as one combined node, with some parameter transformations, and solving a single-hop problem between that combined node and the destination.Comment: Appeared in IEEE Globecom 201

    Network-Level Cooperation in Energy Harvesting Wireless Networks

    No full text
    International audienceWe consider a two-hop communication network consisted of a source node, a relay and a destination node in which the source and the relay node have external traffic arrivals. The relay forwards a fraction of the source node's traffic to the destination and the cooperation is performed at the network level. In addition, both source and relay nodes have energy harvesting capabilities and an unlimited battery to store the harvested energy. We study the impact of the energy constraints on the stability region. Specifically, we provide inner and outer bounds on the stability region of the two-hop network with energy harvesting source and relay

    Enabling non-linear energy harvesting in power domain based multiple access in relaying networks: Outage and ergodic capacity performance analysis

    Get PDF
    The Power Domain-based Multiple Access (PDMA) scheme is considered as one kind of Non-Orthogonal Multiple Access (NOMA) in green communications and can support energy-limited devices by employing wireless power transfer. Such a technique is known as a lifetime-expanding solution for operations in future access policy, especially in the deployment of power-constrained relays for a three-node dual-hop system. In particular, PDMA and energy harvesting are considered as two communication concepts, which are jointly investigated in this paper. However, the dual-hop relaying network system is a popular model assuming an ideal linear energy harvesting circuit, as in recent works, while the practical system situation motivates us to concentrate on another protocol, namely non-linear energy harvesting. As important results, a closed-form formula of outage probability and ergodic capacity is studied under a practical non-linear energy harvesting model. To explore the optimal system performance in terms of outage probability and ergodic capacity, several main parameters including the energy harvesting coefficients, position allocation of each node, power allocation factors, and transmit signal-to-noise ratio (SNR) are jointly considered. To provide insights into the performance, the approximate expressions for the ergodic capacity are given. By matching analytical and Monte Carlo simulations, the correctness of this framework can be examined. With the observation of the simulation results, the figures also show that the performance of energy harvesting-aware PDMA systems under the proposed model can satisfy the requirements in real PDMA applications.Web of Science87art. no. 81

    Iot Camera System For Monitoring Strawberry Fields

    Get PDF
    A wireless imaging system for monitoring strawberry fields provides enough quality image data for computer vision algorithms to make meaningful yield predictions. This report contains a design for a wireless sensor network modified with mesh networking techniques to extend coverage range and a solar energy harvesting system to improve sensor node lifetime. A two hop system with six nodes is implemented in a laboratory environment validating the communication systems integrity over an 800’ range. Moving from a primary battery system to solar energy harvesting increases the module lifetime indefinitely

    Secrecy performance by power splitting in cooperative dual-hop relay wireless energy harvesting

    Get PDF
    In wireless communication systems, for secure communication between a transmitter and receiver over the communication channel, the physical layer security is widely utilized. The paper presents a dual-hop wireless full-duplex relay (FDR) network with a source relay and destination relay between two nodes and listening devices. The relay and source use energy harvesting to gain energy from power beacon. Two cooperative techniques are utilized to investigate the amplify-forward (AF) and decode-forward (DF) secrecy capacity in the energy harvesting power splitting system. It is shown that the secrecy performance of an AF relay is better than the secrecy performance of a DF relay in the given form. At 40-meter distance between the relay and the eavesdropper in an energy harvesting system, the AF relay outperforms the DF relay. The simulation is performed using the Monte-Carlo method in MATLAB
    corecore