25 research outputs found

    Exploration of a Scalable Holomorphic Embedding Method Formulation for Power System Analysis Applications

    Get PDF
    abstract: The holomorphic embedding method (HEM) applied to the power-flow problem (HEPF) has been used in the past to obtain the voltages and flows for power systems. The incentives for using this method over the traditional Newton-Raphson based nu-merical methods lie in the claim that the method is theoretically guaranteed to converge to the operable solution, if one exists. In this report, HEPF will be used for two power system analysis purposes: a. Estimating the saddle-node bifurcation point (SNBP) of a system b. Developing reduced-order network equivalents for distribution systems. Typically, the continuation power flow (CPF) is used to estimate the SNBP of a system, which involves solving multiple power-flow problems. One of the advantages of HEPF is that the solution is obtained as an analytical expression of the embedding parameter, and using this property, three of the proposed HEPF-based methods can es-timate the SNBP of a given power system without solving multiple power-flow prob-lems (if generator VAr limits are ignored). If VAr limits are considered, the mathemat-ical representation of the power-flow problem changes and thus an iterative process would have to be performed in order to estimate the SNBP of the system. This would typically still require fewer power-flow problems to be solved than CPF in order to estimate the SNBP. Another proposed application is to develop reduced order network equivalents for radial distribution networks that retain the nonlinearities of the eliminated portion of the network and hence remain more accurate than traditional Ward-type reductions (which linearize about the given operating point) when the operating condition changes. Different ways of accelerating the convergence of the power series obtained as a part of HEPF, are explored and it is shown that the eta method is the most efficient of all methods tested. The local-measurement-based methods of estimating the SNBP are studied. Non-linear Thévenin-like networks as well as multi-bus networks are built using model data to estimate the SNBP and it is shown that the structure of these networks can be made arbitrary by appropriately modifying the nonlinear current injections, which can sim-plify the process of building such networks from measurements.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Online monitoring and control of voltage stability margin via machine learning-based adaptive approaches

    Get PDF
    Voltage instability or voltage collapse, observed in many blackout events, poses a significant threat to power system reliability. To prevent voltage collapse, the countermeasures suggested by the post analyses of the blackouts usually include the adoption of better online voltage stability monitoring and control tools. Recently, the variability and uncertainty imposed by the increasing penetration of renewable energy further magnifies this need. This work investigates the methodologies for online voltage stability margin (VSM) monitoring and control in the new era of smart grid and big data. It unleashes the value of online measurements and leverages the fruitful results in machine learning and demand response. An online VSM monitoring approach based on local regression and adaptive database is proposed. Considering the increasing variability and uncertainty of power system operation, this approach utilizes the locality of underlying pattern between VSM and reactive power reserve (RPR), and can adapt to the changing condition of system. LASSO (Least Absolute Shrinkage and Selection Operator) is tailored to solve the local regression problem so as to mitigate the curse of dimensionality for large-scale system. Along with the VSM prediction, its prediction interval is also estimated simultaneously in a simple but effective way, and utilized as an evidence to trigger the database updating. IEEE 30-bus system and a 60,000-bus large system are used to test and demonstrate the proposed approach. The results show that the proposed approach can be successfully employed in online voltage stability monitoring for real size systems, and the adaptivity of model and data endows the proposed approach with the advantage in the circumstances where large and unforeseen changes of system condition are inevitable. In case degenerative system conditions are identified, a control strategy is needed to steer the system back to security. A model predictive control (MPC) based framework is proposed to maintain VSM in near-real-time while minimizing the control cost. VSM is locally modeled as a linear function of RPRs based on the VSM monitoring tool, which convexifies the intricate VSM-constrained optimization problem. Thermostatically controlled loads (TCLs) are utilized through a demand response (DR) aggregator as the efficient measure to enhance voltage stability. For such an advanced application of the energy management system (EMS), plug-and-play is a necessary feature that makes the new controller really applicable in a cooperative operating environment. In this work, the cooperation is realized by a predictive interface strategy, which predicts the behaviors of relevant controllers using the simple models declared and updated by those controllers. In particular, the customer dissatisfaction, defined as the cumulative discomfort caused by DR, is explicitly constrained in respect of customers\u27 interests. This constraint maintains the applicability of the control. IEEE 30-bus system is used to demonstrate the proposed control strategy. Adaptivity and proactivity lie at the heart of the proposed approach. By making full use of real-time information, the proposed approach is competent at the task of VSM monitoring and control in a non-stationary and uncertain operating environment

    Science handbook

    Get PDF
    2006 handbook for the faculty of Scienc

    Science handbook

    Get PDF
    2006 handbook for the faculty of Scienc

    NOTIFICATION !!!

    Get PDF
    All the content of this special edition is retrieved from the conference proceedings published by the European Scientific Institute, ESI. http://eujournal.org/index.php/esj/pages/view/books The European Scientific Journal, ESJ, after approval from the publisher re publishes the papers in a Special edition

    NOTIFICATION !!!

    Get PDF
    All the content of this special edition is retrieved from the conference proceedings published by the European Scientific Institute, ESI. http://eujournal.org/index.php/esj/pages/view/books The European Scientific Journal, ESJ, after approval from the publisher re publishes the papers in a Special edition

    NOTIFICATION !!!

    Get PDF
    All the content of this special edition is retrieved from the conference proceedings published by the European Scientific Institute, ESI. http://eujournal.org/index.php/esj/pages/view/books The European Scientific Journal, ESJ, after approval from the publisher re publishes the papers in a Special edition

    NOTIFICATION !!!

    Get PDF
    All the content of this special edition is retrieved from the conference proceedings published by the European Scientific Institute, ESI. http://eujournal.org/index.php/esj/pages/view/books The European Scientific Journal, ESJ, after approval from the publisher re publishes the papers in a Special edition

    NOTIFICATION!!!

    Get PDF
    The full content of this special edition is retrieved from the conference proceedings published by the European Scientific Institute, ESI. http://eujournal.org/index.php/esj/pages/view/books The European Scientific Journal, ESJ, after approval from the publisher re publishes the papers in a Special edition
    corecore