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ABSTRACT 

The holomorphic embedding method (HEM) applied to the power-flow problem 

(HEPF) has been used in the past to obtain the voltages and flows for power systems. 

The incentives for using this method over the traditional Newton-Raphson based nu-

merical methods lie in the claim that the method is theoretically guaranteed to converge 

to the operable solution, if one exists. 

In this report, HEPF will be used for two power system analysis purposes: 

a. Estimating the saddle-node bifurcation point (SNBP) of a system 

b. Developing reduced-order network equivalents for distribution systems. 

Typically, the continuation power flow (CPF) is used to estimate the SNBP of a 

system, which involves solving multiple power-flow problems. One of the advantages 

of HEPF is that the solution is obtained as an analytical expression of the embedding 

parameter, and using this property, three of the proposed HEPF-based methods can es-

timate the SNBP of a given power system without solving multiple power-flow prob-

lems (if generator VAr limits are ignored). If VAr limits are considered, the mathemat-

ical representation of the power-flow problem changes and thus an iterative process 

would have to be performed in order to estimate the SNBP of the system. This would 

typically still require fewer power-flow problems to be solved than CPF in order to 

estimate the SNBP.  
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Another proposed application is to develop reduced order network equivalents for 

radial distribution networks that retain the nonlinearities of the eliminated portion of 

the network and hence remain more accurate than traditional Ward-type reductions 

(which linearize about the given operating point) when the operating condition changes. 

Different ways of accelerating the convergence of the power series obtained as a 

part of HEPF, are explored and it is shown that the eta method is the most efficient of 

all methods tested. 

The local-measurement-based methods of estimating the SNBP are studied. Non-

linear Thévenin-like networks as well as multi-bus networks are built using model data 

to estimate the SNBP and it is shown that the structure of these networks can be made 

arbitrary by appropriately modifying the nonlinear current injections, which can sim-

plify the process of building such networks from measurements. 
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1 

1 INTRODUCTION 

1.1 The power-flow problem and its solution using the holomorphic embedding 

method 

The goal of the power-flow (PF) problem is to find the complex bus voltages that 

satisfy power balance equations at all the buses, and calculate the generator reactive 

power injections and branch flows using the bus voltages, while respecting the physical 

limits of different system elements, such as generator VAr limits. The solution to the 

PF problem is a key step in all power system studies including transient stability simu-

lations, steady-state voltage stability assessment and contingency analysis, among oth-

ers. The traditional iterative methods of solving the PF problem (i.e. Newton-Raphson 

(NR), Gauss-Seidel (GS), Fast Decoupled Load Flow (FDLF)) [1] - [5] work reliably 

for most problems [6], however they can have the following issues [7], [8]: 

i. The solution is heavily dependent on the initial estimate. 

ii. While the iterative methods are robust and work well for reasonably loaded 

systems, for ill-conditioned (heavily loaded) systems, the iterative methods 

may converge to an inoperable solution or may even diverge. 

iii. If a solution is not obtained, one cannot be certain if this indicates the non-

existence of the solution or simply a failure of the iterative methods to find 

a solution. 
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Significant efforts have been made to resolve the aforementioned issues [9] - [15]. 

However to date, no variants within these classes have been shown to deal with these 

problems in a consistent way. Often, the convergence issues are exacerbated near the 

bifurcation point. 

The holomorphic embedding method (HEM), a mathematical tool to solve nonlin-

ear problems, was applied to the PF problem by Dr. Antonio Trias in 2012 [16], [17]. 

The proposed approach known as the Holomorphic Embedding Load Flow (HELM) 

method is non-iterative and guaranteed to converge to the operable solution provided 

the conditions of Stahl’s theorem are satisfied [20], [21]. A “holomorphic function” 

refers to a complex-valued function that is complex differentiable everywhere in its 

domain, i.e. it should satisfy the Cauchy-Riemann conditions [18] or its equivalent 

Wirtinger’s derivative condition [19].  

The power-flow problem is non-holomorphic in its original form due to the pres-

ence of the complex conjugate operator that is applied to the bus voltages. One of the 

ways to convert it into an analytic function is by splitting each complex equation into 

two real equations. The other approach is the holomorphic embedding method which 

uses an embedding parameter, α, to convert a function non-holomorphic in voltage into 

a holomorphic function in α. The given equations are embedded such that the original 

nonlinear problem is obtained at α =1.0. This method, though seemingly similar to the 
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numerical continuation approach, differs from it because HEM uses an analytic contin-

uation as opposed to a numerical continuation. Each step of the numerical continuation 

is solved using typical numerical solvers such as the Newton-Raphson method and thus 

the successful convergence of these numerical methods is subject to the proximity of 

the initial estimates to the solution of each sub-problem. The holomorphic embedding 

method on the other hand, is a systematic approach that obtains the voltages as a func-

tion of the embedded parameter, α, and then using analytic continuation to evaluate the 

function at α = 1.0. Since the resulting holomorphic function is complex differentiable 

everywhere in its domain, the unknown variables can be expressed as a power series of 

α. The power series are then evaluated at α =1.0 (as long as α = 1.0 is within the func-

tion’s domain i.e., a solution exists for the given problem) to obtain the solution to the 

given problem. Irrespective of whether the function exists at α =1.0 or not, the power 

series may or may not be a converging series at α =1.0. Hence, summing the series will 

not necessarily provide the converged solution to the problem, or may need a large 

number of terms in order to do so. There are numerous ways of accelerating the con-

vergence of any power series [20] - [22], [23] - [39], some of which can be used to 

evaluate even diverging series. However, it is proven by Stahl’s theorem that diagonal 

or near-diagonal Padé approximants are the maximal analytic continuation of a given 

function [20] - [22], i.e., if a function obeys the conditions stated in Stahl’s theorem, 
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these Padé approximants can be used to obtain the converged value of the power series 

representing the function, at every point in the function’s domain.  

The holomorphic embedding method has been applied to a general multi-bus power 

flow problem in [40] with a detailed description of the algorithm and some numerical 

results to analyze its convergence behavior. In the rest of the document, the holomor-

phic embedding method applied to the power-flow problem will be referred to as HEPF, 

in order to distinguish it from HELM which is a patented software whose implementa-

tion details are not available in the public domain. The convergence behavior of this 

approach is heavily dependent on the formulation used and the method used to acceler-

ate the convergence of the power series. Hence, we cannot make any statements about 

the convergence properties of HELM and all results presented in this document are 

restricted to HEPF. 

1.2 Objectives 

The objectives of this research are to use the HEPF for two power system analysis 

applications: 

i. Estimating the saddle-node bifurcation point (SNBP) of a system. 

ii. Developing nonlinear network reductions for radial distribution systems. 

Additionally, the study aims at improving the convergence behavior of the HEPF by 

exploring different ways of accelerating the convergence of power series obtained in 

HEPF. 
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Estimating the SNBP is an important reliability study and it has gained more im-

portance in the deregulated energy market as the utilities are often forced to serve in-

creased electric power demand, without a concomitant expansion of infrastructure. This 

can lead to the system being operated closer to its SNBP and therefore closer to voltage 

collapse than desired. One goal of a voltage stability study is to determine the voltage 

stability margin, e.g., the amount of real and/or reactive power that can be added before 

the system experiences voltage collapse, with the distance to the SNBP being a quick 

indicator of stability margin. The continuation power flow (CPF), one of the primary 

methods used in the industry for steady-state voltage stability studies, uses the Newton-

Raphson method to solve multiple nonlinear problems in order to estimate the SNBP 

[40]. The CPF may break-down at slightly lower loads than that at the true SNBP, de-

pending on the choice of continuation parameter [58]. The holomorphic embedding 

method on the other hand is theoretically guaranteed to converge to the solution if one 

exists, provided sufficient precision and a sufficient number of terms are used [16]. In 

this work, four different ways of estimating the SNBP of a system using HEPF have 

been studied. One of the advantages of HEPF is that it provides the voltage solution as 

a nonlinear function of the embedding parameter α, which can contain information 

about the system voltages even when the operating conditions change. This property is 

used to estimate the SNBP by solving only a single power-flow problem, for a given 

set of bus-types. However, in order to respect the generator reactive power limits, a few 



6 

iterations would be needed as the underlying mathematical problem changes whenever 

a generator goes on or comes off its VAr limits. The number of power-flow problems 

to be solved in order to do so, is still expected to be lower than the number of power 

flow solutions needed for the CPF. 

The second power system analysis application using HEPF is nonlinear network 

reduction for radial distribution networks. Ward-based network reductions use lineari-

zation about the given operating point, and thus when the load profile changes the volt-

age solutions obtained from Ward-based reduced networks are not very accurate. HEPF 

can be used to obtain equivalents that retain the nonlinearities of the original network. 

When the operating conditions change, the change in distribution losses can be more 

accurately modeled using HEPF-based nonlinear equivalent circuits as compared to the 

Ward-based equivalents. It is shown that the voltages obtained are theoretically exact 

when the loads are scaled in a certain pre-defined direction. Improvements in accuracy 

over Ward reduction are observed even when the load profile changes in a different 

manner than the pre-defined direction. 

Different ways of accelerating the convergence of the power series obtained from 

HEPF have also been explored in an effort to improve its convergence and it is shown 

that the eta method needs fewer computations and has better convergence properties 

than the matrix method of calculating the Padé approximants; while the eta method 



7 

provides an accurate numerical estimate of the function characterized by the power se-

ries, it does not provide an analytical expression.  

Finally, the local measurement-based methods to build Thévenin equivalent net-

works that can be used to estimate the SNBP are investigated. It is shown that the non-

linear Thévenin-like networks as well as multi-bus networks can be built and used to 

estimate the SNBP. The topology and network parameters can be chosen arbitrarily and 

the nonlinear current injections can be suitably modified to preserve the load voltage 

and load current behavior, which can simplify the process of using measurements to 

build such networks. 

1.3 Organization 

Chapter 2 contains a literature review on the different methods of estimating the 

saddle-node bifurcation point of a power system and a brief literature survey on the 

existing network reduction methods. Chapter 3 provides two new HEPF-based formu-

lations that can provide analytical voltage solutions that are accurate when the load and 

generation profiles are scaled either 

a.       Uniformly across all buses, or  

b.      Along a pre-defined direction. 

Four different HEPF-based methods to estimate the SNBP of a system are proposed 

and compared in this chapter. Numerical results for the IEEE 14-bus, 118-bus, 300-bus 
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systems, the NORDIC-32 system and the 6057-bus ERCOT system are provided in 

order to compare the accuracy of the proposed methods with the CPF. 

Chapter 4 contains HEPF-based nonlinear network reduction for radial distribution 

networks using the formulations described in Chapter 3. Numerical results are provided 

on a synthetic radial network obtained by modifying the IEEE 14-bus system. The ac-

curacy of the HEPF-based reduction is compared with that of Ward reduction in terms 

of the accuracy of the voltages obtained from the two networks when the load/genera-

tion profile is changed in a pre-defined direction. Different ways of moving away from 

the pre-defined direction of load/generation change are discussed and a comparison 

with Ward reduction is provided when the load profile changes in a random manner.  

Chapter 5 contains a discussion on eight different methods of calculating Padé ap-

proximants for any given power series, that are well-recognized among mathematicians, 

and compares these methods for their applicability to the HEPF. Also, higher order 

Hermite- Padé approximants are explored and their advantages and disadvantages over 

diagonal Padé approximants are noted.  

Chapter 6 contains a discussion on the traditional way of using local measurements 

to build Thévenin equivalent networks at the bus-of-interest and explores its different 

aspects. Nonlinear Thévenin-like networks are then built using model data and it is 

shown that the series impedance in the Thévenin-like network can be assumed to be of 

any desired value and the nonlinear voltage source will then be modified to preserve 
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the load voltage and load current behavior. Multi-bus nonlinear networks are developed 

in which network topology and parameters can be made arbitrary and the nonlinear 

current injections can be suitably modified such that the load voltage and load current 

behavior is preserved. The arbitrariness of the nonlinear reduced-order networks can be 

used to simplify the process of obtaining such networks using local measurements. 

Finally, the conclusions and an outline of the future work are presented in Chapter 

7. 
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2 LITERATURE REVIEW 

The literature review presented in this chapter will discuss the existing methods for 

two applications, for which HEPF is used in this report: 

a.  Four HEPF-based methods of estimating the saddle node bifurcation point are 

discussed in detail. 

b. The idea of using HEPF for developing nonlinear reduced-order network equiv-

alents for distribution networks is also introduced.  

The literature review presented in this chapter will primarily focus on the existing 

method used in the industry for estimating the saddle node bifurcation point (SNBP) of 

power systems. A brief review of the existing network reduction techniques will also 

be provided. 

2.1 Saddle node bifurcation point estimation 

Because of the difficulty of siting transmission lines, utilities are often forced to 

serve increased electric power demand, without a concomitant expansion of infrastruc-

ture. This can lead to the system being operated closer to its saddle-node bifurcation 

point (SNBP) and therefore closer to voltage collapse than desired. There have been 

occurrences of heavy loss of load and in some cases even black-outs, because of a re-

duction in voltage magnitudes at buses over a time scale of a few minutes to hours 

followed by a sudden sharp fall in the voltage magnitudes, e.g., [45], [46]. One goal of 

a voltage stability study is to determine the voltage stability margin, e.g., the amount of 
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real and/or reactive power that can be added before the system experiences voltage 

collapse, with the distance to the SNBP being a quick indicator of stability margin. The 

phenomenon of the SNBP can be explained using an example of a two-bus dc system, 

consisting of a constant voltage source V0 (1 pu) connected to a real-power load P, by 

a branch of resistance R = 0.1 pu. The power-balance equation at the load bus is given 

by, 

V

P

R

VV


0

 

(2.1) 

where V is the voltage at the load bus. The two solutions of (2.1) are plotted against the 

real-power load in the system in Figure 2.1. It is seen that for all P < 2.5 pu, two voltage 

solutions exist for the system, of which the higher solution is the operable solution and 

the lower solution is the inoperable solution. At the SNBP when P = 2.5, the two solu-

tions coalesce and finally beyond the SNBP (P>2.5), no solution exists for the problem. 

 
Figure 2.1 Solutions of a two-bus dc system vs. load 
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Thus, the SNBP of a system is the point at which the operable and the inoperable 

solutions coalesce and beyond that point no solution exists for the given problem [41]. 

For a power system, the SNBP can be denoted by the maximum load-scaling parameter 

λ, for which the power-flow problem has a stable operating point. It is not necessary to 

scale all loads uniformly when determining the SNBP, a certain pre-defined direction 

of change can be chosen. It has been shown that no dynamics are required to be modeled 

in order to obtain the SNBP of a system and that the small signal voltage stability limit 

depends only on the steady-state characteristics of the system [47] - [49]. It has been 

shown that the right eigenvector of the Jacobian matrix at the SNBP gives the initial 

direction of dynamic voltage collapse while the left eigenvector can be used for moni-

toring of voltage collapse and taking corrective actions to avoid it [50]. When the load-

scaling parameter is at its SNBP value, one of the eigenvalues of the Jacobian matrix 

becomes zero and thus the Jacobian matrix becomes singular. Since the Newton-

Raphson power-flow method requires the inversion of the Jacobian in order to solve 

the problem, adaptations such as continuation methods have been used as stabilizers 

[42]. Some well-researched methods of estimating the SNBP will be discussed in this 

section. 

2.1.1 Continuation power flow 

The method used in most PF applications to estimate the SNBP is the continuation 

power flow (CPF), which is a NR-based method [43], [44]. The idea of the CPF is to 
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follow the characteristic power-voltage (PV) curve of the power system. Starting from 

a known solution on the PV curve, the load in the system is increased and a continuum 

of power flow solutions is found until the SNBP is reached [44]. The primary advantage 

of the CPF is that it slightly reformulates the power-flow problem using an additional 

parameter that models the load increase, such that the modified Jacobian in the problem 

is not singular even at the SNBP. The known solution is used to estimate a subsequent 

solution corresponding to a different value of the continuation parameter using a tan-

gent predictor. The estimate is then corrected in the “corrector” step to obtain the accu-

rate solution using Newton-Raphson. The details of the CPF are described in this sec-

tion. 

The power-balance equations corresponding to the ith bus are originally given by 

(2.2), 
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  (2.2) 

where Vie
jδi, Vke

jδk
 are the voltages at bus i and bus k, respectively, yike

jvik is the (i,k)th 

element of the bus admittance matrix, PLi and QLi are the real and reactive loads and PGi 

and QGi are the real and reactive generations at bus i respectively. These equations can 

be modified to (2.4) using a load increment parameter defined by (2.3), 

critical 0   (2.3) 
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where PLi0 and QLi0 are the original real and reactive loads at bus i, PGi0 is the original 

real generation at bus i, kLi and kGi denote the rate of load change and generation change 

at bus i respectively as λ changes, ψi represents the power factor of the load change at 

bus i and SΔbase is the apparent power that provides an appropriate scaling of λ. The 

different kLi, kGi and ψi allow the power at each bus to be changed independently. The 

base solution is used to predict the next solution by obtaining a suitable step along the 

tangent to the solution path. The tangent is calculated by taking a derivative of (2.4) 

along with an additional equation to choose the magnitude, typically 1.0, of one of the 

tangent vector components. Thus the tangent vector is obtained as given by (2.5), 
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where δ denotes the N x 1 (N is the number of buses in the system) vector of bus 

voltage angles, V denotes the N x 1 vector of bus voltage magnitudes, 0 denotes a 2N x 

1 vector of zeros. The variable Fδ is a 2N x N matrix of the partial derivatives of (2.4) 

with respect to the bus voltage angles i.e. δ. The variable FV is a 2N x N matrix of the 

partial derivatives of (2.4) with respect to the bus voltage magnitudes i.e. V. The com-

bined matrix [Fδ FV], a square matrix of dimension 2N x 2N, is the same as the Jacobian 
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matrix of the original power-flow equations (given by (2.2)). The variable Fλ is a 2N x1 

vector of the partial derivatives of (2.4) with respect to λ. The variable ek is a 1 x (2N+1) 

row vector, with only the kth element being one and all others being zero. The tangent 

vector obtained by solving (2.5) is a (2N+1) x 1 column vector. The matrix in (2.5) is 

guaranteed to be non-singular even at the SNBP due to the additional λ parameter. 

When the high voltage path of the P-V curve is being traced (i.e. the load is increasing), 

+1.0 should be used in (2.5), while -1.0 should be used when tracing the low-voltage 

solution path. The prediction of the next solution is then made using (2.6) where σ in-

dicates the step size which can be varied as the continuation process progresses and the 

‘*’ terms are the predicted solution for the next step. 
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The corrector step then involves solving (2.4) (using Newton-Raphson method) 

such that xk, the continuation parameter has the value xk
* obtained from step (2.6). The 

load parameter λ is the typical choice for the continuation parameter in the CPF at nor-

mal loading conditions when the voltages are relatively slow-changing, whereas at 

heavily loaded conditions, the voltage magnitudes and angles experience a faster 

change and hence can be better continuation parameters. The SNBP is then detected 
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when dλ from (2.5) becomes zero while traversing the stable P-V curve and it becomes 

negative after the SNBP. Weak buses can also be determined based on the buses with 

the highest change in voltage as the load parameter changes. 

One of the important uses of the CPF is to estimate the available transfer capabilities 

(ATCs) for critical interfaces. ATC is the available capacity to transfer power over a 

given interface over and above the existing power flow across the interface, while obey-

ing the restriction that there are no voltage limit violations, thermal overloads, voltage 

collapse or transient stability issues for a set of faults [60], [61]. As per the Federal 

Energy Regulatory Commission (FERC) requirements, the ATCs for key interfaces has 

to be made available on a publicly accessible Open Access Same-time Information Sys-

tem (OASIS) [59]. Hence the CPF is a key part of the reliability studies conducted by 

all independent system operators (ISOs). For example, PJM Interconnection conducts 

voltage stability studies on key interfaces every day after the day-ahead scheduling is 

completed [62]. It also runs a “transfer limit calculator” every 4-5 minutes using the 

state estimator snapshot to establish the safe operating limits of critical interfaces [62]. 

Likewise, CAISO also performs day-ahead PV analysis for critical interfaces along 

with a real-time voltage stability analysis run every five minutes [63].  

The computational complexity of the CPF is much higher than a simple NR PF 

since it requires solving a new PF problem at each step as one moves along the P-V 
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curve toward the SNBP [44]. This increase in the execution time may became problem-

atic when the system size becomes large. 

2.1.1.1 Further improvements and modifications to the CPF 

Significant research has been done in order to study and improve the accuracy and 

speed of the CPF. The CPF with an adaptive step size control using a convergence 

monitor was proposed in [53]. In this approach, the step-size calculated using the con-

vergence monitor is compared with the step size obtained using the sensitivity of the 

reactive power generations and the voltages with respect to the continuation parameter 

and the smallest step size is chosen. Global geometric parameterization was used in 

[54] for the CPF without change of the continuation parameter. Further, the process was 

made faster by updating the Jacobian only after significant changes in the system are 

seen such as boundary conditions or topology changes. A local geometric parameter 

approach was used for the CPF in [55] which could be used to trace the entire P-V curve 

with a fixed step length. Amongst many other publications on the parameterization of 

the CPF, are [56] which proposed the use of arc length as a parameter, and [57] which 

proposed the use of real-power losses across one of the branches as a parameter. The 

drawbacks of global parameters such as arc length were demonstrated in [58]. 

Another approach to speeding up the CPF was proposed [66] using a system reduc-

tion technique where the largest elements of the tangent vector at a known operating 

point is used to determine the critical load clusters that are “strongly” connected to 
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generate independent systems. Furthermore, variables that suffer little change during 

any continuation step of the CPF are eliminated by fixing them at the last equilibrium 

value. However the partitioning techniques used for generating independent subsystems 

were shown to be inadequate, as the independent systems obtained at a particular load-

ing level were not able to capture the system behavior for broad load variations [66]. 

The clustering technique could however be useful in identifying the critical area with 

respect to voltage stability. If the cluster does contain the critical bus, an index called 

Tangent Vector Index (TVI) which is the reciprocal of the largest entry in the tangent 

vector can be used to modify the predictor step-size and the process is continued until 

the TVI is lower than a certain threshold in order to quickly estimate the SNBP with a 

speed-up of about three times over the conventional CPF [66]. 

While the above proposed improvements still require multiple power-flow prob-

lems to be solved, it will be shown in chapter 3 that the HEPF-based methods proposed 

in this document can estimate the SNBP, as well as trace the P-V curve, by solving a 

single power-flow problem. 

2.1.2 Other methods for SNBP estimation 

Approaches other than the continuation method have also been investigated in order 

to estimate the SNBP, some of which will be briefly noted here. A summary of the point 

of collapse (POC) method of estimating the SNBP which calculates the point at which 

the Jacobian has a single zero eigenvalue with non-zero left and right eigenvectors is 
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presented in [67] where the corresponding right eigenvector can be used to detect the 

areas prone to voltage collapse and the left eigenvector can be used to compute an op-

timal control strategy to extend the SNBP.  

A predictor-corrector method was proposed in [65] in order to estimate the reactive 

power limit points with the maximum reactive power from any generator being voltage-

dependent. The predictor step was based on the sensitivities of the reactive power gen-

eration at points of VAr support to change in the loading parameter while the corrector 

step finds the point at which both the voltage is constrained to its specified value as 

well as the reactive power is constrained to its limit.  

Since the above methods do not involve solving multiple power-flow problems, 

they are expected to be faster than the CPF, however they do not trace the PV curve 

and hence convey less information.  

Optimization algorithms such as the genetic algorithm, particle swarm optimization 

and their variants have been used to detect the closest SNBP in [68] - [74] amongst 

others. These Optimal Power Flow (OPF) based methods maximize the loading param-

eter such that the power flow equations, generator reactive power limits are satisfied. 

In the standard form, the voltage magnitude and reactive power generation at the gen-

erator buses are allowed to vary between certain bounds in order to obtain the optimal 

solution, as opposed to the CPF where the voltage magnitude at the generator buses is 

kept fixed as long as the generator VARs are within limits. The equivalency of the OPF-
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based methods and the CPF when certain optimality conditions are met is shown in [70], 

[75]. The optimization-based approaches are also computationally expensive as they 

involve solving nonlinear, non-convex optimization problems.  

Wide-area-measurement-based voltage stability analysis using modified coupled 

single-port models has been examined in [81]; while physical constraints such as VAr 

limits are not considered in that work, they are shown to be important. Many research 

papers focused on measurement-based voltage stability studies have been published, of 

which [64], [81] - [84] are only a few.  

Artificial neural network based methods of assessing voltage stability have been 

proposed in [76] - [80] amongst others. There are numerous ways to train the artificial 

neural network, while some focus on ensuring that the probability of failure is less than 

a certain value, others use the neural network to obtain certain stability indices to de-

termine the proximity of the system to voltage collapse.  

One of the primary goals of these alternatives to continuation-based methods of 

assessing the steady-state voltage stability of a system is to reduce the computation time 

involved in the CPF. Trying to find efficient ways of estimating the maximum loading 

point of systems continues to remain a topic of interest. Additionally, the model-based 

approaches mentioned, use numerical techniques such as Newton-Raphson which can 

have convergence issues. The work presented in this document will use the HEPF to 

estimate the SNBP since it is theoretically guaranteed to obtain the operable solution to 



21 

the given nonlinear power-flow problem, if one exists [16], [17]. Another goal is to 

reduce the computational effort required in performing this analysis. 

2.2 Network reduction methods 

A second focus of this research has been the application of the holomorphic embed-

ding method to the network reduction problem. Because of network size and/or 

model/problem complexity, it is often necessary to obtain a reduced-order network 

model of a large, complicated systems in order to limit the computational effort needed 

to perform planning studies and make investment decisions. To this end, a variety of 

network reduction techniques have been developed in the past, of which the Ward re-

duction and its variants are the most widely used. With the available computation ca-

pacity, transmission networks are modelled in detail in most power system analysis 

studies; however the distribution systems are often represented at the point of intercon-

nections as an aggregated injection obtained using Ward reduction (or one of its vari-

ants) or by estimation of the demand at that point from historical data. A short review 

of Ward-reduction methods is discussed next. 

Note: In the rest of this document, the terms “external buses/ external system/ ex-

ternal network” refer to the portion of the original system that was eliminated during 

the reduction and is not a part of the reduced network; while the term “internal buses” 

refers to the portion of the original system that was retained in the reduced network. 



22 

2.2.1 Ward reduction 

In the traditional Ward reduction method, the nonlinear generation/load models at 

external buses are linearized as current injections at each external bus based on the 

given operating condition [85], [86]. The eliminated portion of the original network is 

then modeled as equivalent constant current injections at the boundary buses of the 

reduced network. The current injections at the external, boundary and internal buses 

calculated in the previous step, can be used to obtain the bus voltages as shown in (2.7). 
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By performing partial LU factorization, (2.7) can be modified to (2.8). 
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Thus the boundary bus equivalent currents can be calculated by multiplying the 

LHS of (2.8) with the inverse of L as given in (2.9). 
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Finally, the equivalent currents are converted to complex power injections using the 

voltages at the given operating condition.  
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The Ward-injection method, converts the external shunts to current injections prior 

to the procedure described above, so that only the series elements1 of the external net-

work are used to obtain the branch parameters of the reduced network, thus representing 

only the base-case effects of the shunts [90]. The Ward-admittance method (or Kron 

reduction) on the other hand, models all external injections as shunts so that the current 

injections at the external buses are zero [90]. This approach however has the drawback 

that the shunts in the reduced network can become very large and these unusual values 

can affect the convergence of power-flow algorithms, particularly the decoupled algo-

rithms [90]. Thus, the Ward-injection reduction method is preferable. 

Ward reduction assumes that the loads and generation in the external network re-

main at a fixed schedule of real and reactive power and that the voltage profile remains 

the same as in the base-case condition. Hence for operating conditions different from 

the base-case, the Ward reduction fails to model the change in losses accurately and 

fails to model the reactive power support (bus voltage control) from the external net-

work accurately. 

2.2.2 Other methods of network reduction 

As an improvement, the extended Ward method accounts for reactive power support 

from the external network by creating a fictitious generator buses attached to each 

                                                 
1 The term “series elements” in this document refers to the non-shunt part of the network. 
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boundary bus, generators which do not generate any real power but instead provide 

reactive power support [87].  

Another way to model the external reactive power support was proposed in the Ra-

dial Equivalent Independent (REI) method which aggregates the injection of the exter-

nal buses to a fictitious REI node which is connected to the boundary buses by fictitious 

branches [88], [89]. A critical analysis of the above-mentioned reduction methods and 

their variants is described in [90] where the heavy dependency of these methods on the 

operating condition is pointed out.  

Kron reduction is another method used to analyze power systems with a focus on 

the voltage profiles of a few selected buses [91]. Buses with non-zero current injections 

which are not of interest are converted to shunt admittances and all these buses with 

zero current injections are then eliminated using Kron reduction. A comparison of the 

commonly used network reduction methods such as Ward reduction, Kron reduction 

and REI reduction is provided in [91] where it is shown that the performance of the 

methods varies with the extent of the change in operating condition, and is also system 

dependent. A novel method to improve the REI method has been proposed in [92] to 

better model the change in operating condition. It updates the REI equivalent obtained 

using the base-case operating condition by running a state estimation on the internal 

network and finding the mismatch on the boundary buses and thus can also account for 

topology changes in the network.  
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Bus aggregation techniques have also been used to produce reduced-order dc net-

works, such as [93] which divides the given system into zones and then uses power 

transfer distribution factors (PTDFs) in an overdetermined problem formulation to cal-

culate equivalent-branch-susceptance parameters that best match the base-case inter-

zonal power flows. The method was shown to have more accurate results for inter-zonal 

power flows than the Ward and REI equivalents even for operating conditions different 

from the base-case, along with being computationally more efficient. Bus aggregation 

technique is also used in [94] which uses the congestion profile of the original network 

to assign flow limits on to the reduced-order dc network. The results of an optimal 

power flow (OPF) performed on the reduced network show that while the congestion 

profile of the original network is retained, the LMPs obtained can have up to a 15% 

error for some of the cases examined [142].  

Thus developing network equivalents which can more accurately model changes in 

operating conditions of the original network remains an area of interest, an issue we 

address in this work, particularly for developing more accurate representations of the 

distribution systems connected to an HV transmission system. 
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3 HEPF-BASED METHODS OF ESTIMATING THE SADDLE-NODE BIFUR-

CATION POINT OF A SYSTEM 

Estimating the saddle-node bifurcation points of power systems and available trans-

fer capabilities across critical interfaces is an important study performed during plan-

ning as well as in the operational realm. Predicting the SNBP of a power system has 

become more critical as the power-system loading has increased in many places without 

a concomitant increase in transmission resources. Since a Newton-Raphson power-flow 

method is inherently unstable near the SNBP, adaptations such as continuation methods 

have been used as stabilizers. Since the power-flow problem lies at the heart of the 

SNBP-estimation, HEPF can be used to advantage for this purpose as it is theoretically 

guaranteed to find the high-voltage solution to the power-flow problem, if one exists, 

up to the SNBP, provided sufficient precision is used and the conditions of Stahl’s the-

orem are satisfied by the equation set. In this chapter, four different HEPF-based meth-

ods to estimate the saddle-node bifurcation point of a power system, are proposed and 

compared in terms of accuracy as well as computational efficiency. 

The first step in developing a proper HEPF formulation is to render the PBE’s (orig-

inally non-holomorphic due to the presence of the complex conjugate operator) holo-

morphic. While there are an infinite number of ways of embedding the nonlinear non-

holomorphic power-flow equations, three different formulations are explored for SNBP 

estimation: 
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a. Non-scalable formulation: This formulation represents the original PBE’s only 

at (embedding parameter) α = 1.0 and V(α) evaluated any other value of α is 

meaningless [40]. 

b. Uniform scaling formulation: The advantage of using this formulation [95] over 

previously published formulations ([16], [17], and [40]) is that the solution V(α), 

evaluated at any value of α = αk short of the SNBP, represents the bus voltages 

when all the loads and generation in the system are uniformly scaled. 

c. Direction-of-change scaling formulation: For most studies, it may not be desir-

able to scale all loads uniformly, but rather in a pre-defined direction of change. 

Using this formulation [95], the solution V(α), evaluated at any value of α = αk 

short of the SNBP, represents the bus voltages when the change in the loads and 

generation in the system are scaled in a uniform manner that is similar to the 

CPF. 

The last two formulations can be used to an advantage to estimate the SNBP without 

solving multiple power-flow problems. It can also be used to trace the high voltage path 

of PV curves by simply substituting different values of α in the solution V(α), without 

solving multiple nonlinear problems. 

3.1 Formulation to scale all loads and generations uniformly 

Consider a general (N)-bus system consisting of a slack bus, called slack, a set m 

consisting of PQ buses, a set p consisting of PV buses which are not on VAr limits and 
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a set q consisting of PV buses that are on maximum/minimum VAr limits. The PBE for 

a PQ bus with a constant power load is given by, 
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 (3.1) 

where Yik is the (i, k) element of the bus admittance matrix, and Si and Vi are the complex 

power injection and voltage at bus i, respectively. 

The traditional defining equations for a PV bus are given by (3.2) and (3.3). 
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piVV sp

ii  ,  (3.3)   

where Pi denotes the real power injection and Vi
sp is the specified voltage magnitude at 

bus i. PV buses on VAr limits are treated similar to PQ buses with their reactive power 

generation fixed at the appropriate limit and the real power generation given by (3.2). 

It is possible to embed (3.1) - (3.3) in such a way that the solution obtained at 

different values of real α, represents the solution (if it exists) when the complex power 

injections at the load buses and real power at generation buses are scaled by a factor 

of α. It is necessary to have such a formulation in order to be able to estimate the 

SNBP of the system without having to solve a new PF problem at different loading 

conditions. The HEPF formulations published in the past, do not allow one to scale 

the load by a factor of α, since they solve the given power-flow problem only at α=1.0, 

because they are consistent with the power system equations only at α=1.0. Consider 
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the following set of holomorphically embedded equations, where (3.4) represents the 

PBE for PQ buses, (3.5) represents the voltage magnitude constraint for the slack bus, 

(3.6) represents the PBE for the PV buses, (3.7) represents the voltage magnitude 

constraint for the PV buses and (3.8) represents the PBE for PV buses on VAr limits, 
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where Pgi denotes the real-power generation, Pli denotes the real-power load, Qgi(α) 

denotes the reactive-power generation, Qli denotes the reactive-power load at bus i and 

Qgi_lt denotes the respective maximum/minimum VAr limit for a generator bus on max-

imum/minimum VAr limits. The real and reactive power injections at bus i are given 

by: 

piPPP ligii  ,  (3.9) 
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Using (3.9), (3.6) and (3.8) can be written as: 
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Since V(α) and Qgi (α) are holomorphic functions of the parameter α, they can be ex-

pressed as Maclaurin series given by: 
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where Qgi (α) is a real-valued series. Note that the variable V* in (3.4), (3.7), (3.11) and 

(3.12) is embedded with α* instead of α in order to ensure that the Cauchy-Riemann con-

ditions are satisfied, thereby retaining the holomorphicity of the function. For this reason, 

it is important to keep in mind, that (3.4), (3.7), (3.11) and (3.12) represent the given power 

system only for real values of α [96]. The Maclaurin series for V*(α*) is given by: 

 nnVVVV  ][]1[]0[)( *****  
 

(3.14) 

The proof that the series given by (3.13) is the Maclaurin series for the given formula-

tion is derived in Appendix D. Equations (3.4), (3.5), (3.7), (3.11) and (3.12), represent a 

new formulation that allows the loads at all buses, and the real-power generation at PV 

buses, to be scaled by a factor of α. Note that in (3.11), only the reactive-power generation 

Qgi is written as a function of α instead of the net reactive-power injection Qi. This allows 

the reactive-power load to be scaled by a factor of α, while the variable value of reactive-

power generation needed to maintain bus voltage control, is calculated from the power se-

ries. Also, in (3.12), Qgi_lt is not multiplied by α, since this is fixed for a bus on VAr limits 
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and the reactive power cannot be scaled with α. This is the only difference between the 

equation for PQ buses and that for PV buses on VAr limits. 

By substituting the series V(α), V*(α*) and Q(α) given by (3.13) and (3.14) into (3.4), 

(3.5), (3.7) (3.11) and (3.12), we obtain: 
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Since it is required that (3.15) - (3.19) hold true for any value of α, the coefficients 

of the respective powers of α on both sides of the equations must be equal. In order to 

find the series coefficients that satisfy these equations, the inverse of the voltage power 

series on the RHS has to be represented as a power series. To achieve this, let the inverse 

of the voltage function V(α), be represented by another power series, W(α), defined by 

W(α)=W[0]+W[1]α+W[2]α2+… where the relationship between W(α) and V(α) is given 

by (3.20). 
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Thus equations (3.15)-(3.19) are now modified to: 
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In order to guarantee that the HEPF can find an operable solution (if one exists), it 

is critical to have the correct germ [17], [16], [20]. The germ is the solution obtained 

by solving the holomorphically embedded equations representing the PF problem at 

α=0. 

This extrapolation-capable formulation presented above, however, poses some 

challenges when calculating the germ. The system of equations to be solved for the 

germ is given by (3.26.a)-(3.26.d). 
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(3.26) 

 

Note that (3.26.b) and (3.26.c), representing the PBE and the voltage magnitude 

constraints for PV buses and (3.26.e) representing the PBE for PV buses on VAr limits, 

cause the system of equations that need to be solved to obtain the germ to be nonlinear. 

Since the NR is known to have good convergence properties for lightly loaded systems 

and the germ represents the solution for a no-load, no-real-power-generation scenario, 

this germ can be obtained by using the NR for this special case, and it may be a better 

choice in order to minimize the computational time required in finding the germ. How-

ever, it is possible, that NR might not give the right germ; it could converge to the low-

voltage solution for this lightly-loaded problem (the only loads are the shunts). How-

ever, if one wants an algorithm that is guaranteed to find the correct germ, the HEPF 

can be applied to solve (3.26) as explained in the following sub-section 3.1.1. 

3.1.1 Calculating the germ using HEPF 

The nonlinear problem given by (3.26) can be solved using the HEPF, wherein the 

voltages and reactive powers at α=0 can be represented as different Maclaurin series of 

the complex embedding parameter β, given by (3.27) - (3.31), 
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where Yik trans corresponds to the “non-shunt-branch” part of the admittance matrix,   Yi 

shunt corresponds to the shunt part of the admittance matrix, Vi_0(=1) and Qgi_0(=1), 

represent the voltage and PV-bus-reactive-power injections under no-load conditions, 

respectively. The set of equations to obtain the germ for the above formulation is given 

by (3.32). 
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Since only the non-shunt branches are included in Yik trans, the sum of all off-diagonal 

elements in any row is equal to the negative of the diagonal element. Thus a voltage 

magnitude of 1.0 pu and a voltage angle of 0° for all of the PQ buses is consistent with 

(3.32.a). Equations (3.32.c) and (3.32.d), are likewise satisfied when voltage germs for 

the PV buses and the slack bus are assumed to be 1.0 pu. Finally, (3.32.b) must be 
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solved for the generator reactive power injection at  = 0. From inspection, we see that 

the reactive-power germ is 0.0. Thus, the germ for this formulation can be obtained 

through observation rather than calculation. 

Using this germ, a recursive relation can be developed to find the remaining terms 

of the power series by equating the coefficients of the same powers of β on both sides 

of (3.27) - (3.31). Equating the coefficients of the same powers of β on both sides of 

(3.27), (3.28), (3.29) and (3.31), we obtain (3.33), (3.34), (3.36) and (3.37). 
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where δni is the Kronecker delta, defined by (3.35). 
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Equating the coefficients of the powers of β on both sides of (3.30) yields (3.39), 

where Vi re[n] represents nth coefficient of the real part of the voltage power series from 

the voltage-magnitude constraint. The notation δni, as defined in (3.35), may be used to 

write a generalized expression to evaluate Vi re[n]. The derivation of Vi re[n], ip, for an 

arbitrary value of n is given in (3.38). 
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Equations (3.33), (3.34), (3.36), (3.37) and (3.39) are solved to obtain the remaining 

terms of the power series. Once a sufficient number of terms are obtained to meet the 

desired convergence tolerance, Padé approximants can be used to obtain the converged 

voltages and PV-bus-generated reactive powers for the germ. 

3.1.2 Recurrence relations for the scalable form 

Once the germ is obtained, the recursive relations to find the remaining terms of the 

power series, are obtained by equating the coefficients of same powers of α on both 

sides of equations (3.4), (3.5), (3.7), (3.11) and (3.12). Equations (3.40) and (3.41) pro-

vide the recurrence relations for the PQ buses and the slack bus respectively. 
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The recurrence relation for the PBE of PV buses is obtained as: 
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Equation (3.42) can be further simplified to: 
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The unknowns Qgi[n] and Wi[n] can be moved to the LHS, leaving all known quan-

tities on the RHS to obtain: 
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Notice that in the above equation, a new unknown, W[n], is introduced. In order to 

calculate the coefficients of the inverse power series, W[n], both sides of (3.20) are 

multiplied by V(α). 
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By equating the coefficients of the same powers of α on both sides of (3.45) a rela-

tion between W[n] and V[n] is obtained as given in (3.46). 
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Equating the coefficients of same powers of α, on both sides of the embedded volt-

age magnitude constraint equation given by (3.18), we obtain: 
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Note that all the quantities on the RHS of (3.47) are known. The recurrence relation 

for PV buses on VAr limits is obtained as: 
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Note that in (3.48) also, there is an extra unknown W[n], and thus an additional 

equation given by (3.46) needs to be added to the system of equations for PV buses on 

VAr limits in order to ensure that the problem is not under-determined. 

The system of linear equations (3.40), (3.41), (3.44), and (3.46)-(3.48) represent the 

recurrence relations for the formulation given by (3.4), (3.5), (3.7), (3.11) and (3.12). It 

is important to keep in mind that Qgi(α) is a purely real series. In order to obtain the 

power series coefficients using a single linear matrix equation, the unknowns need to 

be split into real and imaginary parts. 

Since the power series resulting from solving these recurrence relationships will 

only converge within its radius of convergence, Padé approximants are used to evaluate 

these series everywhere in the function’s domain, including where the series is non-
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convergent. A Padé approximant is a rational-function (ratio of two polynomials) ap-

proximation to a power series that can yield a more accurate approximation to the de-

fining function than the truncated series of the same length. A common Padé approxi-

mant notation to indicate that the degree of the numerator polynomial is L and the de-

gree of the denominator polynomial is M, is [L/M]f(α), given in (3.49). 
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(3.49) 

The matrix method used in this work for finding the rational approximant [22] is 

straight forward and involves solving a dense set of linear equations of dimension M 

and then a forward substitution through a dense lower triangular matrix of dimension 

L+1. The procedure for calculation and some key properties are described in detail in 

section 5.1 of this work. A diagonal Padé approximant for a series with a finite number 

of terms can be taken to be a rational approximant whose numerator and denominator 

polynomial degrees are equal (i.e., L=M). If the difference between the degree of the 

numerator and denominator polynomial is 1, (i.e., |L-M|=1), it is said to be a near-diag-

onal Padé approximant. Since the diagonal or near-diagonal Padé approximant is the 

maximal analytic continuation of the given power series [20], its value for any α within 

the function’s domain is guaranteed to be the HV solution for the above embedding 

with the germ defined above, provided the conditions of Stahl’s theorem are satisfied 

[20], [21]. Note that once the Padé approximants for the voltages are obtained, the 

SNBP may be found by varying α in the Padé approximants (not re-solving the PF 
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problem), using a binary search approach, until the boundary is reached at which the 

Padé approximant no longer obeys the PBE’s, provide a sufficient number of power 

series terms has been calculated. This point is the boundary of the function’s domain. 

Thus, this method may be viewed as a curve-tracing of the P-V curve for a system.  

It is important to point out that it is not necessary to evaluate the Padé approximants 

for all buses in order to check for convergence, but need be done only for a few arbi-

trarily chosen buses. The sequence of diagonal Padé approximants will have converged 

when the solution is reached; however, if there is no solution to the given problem, the 

Padé approximants will oscillate.  

If the given loading on the system is too low, the solution at α=1.0 may converge 

with very few terms in the power series. However, care must be taken to ensure that a 

sufficient number of terms is included so that an accurate solution is obtained at higher 

values of α, especially near the SNBP. 

3.2 Non-scalable formulation 

While the germ calculation for the formulation presented in Section 3.1 requires 

solving a nonlinear problem, this section will present a non-extrapolating formulation 

whose germ may be found by inspection. One of the ways to holomorphically embed 

(3.1) - (3.3) is given by (3.49) - (3.53) where Yik trans corresponds to the “non-shunt-

branch” part of the admittance matrix and Yi shunt corresponds to the shunt part of the 

admittance matrix [17], [40]. Since this formulation is non-extrapolating and is valid at 
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only α=1.0, (3.50) can be used to represent PV buses on VAr limits as well, by setting 

the reactive power generation to be at its appropriate limit. 
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The germ for this method is 1.0 for all the voltage series and zero for the reactive power 

series. Once the germ is obtained, the approach for obtaining the solution for this formula-

tion is very similar to that presented in Section 3.1.1. It should be mentioned that this for-

mulation not only provides an obvious germ, but also is in general a bit more advantageous 

in terms of numerical stability and precision [106]. This is because by not including the 

shunts in the no-load case, the magnitudes of the voltages do not vary as much when going 

from α=0 to α=1.0, and thus the Padé approximants behave slightly better numerically in 

general [96]. A drawback of the above formulation is that it represents the given power 

system only at α=1.0 and has no meaningful interpretation at any other value of α. Since  

Yi shunt is also multiplied by α, at any value of α≠1, the solution corresponds to a network 

whose shunt-branch parameters differ from those of the original network. Also, the voltage 

magnitude constraints, embedded as given in (3.51) and (3.53) will hold true only at α=1.0. 

For any other value of α, the voltage magnitude constraints for the PV buses and the slack 
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bus will not be obeyed. However, because the HEPF is theoretically guaranteed to converge 

to the HV solution (provided sufficient precision is used), this formulation can be used to 

calculate the SNBP using a binary search approach. This involves solving multiple PF prob-

lems and is of the order of complexity of the CPF, where complexity here is taken as the 

number of PF’s that must be solved. The computational complexity of the method proposed 

in Section 3.1 is much less than that of the repeated solution approach proposed here, since 

for that method, only the Padé approximants for the voltages must be evaluated until the 

function’s domain boundary is reached, which is indicated by high bus-power mismatches. 

3.3 Using the roots of Padé approximants to estimate the SNBP 

The power series obtained may or may not converge depending on the value of α, 

i.e., for various loading conditions, even though a solution for the PF problem exists. 

The radius of convergence of the power series is determined by the closest singularity 

of the function to the origin [97]. Since the full solution V(α) is an algebraic curve, it 

has no poles; therefore the only singularities are its branch points on the α-plane (i.e., 

points where one or more branches coincide) [98]. The first singularity encountered 

along the real axis is precisely the bifurcation point that we seek [96]. However, in 

general, other branch points on the complex α-plane may be closer to α=0 [99]. In that 

case, the power series has a reduced convergence radius, and that is why Padé approx-

imants are needed. If the point of interest (given the loading condition) is outside the 

radius of convergence, then the voltage series will diverge. The series therefore needs 
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to be ‘redefined’ such that a converged solution is obtained for all loading levels where 

a solution exists. The sequence of near-diagonal Padé approximants, proven to be the 

maximal analytic continuation of the power series by Stahl’s theorem [20], can be used 

to extend the convergence region of the power series over the domain of the function. 

There are several ways to calculate the Padé approximant and one commonly used is 

the matrix method, which is well-described in [22] and has been summarized in Section 

5.1 of this report. A common Padé approximant notation is to use L as the degree of the 

numerator polynomial and M as the degree of the denominator polynomial. Though the 

matrix method described in [22] allows the calculation of a rational approximant of an 

arbitrary degree, Stahl’s theory [100] indicates that the close-to-diagonal Padé approx-

imants yields the best accuracy when evaluating the power series outside its radius of 

convergence. 

Stahl’s work ([20], [21]), originated from Nuttall’s work [98], which proved that 

the poles of the close-to-diagonal Padé approximant accumulate on Stahl’s compact set. 

When a scaling formulation is used, the distance from the origin to the closest real-

valued pole of the Padé approximant of the voltage power series gives the load-scaling 

value at the SNBP. The zeros of the Padé approximant accumulate in a manner similar 

to that of the poles; therefore the smallest real-valued zero or the smallest real-valued 

pole of the Padé approximant can be used to determine the proximity of the system to 

its SNBP. Some interesting results on the complexity of these poles and zeros have been 
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shown in [99]. While the SNBP can only be precisely obtained if computing the power 

series with an infinite number of terms and infinite precision, promising numerical re-

sults, given in sections 3.5, 3.6 and 3.8, show that the method works well for predicting 

the SNBP with a reasonable number of terms and finite precision. 

3.4 The sigma methods 

The method described in this section to calculate the SNBP of a system is based on 

calculating a set of complex-valued ‘σ’ indices proposed in [101]. The idea behind the 

method is to develop a two-bus equivalent system for each node of the power system 

spanning that node and the slack bus, an equivalent that preserves only the slack bus 

voltage and the voltage at the retained bus. It is a local nonlinear equivalent at each 

node. The parameters for this proposed reduced equivalent are calculated to be con-

sistent with the simple two-bus system comprised of a slack bus and a PQ bus as shown 

in Figure 3.1, where Z is the line impedance, S is the complex-power injection at the 

PQ bus (and hence P will be negative for real-power loads), V0 is the slack bus voltage 

and V is the PQ bus voltage. This section will describe the derivation of the σ indices, 

starting with a two-bus example [101]. 

 

Figure 3.1 Two-bus system diagram 

The power balance equation for the PQ bus in Figure 3.1, given by (3.54), can be 
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re-arranged to obtain (3.55),  
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where U=V/V0 is the normalized voltage and σ is defined as: 
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The roots of (3.55) which is a quadratic equation, are,  
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where σI and σR are the imaginary and real parts of σ, respectively.  

If the slack bus voltage magnitude is assumed to be controlled at 1.0 pu, the two 

roots represent the high- and low-voltage solutions for the given two-bus network. The 

two solutions meet at the point at which the radicand becomes zero, the SNBP. For the 

high-voltage solution to exist in a two-bus system, it is necessary that the radicand in 

(3.57) be positive. Thus the condition to ensure that the two-bus system is short of or at 

its static voltage collapse point, called the ‘σ condition’, is given by: 

0
4

1 2  IR   (3.58) 

For a multi-bus system, [101] proposed to find, for all system buses, two-bus equiv-

alents spanning the slack bus and bus of interest, structurally equivalent to Figure 3.1, 

where the PQ bus power injection is the native injection at this bus in the full network. 

One immediately sees a problem when trying to map a voltage-preserving two-bus 
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equivalent (described below) onto the structure of Figure 3.1: In a realistic system 

model, normalized bus voltages with real parts less than 0.5 are common, but cannot 

occur for the high voltage solution in a two-bus system (assuming the slack bus voltage 

angle is 0°) as shown in (3.57). (In fact, the low voltage solution for the two-bus equiv-

alent constructed below (low voltage solution from (3.57)) corresponds to the high volt-

age solution of the full network for cases when the real part of the normalized voltage 

is below 0.5.) Because [101] does not appear to recognize this incompatibility, nor rec-

ognize that taking the low voltage solution would have resolved this incompatibility, 

their theory leads to erroneous predictions. 

Two different ways of extending the σ equivalent to calculate the equivalent param-

eters of this two-bus equivalent and the proximity to voltage collapse for a general 

(N+1)-bus system are proposed in sub-sections 3.4.1 and 3.4.2 respectively. The ‘σ con-

dition’ can be used to reasonably estimate the SNBP for multi-bus systems, but not in 

the straightforward way published in [101], as will be discussed at the end of this sec-

tion. 

3.4.1 Non-extrapolating sigma method 

The method, given in [101], to estimate the voltage stability margin for a system, is 

an extension of the two-bus derivation to a general (N+1)-bus system. The normalized 

voltages at all buses in a full system model solution can be calculated using HEM, as 

power series of the embedding parameter ‘α’, given by U(α). A two-bus equivalent may 
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be constructed, and the σ index may then be obtained as a series of α, using (3.59) 

(which is structurally identical to (3.55)).  
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and where Vi() represents the bus i voltage series and i() is the two-bus-model equiv-

alent parameter to be determined. Multiplying both sides of (3.59) by Ui
*(α*) yields: 
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Solving this for the power series σi(α) yields, 
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where σi(α)= σi[0]+ σi[1]α+ σi[2]α2 + …. By equating the constant terms on both sides 

of (3.61), we obtain,  
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Thus the germ corresponding to the high-voltage solution, must be Ui[0]=1.0, i.e., 

Vi[0]=Vslack. Equating higher powers of α on both sides of (3.61), the  terms can be 

obtained as: 
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Note that (3.62) implies that (3.61) in its given form, is valid only if the voltage 

germ for the PF problem is Vslack for the high voltage solution, which is not generally 

true for the extrapolation formulation given in Section 3.1. Such a germ is obtained for 
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the formulation given by (3.49) - (3.53); however this formulation cannot be used for 

extrapolation, which is problematic for the purposes here since the objective when us-

ing (3.61) is to increase  (extrapolate) until the  condition of (3.58) is violated. A 

modification to (3.61), which would allow extrapolation of α, is given in Section 3.4.2.  

3.4.2 Extrapolating sigma method 

If (3.59) is viewed as the mathematical analog of a two-bus equivalent of the origi-

nal system reduced to a slack bus and bus of interest, then such an approximate equiv-

alent might be used to predict the SNBP by scaling α until the sigma condition is vio-

lated [101]; however (3.59), in its present embedding, is valid for extrapolation to the 

SNBP only for voltage series obtained from HE formulations that allow α extrapolation 

and where the germ for the voltages is 1.0. For the formulation presented in Section 3.1 

which allows extrapolation of α, the voltage germs are not necessarily 1.0 pu for prac-

tical systems. Hence (3.59) is only strictly valid for  = 1.0 and extrapolation is approx-

imate. We can modify (3.59) for use with the proposed extrapolation formulation, 

where the voltage germ is not 1.0. This can be done by eliminating α from the second 

term on the RHS of (3.59) as follows: 
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Thus the equation for σi(α) can be obtained as: 
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The value of [0] for this formulation is obtained as: 
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The [n] terms in the modified formulation are given by: 
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Thus σi(α) can now be used as the parameter of an approximate two-bus equivalent 

network at different values of α, up to the SNBP. 

It is stated in [101] that the σ indices for all buses can be plotted to obtain a graphical 

measure of the proximity to voltage collapse as well as to identify the weak nodes. In 

other words, if a parabola is plotted as defined by the expression in (3.58), the distance 

from the σ indices in the plane to the surface of the parabola, can be used to estimate 

the distance from the SNBP, and the buses whose σ indices are closer to the surface are 

the weak buses. Typically, modal analysis is performed to determine the weak buses of 

a system. Modal analysis involves calculating the eigenvalues of the portion of the re-

duced Jacobian that retains only the Q-V relationships and determining the buses that 

have the highest participation factors in the critical modes with smallest eigenvalues 

[114] and is described in more detail in section 3.4.3. However, it will be shown that 

the sigma condition proposed in [101] will not produce reliable results and that a mod-

ified requirement can be used to produce a tight upper bound on the SNBP. Further, 
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theoretically there is no relationship between the buses judged to be weak using σ indi-

ces and the weak buses obtained using traditional modal analysis.  

Equation (3.65) can be split into real and imaginary parts to obtain: 
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where UR and UI are the real and imaginary parts of the normalized bus voltages, re-

spectively, obtained using the full-model. The expression for σR(α) and σI(α) from 

(3.68) can be substituted into the expression given by (3.58), to obtain (3.69) 

 

     

 

 2

2

222

2

5.0)(

)()(25.0

)()()()(25.0

)()(25.0

















R

RR

IRIR

IR

U

UU

UUUU
 (3.69) 

Thus, it is seen from (3.69), the proximity of the ‘σ condition’ to zero, is equivalent 

to the proximity of the real part of the normalized bus voltage to 0.5. For a simple two-

bus (non-equivalent) system, indeed the real part of the normalized voltage is 0.5 at the 

SNBP and hence the proximity of the σ condition to zero is an indicator of the proximity 

to SNBP. However, for a multi-bus system (and hence its proper two-bus equivalent), 

this is not true and consequently, the magnitude of the σ condition is not a measure of 

closeness to the SNBP, but measures closeness to the point where the alternative root 

of (3.57) should be selected. Nor is the radicand of (3.57) approaching zero a reliable 

indicator of a weak bus as claimed in [101]; however, the buses whose σ condition first 
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approach zero as the system load is increased, have larger phase angles, which cause 

the real part of the normalized voltage to drop below 0.5. Consequently, the radicand 

approaching zero is not a measure of closeness to the SNBP, with a caveat described at 

the end of this section. 

Further, given this physical interpretation of the σ condition, and numerical results 

(from [140]), the buses closest to violating the σ condition do not necessarily corre-

spond to the weak bus(es) of the system as determined in [114]. Hence, it is not clear 

that this approach can be used to obtain insights about the strength of a bus as claimed 

in [101], [95] without further research.  

The inadequacy of the proposed approach for estimating the SNBP when the system 

loading is lower than that at the SNBP loading, will be demonstrated numerically using 

the IEEE 118-bus system. The SNBP of this system occurs when all injections are mul-

tiplied by 3.18, i.e., at α = 3.18 (provided a scalable formulation is used), as obtained 

from MATPOWER [102]. The complex σ indices at α = 1.88 are plotted for all the 

buses on a two-dimensional plane as recommended in [101], and shown in the left plot 

of Figure 3.2. At α = 1.88 which corresponds to 60% of the maximum allowable load-

scaling factor, some of the σ indices are very close to the surface of the parabola, i.e., 

limit imposed by the σ condition as shown in Figure 3.2. This occurs because some of 

the normalized bus voltages have real parts very close to 0.5, which causes the expres-

sions in (3.58) and (3.69) to have very small numerical values for these buses.  
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Figure 3.2 Plot of σI vs. σR at α = 1.88 and α = 3.1 for the IEEE-118 bus system 

As the system loading increases further, the real part of the normalized voltage for 

the buses that were close to the surface at α = 1.88, decreases below 0.5, and hence the 

numerical value of the expression in (3.58) increases, causing the σ indices for these 

buses to move away from the surface of the parabola. This behavior is shown in the 

right plot of Figure 3.2, where the σ indices are plotted at α = 3.1, a point much closer 

to the SNBP. 

This behavior is further confirmed by plotting the σ condition expression against α 

as shown in Figure 3.3 for the first 10 buses (based on the native bus numbering) of the 

118-bus system. It is seen that some of the buses come very close to violating the σ 

condition as α increases, far before the SNBP is reached, and then start increasing in 

value again, which is in agreement with the behavior shown in Figure 3.2. Such behav-

ior, where the σ indices for some of the buses approach the parabola surface as the load 
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increases and then move away from the surface with further increase in the system load, 

has also been observed in radial systems with only PQ loads and thus it is not an effect 

of the complexity of the system. 

 

Figure 3.3 Plot of σ condition vs. α for the IEEE-118 bus system 

If one searches for the point at which the σ condition is nearly satisfied (near zero), 

one will find that to occur for different buses at loading conditions well below the SNBP, 

and using the proximity of the σ condition to zero to estimate closeness to the SNBP 

would yield misleading and inconsistent conclusions; however, if one searches for the 

point where the σ condition becomes negative (which is theoretically impossible for 

voltage values short of the SNBP loading) using the Padé approximant of σ(α), one will 

obtain a reasonable estimate of the SNBP for the following reasons.  
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The Padé approximants of the bus voltages are found to be largely monotonic up to 

the SNBP, beyond which the voltage function no longer exists, and the evaluation of 

Padé approximants begins to oscillate wildly due to the poles and zeros of the approx-

imants. The location of closest real-valued pole/zero when surveyed over all system bus 

voltages has been found to be a tight upper bound on the true SNBP [95]. Beyond the 

SNBP, the oscillations in the bus voltages (which have no physical interpretation) also 

appear as oscillations in the σ index. These oscillations inevitably lead to a σ condition 

which becomes negative just beyond the SNBP. Thus, the lowest load at which a nega-

tive value occurs in the σ condition, when surveyed over all buses in the system, is a 

good indicator of the location of the SNBP [95]. The search method proposed, can be 

thought of as being analogous (not equivalent) to solving multiple power-flow problems, 

at increasing load levels, while searching for the point at which the power-balance equa-

tions are not satisfied. When the modeled operating condition is even infinitesimally 

beyond the SNBP, the voltage functions do not exist but the Padé approximants of those 

voltage functions contain information that can be used to advantage. Beyond the SNBP 

the high power-balance mismatches are an indication that the system is now modeled 

to be beyond the SNBP. While it is true that the voltage function does not exist at that 

point, the unacceptable power-balance mismatches can nevertheless be used as an indi-

rect indication of this non-existence. This will be demonstrated using the IEEE-14 bus 

system. The SNBP of the IEEE-14 bus system occurs when all loads and real-power 
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generations are scaled by 4.06, obtained using MATPOWER [102]. The Padé approxi-

mants of the voltage series with 41 terms in the series, if evaluated beyond α = 4.075 

are seen to oscillate and do not represent the true voltages of the system. This is seen in 

Figure 3.4, in which the real part of the Padé approximants of voltage series are plotted 

against α, for the IEEE 14-bus system. The real parts of the near-real poles and zeros 

with the smallest real parts, which are the cause of these oscillations in the voltage Padé 

approximants, are listed in Table 3.1 for the non-slack buses in the system. It is seen 

that the magnitude of the oscillations in the real part of the voltages are smaller for a 

few of the buses (plotted using dashed lines) than others. This occurs because of the 

following reason: 

Since the HEPF is valid only for real α, the voltages are evaluated only for real α and 

the smallest real poles/zeros are indicative of the SNBP. However, the zeros of the 20th 

order complex-valued polynomials, have some small imaginary parts, whether these 

imaginary parts are expected theoretically or occur because of approximations in the 

calculation process is unclear. The criterion we used (selected somewhat arbitrarily) to 

estimate the SNBP using the smallest “real” poles/zeros is that the pole/zero of the pol-

ynomial must fall within an arc of +/- 1° originating at the origin of the complex α plane 

and centered on the real axis. It was observed that the buses with smaller magnitude 

oscillations, had poles/zeros located closer to the boundary of this arc than other buses 

(though still less than 1°) i.e., the imaginary parts were relatively larger and hence the 
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point of evaluation along the real axis was somewhat farther from these complex-valued 

poles/zeros. Five poles and zeros with smallest real parts for bus number five (that has 

the smallest magnitude oscillation as seen in Figure 3.4) are listed in Table 3.2. The 

smallest “real” pole at bus five had the largest imaginary part of any SNBP-predicting 

pole for the 14-bus system: α = 4.0794 - 0.0037i. (Since the real part of this pole was 

4.07, the largest allowable value for the imaginary part was 0.07.)  

   

Figure 3.4 Plot of VR(α) vs. α for the IEEE-14 bus system 
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Table 3.1 Smallest “real” poles and zeros of voltage Padé approximants for the 

IEEE 14-bus system 

Bus 

number 

Zeros Poles 
Bus 

number 

Zeros Poles 

2 4.0851 4.0851 9 4.0800 4.0816 

3 4.0779 4.0783 10 4.0805 4.0818 

4 4.0754 4.0770 11 4.0806 4.0813 

5 4.0774 4.0794 12 4.0822 4.0825 

6 4.0814 4.0814 13 4.0818 4.0822 

7 4.0794 4.0805 14 4.0813 4.0827 

8 4.0806 4.0805    

Table 3.2 Five complex-valued poles and zeros with smallest real-parts for bus 

number five in the IEEE 14-bus system 

Serial number 

Zeros of Padé ap-

proximants 

Poles of Padé ap-

proximants 

1 4.0773 - 0.0052i 4.0794 - 0.0037i 

2 4.1813 - 0.0202i 4.1896 - 0.0135i 

3 4.3628 - 0.0418i 4.3819 - 0.0240i 

4 4.6422 - 0.0671i 4.6787 - 0.0272i 

5 5.0574 - 0.0984i 5.1224 - 0.0169i 

Since the σ’s are obtained using the full-system bus voltages, these oscillations in 

the voltages also occur in the radicand of (3.57), and therefore the ‘σ condition’ given 
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by (3.58), beyond α =4.075, as shown in Figure 3.5. It is seen that at α = 4.079, the ‘σ 

condition’ is violated for one of the buses in the system, i.e. the radicand in (3.57) be-

comes negative. The downward-zero crossing at α=4.079 indicates, not that the real 

part of the true normalized voltage in the full system is 0.5; but that the Padé approxi-

mants of the normalized voltages (which no longer represent the true voltage of the 

system) have real parts close to 0.5. Thus, the radicands become negative, which is 

physically impossible as (3.69) shows, but that occurs due to poles and zeros of the 

Padé approximants that produce wild oscillations which occur when using V(α) beyond 

the SNBP. Note that for two of the buses (plotted using dashed lines), the σ series has 

a pole/zero close to α = 4.05, causing the oscillations for these series to begin at α = 

4.05 as seen from Figure 3.5. Since the σ series is obtained by convolutions of the volt-

age series as given by (3.65), it is not surprising that the numerics cause the poles/zeros 

of the σ Padé approximants to be slightly different that the poles/zeros of the voltage 

Padé approximants for the corresponding buses. The radicands for these two buses do 

not have large-magnitude oscillations due to the imaginary part of the poles of their σ 

Padé approximants. Hence, for these two buses, the radicand of the σ condition becomes 

negative only after α = 4.13, as seen from Figure 3.6. Hence it is important to check the 

radicands of all the buses if the σ condition is to be used to estimate the SNBP.  
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Figure 3.5 Plot of Radicand of (3.57) vs. α for the IEEE-14 bus system 

 

Figure 3.6 Plot of radicand of (3.57) vs. α for buses with smaller poles/zeros in the 

IEEE-14 bus system 
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Hence, the σ condition can be used to reasonably estimate the SNBP, because there 

are high-magnitude oscillations (excursion to positive and negative infinity if infinite 

precision were used) in the evaluation of Padé approximants of the voltages that cause 

the radicand of (3.57) to become negative when α is increased beyond the SNBP. The 

SNBP of the system can be estimated by evaluating the σi(α) at escalating values of α, 

using its Padé approximant, until the σ condition is no longer satisfied. The value of α 

thus obtained is the scaling factor of the loads and real-power generation corresponding 

to the SNBP. Since it relies on detecting the oscillations in evaluations of Padé approx-

imants that occur beyond the SNBP, it has been observed in our numerical tests that the 

SNBP estimated by the σ condition is always a little higher than the value of α at which 

HEPF fails to converge (within the desired level of tolerance), which is expected. 

In summary, a simple modification of σ condition (search for negative radicand rather 

than proximity to zero) can be used to estimate a tight upper bound on the SNBP with 

reasonable accuracy. This condition is satisfied only when the modeled load is such that 

the U and σ series no longer have a physical interpretation. At loadings short of the SNBP, 

the σ indices cannot give reliable information about the proximity to the SNBP. Also, tight 

correspondence does not exist between the weak buses determined by the σ condition as 

described in [101] and the weak buses determined by modal analysis. 
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The Extrapolating Sigma Method has complexity advantages over the Non-Extrap-

olating Sigma Method of section 3.4.1 when used to estimate the SNBP. The non-ex-

trapolating form needs a binary search, requiring multiple PF solutions to be performed 

and a sigma series generated for each PF solution in order to home in on the SNBP. 

However, with the extrapolating form one does not need to solve multiple power-flow 

problems but only needs the sigma series at the base-case PF solution (obtained using 

a reasonable number of terms that can converge near the SNBP) to be evaluated at 

different values of α and thus needs many fewer computations. 

3.4.3 Traditional modal analysis to determine the weak buses in a system 

The most well-known method of determining the weak buses of a system is modal 

analysis [114], which will be briefly reviewed in this section. At any given operating 

point, the Jacobian matrix (evaluated at that operating point) can be used to perform 

sensitivity analysis using the following linearized equation: 
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where ΔP, ΔQ, Δθ, ΔV represent the incremental change in real power injection, reactive 

power injection, bus voltage angle and bus voltage magnitude, respectively. The matrix 

on the right-hand side of (3.70) is the Jacobian matrix. The modal analysis method is 

based on the relation between the incremental bus voltage magnitudes and their respec-

tive incremental reactive power injections. Hence the change in real power is assumed 
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to be zero at a given operating point, which gives the following relation between Δθ 

and ΔV: 
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By substituting the expression for Δθ from (3.71) into the equation for ΔQ, we get: 
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where JR is the reduced Jacobian matrix. Thus ΔV can be expressed as a function of ΔQ, 

given by: 

QJV R  1
 (3.73) 

The matrix JR
 -1 thus describes the V-Q relations of the buses. One can perform an eigen 

decomposition of JR, to get: 

RJ  (3.74) 

where ξ is the right eigenvector matrix (each column is an eigenvector), η is the left 

eigenvector matrix (each row is an eigenvector), and Λ is a diagonal matrix of the ei-

genvalues of JR. By substituting (3.74) into (3.73) and expanding the resultant expres-

sion one gets: 

 

  Q

QV









111

1




 (3.75) 

Since ξ and η are eigenvector matrices, ξ -1 = η, which results in: 

  QV    1
 (3.76) 

The above expression can also be written as: 
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where λi denotes the ith eigenvalue, ξi denotes the ith column right eigenvector, and ηi 

denotes the ith row left eigenvector. From the above equation one can see that the ei-

genvalues of the reduced Jacobian matrix must be positive in order to ensure that at 

each bus, additional reactive power support will lead to an increase in the voltage mag-

nitude. The smaller the magnitude of the smallest eigenvalue, the higher is the sensitiv-

ity of the voltage magnitude to any change in the reactive power injection and the closer 

is the system to steady-state voltage collapse. If the ΔQ in (3.77) is assumed to be a 

vector ek which has all elements to be zero except the kth element, then the change in all 

of the bus voltage magnitudes is given by: 
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The sensitivity of voltage magnitude at bus k to the reactive power injection at bus k is 

given by: 
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The bus participation factor from modal analysis of a given bus k in mode i is given by: 

ikkikiP   (3.80) 

Thus the bus participation factor of bus k corresponding to the ith eigenvalue, indicates 

the contribution of the ith eigenvalue to the V-Q sensitivity at the kth bus. Buses with 

higher participation factors for the smallest eigenvalue are determined to be the weak 
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buses in the system. By looking at its bus participation factors, one can determine if a 

given mode is a local in nature or has system-wide impacts (i.e., are the buses with 

higher participation factors in one localized area or spread throughout the system). Typ-

ically, one calculates the smallest 5-10 eigenvalues of the reduced Jacobian matrix in 

such analysis in order to minimize the computational cost. Since this approach is based 

on linearization at the given operating point, the order of the buses with the largest 

participation factors in the weakest mode can change slightly as the operating condition 

changes.  

One can see from the above description of modal analysis, that theoretically there 

is no analogy between the modal analysis method of determining weak buses and the 

sigma method of determining weak buses. Hence it is not surprising that tight corre-

spondence was not observed between weak buses obtained using these two methods 

(based on numerical results from [140]). 

3.5 Numerical results for scaling all loads uniformly 

Given in this section are the results of some numerical experiments conducted to 

obtain the SNBP’s of different systems, estimated by different HEPF-based methods 

and compared with the results obtained from different NR-based applications. 

It is difficult to assess SNBP accuracy as well-accepted industry applications often 

do not agree among themselves. The SNBP using the NR-based method is obtained 

from VSAT [103], MATPOWER [102] and PSAT [104]. While using these methods, 
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the loads at all the buses and the real-power-generation at the PV buses are scaled uni-

formly until the SNBP is reached, except VSAT which does not allow the generation to 

be scaled uniformly with the load, but instead splits the net incremental load in the 

system among the participating generators in proportion to their existing output. In or-

der to assess the accuracy of the HEPF methods in predicting the SNBP, without having 

the added complexity of bus-type switching, generator VAr limits were ignored but will 

be considered in a later section. The ratios of the loads at the SNBP to the base-case 

loads is reported as the load-scaling factor, , corresponding to the SNBP. A discussion 

about the execution time is provided at the end of this section using the 6057-bus ER-

COT system as an example. 

The primary advantage of the HEPF-based methods is that they can eliminate the 

non-convergence issues of the traditional iterative methods, upon which the CPF and 

other methods of obtaining the SNBP are based. For instance, the authors have observed 

that for a 6057-bus model of the ERCOT system, the NR fails to converge to an opera-

ble solution if a flat-start is used, whereas it was possible to find the solution using the 

HEPF using the algorithm described here [40]. The guarantee that HEPF finds the high-

voltage solution, if one exists, is usually more important than execution time when ill-

conditioned cases arise. Further, HEPF-based methods provide an analytical approxi-

mation (which can be made as accurate as desired) of the solution over a range of loads, 

which other methods do not. 
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To compare the performance of HEPF and NR-based methods which are used to 

calculate the SNBP, the load scaling factor at the SNBP was estimated using four dif-

ferent HEPF-based methods: 

i. Power-Flow Search Method (PFSM)—In this approach, a binary search is per-

formed with the non-extrapolating formulation given by (3.50) - (3.53) until the SNBP 

is reached. This method is computationally the most expensive method and requires a 

power-flow problem to be solved for each scaled-load value, a process which is similar 

to the CPF.  

ii. Padé Approximant Search (PAS): In this approach, using the extrapolation for-

mulation given by (3.4), (3.5), (3.7), (3.11) and (3.12) the Padé approximants are cal-

culated for each bus voltage once and then a binary search is conducted using α as the 

search parameter, until the SNBP is reached. This involves solving the PF problem only 

once and evaluating the Padé approximants for the voltage series at all buses for various 

α values until the binary search criteria for accuracy is satisfied. Note that it is necessary 

to calculate the bus power-mismatches to determine the point at which the Padé approx-

imant breaks down. Additionally, if a sufficient number of terms to make accurate pre-

dictions near the SNBP are not included in the series, the bus-power-mismatch test will 

fail prematurely and this method will under-predict the actual SNBP.  

iii. Roots Method—In the Roots Method, the scaling formulation given by (3.4), 

(3.5), (3.7), (3.11) and (3.12), is used to obtain the SNBP using  
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a. The zeros of the Padé approximants. 

b. The poles of the Padé approximants. 

The zeros/poles for the voltage series of an arbitrary bus are calculated and the 

smallest real zero/pole is taken as the load-scaling factor at the SNBP. Note that this 

requires a single PF solution and the calculation of the roots of the Padé approximant 

for only one bus. Unlike (i) and (ii), it is unnecessary to check if the bus mismatches 

are being satisfied. Like (i) and (ii), the requirement exists that a sufficient number of 

terms in the series is needed to guarantee accuracy. Computationally, this is the most 

efficient of all of the HEPF methods. 

iv. Extrapolating Sigma Method (ESM)—In the ESM, a binary search, with α as 

the search parameter, is conducted until the SNBP is reached using the Extrapolating 

Sigma Method. The value of α reported corresponds to the load-scaling factor at the 

SNBP. Here, the PF problem is solved only once and the Padé approximants for all the 

σi(α) are evaluated for multiple values of α until the σ condition is violated. Note that 

checking for the σ condition takes fewer computations than checking for the mismatch, 

as required in (i) and (ii). 

Figure 3.7 provides the results for the predicted SNBP for the IEEE 14-bus, IEEE 

118-bus and the IEEE 300-bus systems, when the loads at all buses and the real-power 

generation are scaled uniformly and the VAr limits are ignored. Note that the results 

from VSAT differ slightly from the other NR-based methods because VSAT does not 
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allow the generation to be scaled uniformly with the load, but instead adds an incre-

mental amount to the generation, which leads to the difference being observed. A total 

of 41 terms were used in the power series for the methods based on the HEPF. 

It can be seen from the results that the four methods of predicting the SNBP using 

HEPF, compare fairly well with the NR-based methods. One of the biggest advantages 

of the HEPF methods based on extrapolation is that the PF problem needs to be solved 

only once, and then only the Padé approximants have to be evaluated at different values 

of α. 

 

Figure 3.7 SNBP obtained using different methods 

In order to determine the SNBP using the ESM, for the IEEE 118-bus system, the 

sigma series for all the buses were evaluated at increasing values of α until the sigma 

condition was violated. It was observed that bus number 9 was the first bus to violate 
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the sigma condition described in Section 3.4. The absolute value of the radicand for 

sigma given by (3.58) was plotted on a log scale for bus number 9 for all the values of 

α at which bus 9 violated the σ condition (the radicand became negative), and is shown 

in Figure 3.8. It can be seen that, although the first instance of violation occurs at α=3.12, 

the value of the radicand’s small excursion into negative territory may be attributed to 

numerical roundoff error. The value of the radicand suddenly increased in magnitude at 

α=3.2 and beyond that the magnitude remained large. Thus, in order to have more ac-

curate predictions of the SNBP, the value of α at which the value of the radicand de-

creases below -0.01 is taken as the SNBP. Based on this criterion, a load-scaling factor 

of 3.2 is estimated as the SNBP for the 118-bus system. Using this same approach for 

the IEEE 300-bus system, 1.43 is calculated as the α corresponding to the SNBP. 

 

Figure 3.8 Magnitude of the radicand of (3.57) for bus 9 vs. number of terms in 

the series 

Figure 3.9 shows the behavior of the SNBP predicted by the zeros of the Padé approx-

imants as the number of terms in the series is increased for the IEEE 118-bus system. It can 

be seen that after nearly 33 terms, not much is gained from adding more terms to the series. 
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For the systems tested in this work, it was found that the SNBP estimated using the roots 

method with 41 terms in the series matched the SNBP from the different NR-based soft-

ware applications reasonably well.  

 

Figure 3.9 Predicted SNBP using roots of the numerator vs. number of terms in 

the series 

The scalable HEPF algorithm was used to solve the power-flow problem for a 6057-

bus ERCOT system, and the Roots Methods was used to estimate the SNBP, using a 

dual-core (clock speed 1.9 GHz each), 8GB Intel i3 processor with a 64-bit Microsoft 

Windows operating system. Once the germ was obtained, the time required to solve the 

PF problem using the scalable formulation was 16.54 seconds. If the germ itself were 

to be obtained using HEPF as explained in section 3.1.1 (solved using the non-scalable 

formulation), the total time to solve the power-flow problem using a scalable formula-

tion would be 33.09 seconds. It was observed that the time required to obtain the roots 

of the numerator or denominator polynomial of the Padé approximants at any bus using 
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MATLAB, is of the order of 10-3 seconds. All other extrapolatable HEPF-based meth-

ods would require repeated evaluations of the Padé approximants of all the buses at 

different values of α. Thus, the roots method requires the minimum amount of time of 

all the HEPF-based methods to estimate the SNBP. MATPOWER required 226.1 sec-

onds using the same processor that was used for the HEPF results, in order to estimate 

the SNBP. Thus the scalable formulation can be used to advantage to estimate the SNBP 

relatively quickly (for a given set of bus-types). Note that if the germ was calculated 

using the NR method, it took only 0.52 seconds. Additionally, of the 16.54 seconds to 

solve this power-flow problem with a known germ, the time taken to obtain the voltage 

series (41 terms) for the ERCOT system was approximately 4.53 seconds, while the 

rest of the computation time was spent in calculating the Padé approximants. Since the 

Padé approximants of the individual voltage series are independent, the calculation of 

Padé approximants can be easily parallelized and thus the computation time for the 

HEPF method can be reduced further. The average time required for the calculation of 

the Padé approximant coefficients for a series with 41 terms, is of the order of 10-3 

seconds. The α at the SNBP was estimated as 1.32 by the Roots Method with 41 terms 

in the series, and that obtained from MATPOWER using the CPF was 1.299. The load-

scaling factor at the SNBP was estimated to be 1.303 using PowerWorld [115]. Of all 

the HE methods for determining the SNBP discussed in this paper, the roots method is 

computationally the least expensive and hence only the roots method will be used in 



72 

subsequent sections of this chapter. The roots method was also tested on the 74-bus 

NORDIC 32 test system 0 which has two operating conditions: condition A which is a 

highly stressed system and is unstable for some contingencies; and condition B which 

is N-1 secure. For NORDIC 32A (the highly stressed operating condition), α at the 

SNBP was estimated as 1.075 by the Roots Method, and that obtained from 

MATPOWER using the CPF was 1.0683. 

If the base-case loads in a system are modeled to be beyond the SNBP, the SNBP 

from the roots method will yield a value less than 1.0, which tells the user how much 

load needs to reduced in order to ensure that the modeled system has a valid operating 

point. This can be demonstrated using a simple two-bus system, where the base-case 

load is modeled to be 1.5 times the load corresponding to the SNBP. As shown in Figure 

3.10, the smallest real-valued pole and zero for such a system occur at α = 0.6683 which 

is close to the true SNBP for this system (α = 0.6667). While more terms were used to 

generate the plot shown in Figure 3.10, this was done to give a graphical picture of the 

poles and zeros (obtained using double precision) and one does not need so many terms 

to actually estimate the SNBP. As mentioned earlier, it was found empirically that the 

SNBP estimated using the roots method with 41 terms in the series matched the SNBP 

from the different NR-based software applications reasonably well. 



73 

 

Figure 3.10 Poles/zeros of a two-bus system, modeled to be beyond the SNBP 

3.6 Incorporating VAr limits in the SNBP Estimation 

Since lack of reactive power support can lead to voltage collapse, it is important to 

account for generator VAr limits while estimating the SNBP. Note that among the HEPF 

methods discussed earlier to estimate the SNBP, VAr limits can be incorporated in 

PFSM and PAS methods by performing bus-type switching while solving each power-

flow problem as is done in the CPF. Currently, the reactive power limits on generators 

are handled in the HEPF developed for this research as follows. 

Let QGi MIN, QGi MAX represent the minimum and maximum reactive-power limits, 

respectively, on a generator at bus i. The bus voltages are obtained using the algorithm 

presented with 41 terms in the series. Any reactive power load at bus i is added to the 

calculated net reactive power injection at that bus to obtain the net reactive power gen-

erated, QGi. If the reactive power limits are violated (QGi > QGi MAX or QGi < QGiMIN), the 
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bus type is changed from a PV bus to PQ bus with appropriate limits. For PV buses on 

VAr limits, if by reacquiring voltage control the net reactive power generated is brought 

within reactive power limits, then the generator bus model is switched back to a PV bus 

model.   

For the roots method however, an iterative approach has to be adopted to account 

for VAr limits which is as follows: The base-case problem (α =1.0) is solved using 

HEPF while ensuring that VAr limits are obeyed and then the roots of the Padé approx-

imants are used to estimate the SNBP, say SNBP1. At this loading condition given by 

the load scaling parameter α = SNBP1, the generator VAr injections are calculated and 

a bus-type switching iteration is performed. Using these new bus-type assignments, a 

new HEPF-based series is obtained and the roots method is used to estimate the SNBP. 

This process is continued until no additional bus type switching is required. In some 

cases, oscillations in bus-types were observed during the iterations, in which case the 

bus-types that resulted in the most conservative estimate of the SNBP based on the roots 

method, was chosen to obtain the final estimate of the SNBP. An improved bus-type 

switching algorithm is required to avoid such bus-type oscillations, which will be 

looked at in the future. 

The results of this approach for the scalable form given in section 3.1 were com-

pared with the results from PSAT when all loads and real-power generations were uni-

formly scaled. It was observed, for these test systems, that the HEPF bus-types at the 
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estimated SNBP differed from the PSAT bus-types at the SNBP for one or two buses, 

which is expected to occur since bus type switching is an ad hoc process and it is not 

uncommon for well accepted algorithms to lead to different sets of generators on VAr 

limits. Hence, in order to make the SNBP prediction comparable, the same set of buses 

on VAr limits at the SNBP—taken from the PSAT solution—was used for the roots 

method. It can be seen in Table 3.3 that the results of the roots method (using 41 terms) 

are consistent with the PSAT results for the IEEE 118-bus and 300-bus systems. 

Table 3.3 Comparison of SNBP predicted by PSAT and the roots method with ac-

tive VAr limits 

System 

name 

PSAT 

Zeros of 

Padé approxi-

mants 

Poles of 

Padé approxi-

mants 

IEEE-118  2.08 2.1 2.1 

IEEE-300  1.058 1.03 1.03 

For the ERCOT system with active VAr limits, the α at the SNBP from 

MATPOWER using the CPF was 1.12 and that obtained by the Roots Method (Zeros 

of Padé approximants) was 1.15 (using the same bus-types as the MATPOWER solu-

tion). Similarly for the NORDIC 32A (heavily stressed) system with active VAr limits, 

the α at the SNBP from MATPOWER using the CPF was 1.01 and that obtained by the 

Roots Method (Zeros of Padé approximants) was 1.018 (using the same bus-types as 

the MATPOWER solution). 
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3.7 Direction-of-change scaling formulation 

The formulation described in Section 3.1 allows the loads at all buses and the real-

power-generation at the PV buses to be scaled by a factor of α. However, scaling all 

loads uniformly is an unacceptable limitation in some cases. In voltage stability studies, 

it is often desired to analyze cases when the loads at only a few buses are increased and 

by different amounts, for instance, the loads increase only in one load pocket. Methods 

to estimate the direction for which the scaling yields the worst-case scenario are dis-

cussed in [51] and [52]. In such situations, a formulation based on that described in 

Section 3.1 can be derived. Consider the formulation given by, 
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where ΔSi denotes the incremental complex-power injection at the PQ buses, ΔPi de-

notes the incremental real-power injection at the PV buses and ΔQli represents the in-

cremental reactive-power load at the PV buses. At α = 0, (3.81) - (3.85) reduce to: 
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Notice that the solution to (3.86) - (3.90) represents the voltages and reactive-power 

generation at the buses for the power system with its given loading level. It is clear that 

(3.86) - (3.90), is a system of nonlinear equations. This nonlinear problem can be han-

dled in the same way suggested in Section 3.1.1, i.e., holomorphically embed the sys-

tem of equations representing the germ solution, with the unknown germ voltages and 

reactive powers expressed as Maclaurin series and solve it using the formulation given 

by (3.50) - (3.53). The converged solution to this new HEPF problem represents the 

germ. Once the germ is obtained, the remaining terms of the series can be obtained by 

equating the coefficients of α on both sides of (3.81) - (3.85). Since the procedure is the 

same as that derived in Section 3.1, the details of the derivation will not be presented. 

The recurrence relations for this formulation are given by: 
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These equations will have to be split into real and imaginary parts as in Section 3.1. 

Once the required number of terms of the power series is obtained, Padé approximants 

can be used to obtain the converged voltages. 

3.7.1 Using the direction-of-change scaling formulation to determine the weak buses 

in the system 

It was seen from (3.79) that the bus participation factor of the kth bus in the ith mode 

obtained from modal analysis, represents the contribution of the ith eigenvalue to the V-

Q sensitivity at the kth bus. One can use the HEPF direction-of-change scaling formu-

lation to estimate the weak buses (without needing to perform the eigenvalue analysis 

required in [114]) by scaling only the incremental reactive power injection of one bus 

at a time and calculating the sensitivity of its voltage magnitude at that bus with respect 

to its incremental reactive power injection, given by (3.97) (for PQ buses). Note that it 
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is necessary that the incremental reactive power injection be the same for all buses, in 

order to ensure a fair comparison, and in this work it is assumed to be 1 MVAr (1.0 pu 

on a 1 MVA base). Since the reactive power injection Qi(α) for PQ buses is given by 

(Qi+α), its derivative w.r.t. α is given by 1.0. 
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The sensitivity of the voltage magnitude with respect to the reactive power injection 

for the ith bus at the given operating point is obtained by evaluating (3.97) at α = 0 (since 

α = 0 corresponds to the base-case in the direction-of-change scaling formulation). This 

process is repeated for all buses, with a new direction-of-change for each bus that scales 

only the incremental reactive power injection at that bus in order to obtain the sensitiv-

ities. One does not always expect a perfect one-to-one correspondence between the or-

der of weakest to strongest buses from modal analysis and the buses with the highest to 

lowest V-Q sensitivities, since the modal analysis method does not provide the order of 

the buses with highest to lowest sensitivity but it provides the order of buses for which 

the lowest eigenvalue has the largest contribution to its V-Q sensitivity. However as the 

smallest eigenvalue decreases (i.e., as the system load increases), the V-Q sensitivities 

at the buses with higher participation factors for this weakest mode depends to a greater 

extent on this smallest eigenvalue. Hence near the SNBP, and when the smallest eigen-

value is significantly numerically smaller than the next greatest eigenvalue, one can 



80 

expect a strong correlation between the buses with high V-Q sensitivities and those with 

high participation factors in the weakest mode. For the 14-bus system modified to con-

tain only PQ buses, the top five weakest buses (in decreasing order of “weakness”) 

obtained using modal analysis (using bus participation factors for the smallest eigen-

value) and the top five buses with highest V-Q sensitivities (in decreasing order of sen-

sitivity) obtained using the HEPF direction-of-change scaling formulation are listed in 

Table 3.4 at different operating conditions varying from the base-case to very close to 

the SNBP (which occurs when all reactive power injections are scaled by 3.9351 ob-

tained using CPF [102]). Note that for the HEPF method, the buses with positive reac-

tive power injections (i.e. with local VAr support) are not considered, since they are 

unlikely to be the weak buses of the system from a steady-state voltage stability per-

spective. It is seen that the order of the buses changes with the system operating condi-

tion, which is expected since both methods are linearized about the given operating 

point. Also note that the order of the top five weakest buses obtained using modal anal-

ysis and top five buses with highest V-Q sensitivities obtained using the HEPF is iden-

tical at all operating conditions. As a part of future work, it is important to perform such 

a comparison between these two approaches for larger systems in order to confirm the 

correspondence. 
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Table 3.4 Weak bus determination using direction-of-change scaling formulation 

Loading level Five weakest buses us-

ing modal analysis 

Five buses with high-

est sensitivity at α=0 

using direction-of-

change scaling for-

mulation 

Smallest ei-

genvalue 

Base-case 14, 12, 13, 11, 10 

 
 

14, 12, 13, 11, 10 0.31847 

All reactive power injections 

multiplied by 1.5  

14, 12, 13, 11, 10 14, 12, 13, 11, 10 0.293434 

All reactive power injections 

multiplied by 2.0 

14, 12, 13, 11, 10 14, 12, 13, 11, 10 0.262989 

All reactive power injections 

multiplied by 2.5 

14, 12, 13, 11, 10 14, 12, 13, 11, 10 0.226320 

All reactive power injections 

multiplied by 2.93 

14, 12, 13, 11, 10  14, 12, 13, 11, 10 0.187934 

All reactive power injections 

multiplied by 3.5 

14, 12, 13, 10, 11  14, 12, 13, 10, 11 0.120354 

All reactive power injections 

multiplied by 3.93 

14, 10, 13, 9, 11 14, 10, 13, 9, 11 0.017966 

At this point, some remarks about the relative complexity of the HEM versus modal 

analysis approaches are warranted. When using HEM to determine the bus sensitivity at 

a given operating point, one needs to calculate only the germ of the power series for 
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
 (since it is evaluated at α = 0). In order to do this, one needs to calculate only 

two terms in the voltage power series, since at α = 0, the derivative 
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only on the α1 term in Vi(α). This is done for all the buses with a different direction-of-

change for each bus, however calculations are simple and the computation for different 

buses is completely parallelizable. Note that the germ of Vi(α) would be the same for all 

direction-of-change cases since it depends only on the base-case operating condition, 

which is the same irrespective of the direction-of-change of the scaling. Also in order 

to get the second term in each case, only a linear system of equations is solved. Addition-

ally, since only the constant term of 
 
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

i

i

Q

V




is used, Padé approximants are not needed. 

By comparison, in modal analysis, one needs to calculate the smallest five to ten eigen-

values and the corresponding eigenvectors for the reduced Jacobian matrix, since the 

mode associated with the minimum eigenvalue at a given operating condition, may not 

be the most troublesome mode at all operating conditions. Note that there are many 

methods to selectively calculate the smallest few eigenvalues of a matrix efficiently 

[114]. However, the HEPF direction-of-change scaling formulation has the advantage 

that one does not need to necessarily assume that the real-power remains constant. In 

fact, one can calculate the V-Q sensitivities for any desired direction-of-change scaling 

(such as determining the sensitivity of the voltage magnitudes of all buses when the 

injections at a given set of buses changes) if one so desires at all operating conditions 

through to the SNBP (with more series terms and using Padé approximants). 

3.8 Numerical results for direction-of-change scaling formulation 

This section presents results of experiments designed to study the accuracy of the 
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SNBP, obtained from the formulation described in Section 3.7. Since this method is 

intended to obtain the SNBP when the loads on only certain buses are increased, for 

instance in studying the behavior of unusually heavy loads in a load pocket, this method 

was tested by increasing loads on five buses of the IEEE 118-bus and 300-bus systems. 

For this experiment, the PF problem was solved for the base-case scenario. Next, five 

buses were chosen at random of which three buses were topologically close to each 

other. Incremental loads were then added to these buses with the increment being pro-

portional to the existing load at the respective buses. Generators in the vicinity of these 

buses (largely) supplied the incremental load by assigning an incremental generation 

variable to these generators. To check the accuracy of this approach, the same incre-

ments were used in VSAT and these incremental powers were scaled until the SNBP 

was reached. The SNBPs obtained from VSAT and the roots of Padé approximants de-

scribed in Section 3.3 were then compared. Table 3.5 provides the results for the com-

parison of the load-scaling factors corresponding to the SNBP obtained from VSAT and 

from the HEPF-based methods, for the described experiment. It can be seen that the 

prediction of the SNBP by all the three methods is very consistent for the 300-bus sys-

tem whereas for the 118-bus system, VSAT predicts a SNBP at a somewhat higher load-

ing level as compared to the HEPF methods. 
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Table 3.5 Comparison of SNBP predictions using VSAT and the roots method for 

direction-of-change scaling 

System name VSAT 

Zeros of Padé 

approximants 

Poles of Padé 

approximants 

IEEE-118  27.74 26.06 26.06 

IEEE-300  10.24 10.26 10.28 

The NORDIC 32A system, has four areas: North, Equiv., Central and South; the 

central area is a load center and a lot of power is shipped from the North area to the 

Central area 0. When only the loads in the Central area were scaled, the α at the SNBP 

from MATPOWER using the CPF was 0.0389 and that obtained by the Roots Method 

(Zeros of Padé approximants) was 0.0393. Note that CPF solved a number of PF prob-

lems (based on the step-size) of incremental power to reach its predicted SNBP, whereas 

the HEPF-based methods were able to estimate the SNBP fairly accurately, by solving 

only one PF problem with 41 terms in the power series, for the systems tested. From a 

computational complexity standpoint, the extra computational expense of the HEPF is 

partially offset by the repetitive PF solutions required by VSAT. 

3.9 Proposed ZIP-load model for HEPF 

It is often desirable to use ZIP load models in power system analysis, instead of 

constant P/Q loads, in order to better represent the load behavior. This section provides 

a HEPF formulation that incorporates polynomial ZIP load models. Consider a load bus 

with a ZIP load given by, 
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where p1, p2 and p3 are the constant impedance, constant current and constant power 

components of the real load Pli and q1, q2 and q3 are the constant impedance, constant 

current and constant power components of the reactive load Qli, respectively, at the bus 

i. The PBE for this load model is given by: 
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Equation (3.99) can be holomorphically embedded as follows, 
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where |Vi| (α) denotes the power series for the voltage magnitude at the bus given by 

(3.101).  

        miVVVV iiii  ,.. **   (3.101) 

Note that any fixed shunt impedances (such as fixed capacitor banks) will be ap-

propriately accounted for in the admittance matrix. The constant-impedance part of ZIP 

loads that is allowed to change with the operating condition (increase in admittance as 
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the load increases) is included in right-hand expression of (3.100). Equation (3.45) can 

then be substituted to obtain:  
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The recurrence relations can be obtained by equating the powers of α on both sides 

of (3.101) and (3.102), given by (3.103) and (3.104). Note that V[n] depends on lower-

indexed terms of |V|(α) and W(α). Once, V[n] is obtained, |V|[n] can be obtained using 

(3.104). 
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This ZIP model was tested on the IEEE 118-bus and 300-bus cases, assuming the 

constant impedance, constant current and constant power portions of the load to be 

equal. Successful convergence that satisfied the mismatch tolerance was obtained using 

14 terms for the 118-bus system and 31 terms for the 300-bus system. 

3.10 Conclusions 

In this chapter, two HEPF-based full PF formulations were proposed for identifying 
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the SNBP. One of the proposed formulations scales all loads and real-power generation 

across the system uniformly, while the other formulation allows the loads at different 

buses to be scaled along different directions. Using these formulations, four methods 

were proposed to estimate the SNBP, of which, three methods did not require solving 

multiple power-flow problems. Numerical results were shown that demonstrated the 

accuracy with which these methods predicted the SNBP, both with and without VAr 

limits. The Roots Method is considered to be the most effective HEPF-based method to 

estimate the SNBP and the additional time required over the single power-flow problem 

in order to estimate the SNBP is of the order of 10-3 seconds (for a series with 41 terms 

when checking one bus) using MATLAB. The biggest advantage of the HEPF methods 

is that convergence is guaranteed, even at the SNBP, provided sufficient precision is 

used, and the conditions of Stahl’s theorem are satisfied [20], [21]. An HEPF formula-

tion was proposed for incorporating ZIP-load models and that formulation was tested 

successfully on the 118-bus and 300-bus systems. 
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4 NETWORK EQUIVALENCING FOR DISTRIBUTION SYSTEMS USING 

HEPF 

In chapter 3, it was shown that HEPF based methods have the advantage of provid-

ing the voltage solution as an analytical expression of the embedding parameter α, and 

this analytical solution can be used for various purposes such as estimating the SNBP 

without solving multiple power-flow problems. In this chapter, use of the analytical 

solution obtained using HEPF to generate network equivalents, that are accurate even 

when the loading conditions are changed, will be explored. The primary application of 

such equivalents is visualized to be in stability analyses or ACOPF studies where only 

the high-voltage transmission system is modelled in detail and the distribution system 

is represented as aggregated at the point of interconnection to the transmission system. 

The nonlinear equivalents proposed in this chapter provide the advantage of better cap-

turing the losses that occur in the distribution system, as the system’s operating condi-

tion changes. The proposed method will thus be advantageous in the planning time-

frame or the day-ahead studies when the updated injections from state-estimators are 

not available. 

This chapter proposes three different methods for developing network equivalents 

using a scalable form of the HEPF. The resultant reduced-order network models are 

exact within the given precision even when the loads and the real generations are scaled. 

The approach is applied to reduce a radial distribution network to a two-bus equivalent 
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which can be used in the transmission network model as the distribution load model 

represented as a single-bus radial spur connected to the transmission system model.  

Note: In the rest of this chapter, the terms “external buses/external system/external 

network” refer to the portion of the original system that was eliminated during the re-

duction and is not a part of the reduced network; while the term “internal” refers to the 

portion of the original system that was retained in the reduced network.  

4.1 Three HEPF-Based Network Reduction Methods 

Presented in this section are three different methods for reducing a radial power sys-

tem model to a two-bus equivalent consisting of a single bus (that is adjacent to the slack 

bus) connected to the slack bus. The first step for all these reduction methods is to solve 

the power-flow problem for the full network using a HEPF formulation which is scalable, 

that is, a formulation for which the solution at different values of the embedding param-

eter α represents the solution to the power-flow problem when the loads and real-power 

generations are scaled by α as described in section 3.1. Once the voltage series for the 

bus adjacent to the slack bus is obtained, the following approaches can be used to obtain 

two-bus equivalents for the full network.  

4.1.1 Obtaining the series branch as a function of α 

This approach develops a two-bus equivalent for a given network, consisting of the slack 

bus connected to its adjacent bus with a branch whose admittance is a function of the operat-
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ing condition given by Y(α) as shown in Figure 4.1. The complex power injection S2 repre-

sents the injection at bus 2 in the original network. 

 

Figure 4.1 Two-bus equivalent with series branch as function of α 

The embedded PBE for the equivalent network is given by, 
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where V1(α), V2(α) and W2(α) are the series obtained for the full network using (3.40). 

The terms of Y(α) are obtained by equating the coefficients of equal powers of α on 

both sides of (4.1). Note that V1(α) has only the constant term and all higher order terms 

are zero. The recurrence relation is obtained as: 
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 (4.2) 

Once the series Y(α) is obtained, a Padé approximant can be used to obtain a con-

verged rational approximant, even if the Y(α) series is not convergent. The Padé approx-
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imant can then be evaluated at any desired value of α say α1. The resulting reduced net-

work is then used to represent the original network when the base-case loads are scaled 

by α1. This reduced network can be solved using the HEPF method to obtain the voltage 

at bus 2 and the slack bus power injection. Note that it is also possible to use the Y(α) 

series-branch equivalent model while solving the power-flow problem for the reduced 

network, however some extra computational cost will be added due to the extra convolu-

tions needed by the algorithm.  

4.1.2 Obtaining the shunt admittance as a function of α 

This approach develops a two-bus equivalent for a given network, consisting of the slack 

bus connected to its adjacent bus by a branch of the same impedance as that in the original 

network. An equivalent shunt admittance accounting for any scaling of the base-case load in 

the external network is modeled at bus 2, given by Y3(α) as shown in Figure 4.2, where Z1 is 

the branch impedance spanning the slack bus and bus 2. The complex power injection S2 

represents the injection at bus 2 in the original network. 

 

Figure 4.2 Two-bus equivalent with shunt admittance as a function of α 
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The embedded PBE for the equivalent network is given by, 
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where V1(α), V2(α) and W2(α) are the series obtained for the full network using (3.40) and 

y1 is the admittance of the original branch in the network. The recurrence relation to ob-

tain the terms of Y3(α) is obtained as: 
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Once the series Y3(α) is obtained, a Padé approximant can be used to obtain a con-

verged rational approximant and then the approximant can be evaluated at any desired 

value of α say α1. The resulting reduced network will exactly represent the original 

network (given computing engine precision) when the base-case loads are scaled by α1. 

Note that it is also possible to retain the Y3(α) series while solving the power-flow prob-

lem for the reduced network, however some extra computational cost will be added due 

to the extra convolutions needed by the algorithm.  

4.1.3 Obtaining the complex power injection as a function of α 

This approach develops a two-bus equivalent for a given network, consisting of the slack 

bus connected to its adjacent bus with a branch of the same impedance as that in the original 

network. An equivalent complex power injection accounting for any scaling of the base-case 
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load in the external network is modeled at bus 2, given by S3(α) as shown in Figure 4.3. The 

constant complex-power injection S2 represents the injection at bus 2 in the original network. 
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Figure 4.3 Two-bus equivalent with power injection as function of α 

The embedded PBE for the equivalent network is given by, 
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where V1(α), V2(α) and W2(α) are the series obtained for the full network using (3.40). 

The recurrence relation to obtain the terms of S3(α) is derived as follows: 
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 (4.6) 

Once the series S3(α) is obtained, a Padé approximant can be used to obtain a con-

verged rational approximant and then the approximant can be evaluated at any desired 

value of α say α1, and the resulting reduced network will exactly represent the original 

network when the base-case loads are scaled by α1, provided sufficient computation 

precision is used. Note that it is also possible to retain the S3(α) series while solving the 

power-flow problem for the reduced network, however some extra computational cost 

will be added due to the extra convolutions need by the algorithm. 
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Note that the external system can also be represented as a constant current injection 

at bus 2. The derivation is relatively straightforward and similar to the S3(α) and Y3(α) 

reductions. 

4.2 Numerical results For Uniform Load Scaling 

According to the theory developed in the previous section, the methods discussed in 

Section 4.1 should yield the voltages identical to those obtained for the full model, given 

available computational precision, when all loads are scaled uniformly, that is, along the 

so-called real α line. In order to test these reduction methods, the IEEE-14 bus system 

was converted to a radial network with a structure as shown in Figure 4.4. 

AC
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V9 V11V10

V14 V13 V12

 

Figure 4.4 Radial 14-bus network 

The given system was solved at the base-case using the scalable HEPF formulation 

described in the beginning of section 4.1, using 61 terms in the voltage series. Two-bus 

network equivalents, based on the three methods presented in the previous section, were 
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then generated using the voltage series obtained from the full network solution. The pa-

rameters (series admittance, shunt admittance and the complex power injection) for the 

HEPF-based reduced equivalents were calculated at different values of α and the power-

flow problem for each two-bus equivalent was solved. The voltage magnitude error and 

the percent error in slack bus power were calculated using (4.7) and (4.8) for the three 

HEPF-based reduction methods, 

.._ upVVVerror systemfullreducedmagnitude   (4.7) 
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where Vreduced and Sslack_reduced are the complex voltage at bus 2 and the slack bus power 

obtained from the solution of the reduced network while Vfull_system and Sslack_full_system are 

the complex voltage at bus 2 and the slack bus power obtained from the solution of the 

original 14-bus network. These errors were compared with those produced using a tra-

ditional Ward reduction method in which any change in external system load was mod-

eled as added load at bus 2. 

The voltage magnitude error for bus 2 and the percentage error in slack bus power 

are shown in Figure 4.6 and Figure 4.7 respectively. The system is at its SNBP at α=2.6, 

since the original network does not have a solution beyond this point. It can be seen that 

all three of the HEPF-based network reduction methods can better preserve the voltage 

up to the SNBP as compared to Ward reduction. The HEPF equivalent with the series 

branch as a function of α however, does not preserve the slack bus power, and hence 
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cannot be used for developing reduced-order network equivalents. This occurs because 

the nonlinear series-branch model changes the impedance between the slack bus and bus 

2 to preserve the voltage at bus 2, and thus the injection from the external network is not 

accounted for. This is further corroborated by comparing the Y(α) at different values of α 

in the reduced network with a nonlinear series-branch, with the admittance of the branch 

y12 from the original network, as shown in Figure 4.5. It is clearly seen that there is a 

dramatic difference between the branch parameter in the original network and the reduced 

network (even at the base-case). Since the voltage at buses 1 and 2 is preserved at all 

values of α, if the series branch parameter is dramatically different from that in the orig-

inal network, it is not surprising that the slack bus power is not preserved in this reduced-

network. 
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Figure 4.5 Magnitude of Y(α), along the real α line 

The other HEPF-based methods, on the other hand, preserve the slack bus power ac-

curately along the real α line, since the physical branch between the slack bus and bus 2 

remains the same as it was in the original network, and only the external injection is 

modified for different loading conditions. Hence the series-branch reduction will not be 

considered in the rest of the chapter. It is interesting to note however, that the network 

equivalent obtained using the nonlinear series-branch model reduction method is the 

same as the two-bus equivalent used to obtain the sigma index for estimating the SNBP 

[95], [101]. The sigma index for a given bus is obtained from (4.9),  
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where σi(α) is the sigma index series and Ui(α) is the voltage series for that bus divided 

by the slack bus voltage. This sigma index may be viewed as representing a two-bus 

equivalent consisting of the bus i connected to the slack bus by a branch with impedance 

Z(α) given by: 

2

*)(
)(

slack

i

V

SZ i
   (4.10) 

It has been observed that Z(α), when evaluated at any real α is equal to the reciprocal 

of the Y(α) obtained from the series admittance network equivalent at the same α value, 

up to the SNBP of the system. 

 
Figure 4.6 Error in voltage magnitude, along the real α line 



99 

 
Figure 4.7 Percentage error in slack bus power, along the real α line 

The reason that the HE-reduced networks are accurate at different operating condi-

tions is that they account for the nonlinear behavior of the losses. This is shown in 

Figure 4.8, in which the magnitude of S3(α) is plotted against α. It is seen that at α=0.5, 

magnitude of S3(α) is less than half of its magnitude at α=1.0. This is because the losses 

in the eliminated portion of the system are reduced by less than half when the loads in 

the system are halved. Similarly, at α=2.5, that magnitude of S3(α) is nearly 2.94 times 

its magnitude at the base-case which occurs because the loses in the external system 

have more than doubled. 
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Figure 4.8 Magnitude of S3(α), along the real α line 

4.3 Different Methods of Estimating Alpha for Non-Uniform Load changes 

Typically, a load increase/decrease in a system is accompanied by a change in the 

load shape, that is, the loads are usually not scaled uniformly across the system. The 

loads at different buses change in magnitude and power factor. Hence, practically it is 

not possible to remain on the real α line where the HEPF-based reduction methods are 

exact and it becomes important to estimate an α which would best represent the change 

from the base-case loading condition to the new loading condition in order to obtain 

reasonably accurate voltage and slack-bus power estimates from the HEPF-based net-

work equivalents. Five different methods of estimating α for a non-uniform change in 

the loading condition are discussed in this section. 
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A. Projection of the vector of new loads on the α line 

In this approach, we consider a vector PQold comprising of the real and imaginary 

parts of the base-case loads at the external buses and a corresponding vector PQnew for 

the new loading condition. An α estimate can be obtained by projecting PQnew onto 

PQold, as given by (4.11).  

oldold

oldnew

A
PQPQ

PQPQ




  (4.11) 

B. Ratio of the sum of apparent powers of all external buses 

Another method to estimate α was taken as a ratio of the sum of the apparent powers 

of all the external buses at the new loading condition (with the new complex power for 

each bus given by Sinew), to the sum of the base-case apparent powers (with the base-

case complex power for each bus given by Siold), as written in (4.12). 
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C. Mean of projection of each external new load on its α line 

In this method of estimating α, instead of projecting a multi-dimensional vector 

representing the loads at all external buses onto a multi-dimensional α line, an average 

of the projections of each (P,Q) vector for the new loading condition onto its two-di-

mensional α line is taken as given by (4.13). 



102 

busesExternali

Q

P

Q

P

Q

P

Q

P

Mean

iold

iold

iold

iold

iold

iold

inew

inew

i
C 























































 ,  (4.13) 

D. Ratio of net apparent power in the external system 

The approximate α can also be estimated by taking a ratio of the magnitude of the net 

complex power injection from the external network at the two loading conditions as given 

by (4.14). 
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E. Mean of ratios of apparent powers for all external buses 

The approximate α can also be estimated by taking an average of the ratio of the 

apparent powers for each bus in the external network at the two loading conditions as 

given by (4.15). 
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4.4 Numerical results for non-uniform load changes 

In order to test the performance of the HEPF-based reduction methods, the magni-

tudes of the loads were changed at all buses by different amounts, given by (4.16). 

mirWSS iioldinew  ,)1(  (4.16) 
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where ri is a random number between 0 and 1 and W is a scaling factor which changes 

the range of the random numbers. 

The random number scaling factor, W, was varied from 0 through 5.0 in steps of 0.5 i.e. 

0-0.5, 0-1, …, 0-5. For each W, 1000 samples of random numbers were drawn for each bus. 

Ward equivalents and HEPF-based equivalents discussed in Sections 4.1.2 and 4.1.3 were 

generated using the estimated α’s in Section 4.3. The error in voltage magnitude and the 

percent error in slack-bus power were obtained using (4.7) and (4.8) and the mean of the 

1000 errors for each W was recorded. The voltage-magnitude errors and the percent slack-

bus errors when using Ward reduction were compared with the errors of equivalents ob-

tained using complex power injection as a function of α as shown in Figure 4.9 and Figure 

4.10 respectively. The behavior of the equivalent obtained using shunt admittance as a func-

tion of α is similar to the S(α) reduction and hence the plots for Y3(α) reduction are not 

shown here. Since the power factors of the loads were not changed in this experiment, the 

results obtained when α was estimated using the methods described in Section C and E 

(yellow and dashed green curves) were the same. The results obtained when α was esti-

mated using the method described in Section B and D were identical up to four decimal 

places and hence the two curves (red and dashed purple) coincide with each other. It can be 

seen that when α was estimated using the method described in Section B and D, the HEPF-

based network reduction methods give the best performance which are remarkably better 
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than the performance of Ward reduction in terms of both voltage magnitude as well as slack 

bus power. 

 

Figure 4.9 Error in voltage magnitude, using S(α) reduction 

 

Figure 4.10 Percent error in slack bus power, using S(α) reduction 
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The experiment-setup was changed slightly by varying the random number scaling 

factor, W, from 0 through 1.6 in steps of 0.2 with the range of W being 0.2 i.e. 0-0.2, 0.2-

0.4, …, 1.4-1.6. The voltage-magnitude errors and the percent slack-bus errors when using 

Ward reduction were compared with the errors of equivalents obtained using complex 

power injection as a function of α when α was estimated using the methods described in 

Section A and D, as shown in Figure 4.11 and Figure 4.12 respectively. It is seen that the 

HEPF-based network reduction methods give better performance than Ward reduction in 

terms of both voltage magnitude as well as slack bus power. 

 

Figure 4.11 Error in voltage magnitude, using S(α) reduction 
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Figure 4.12 Percent error in slack bus power, using S(α) reduction 

Because of the random load-scaling used in (4.16), the power factors of all loads 

remained constant in the above experiment. Consequently, a second experiment was 

performed to test the behavior of the HEPF-based reduction methods when the power-

factors of the loads were changed. For this test, consider a three-bus radial system as shown 

in Figure 4.13 with a load only at bus 3 for which a reduced network is generated by elimi-

nating bus 3. For this reduced system, and for different values of α varying from 0.0, in steps 

of 0.01, up to 4.0 which corresponds to the SNBP of the full system, voltage solutions were 

obtained for different loading conditions with load magnitude varying from +/- 50% of the 

magnitude of load at the base-case and along the perpendicular to the α line. The error in 

voltage magnitude using Ward reduction was compared with that using the S(α) reduction via 

the 3D voltage-magnitude error plots shown in Figure 4.14 and Figure 4.15 respectively. For 

the S(α) reduction, the α was estimated by taking a ratio of the apparent power at bus 3 at the 



107 

new loading conditions to that at the base-case. It can be seen that even when the power factor 

is changed, the HEPF reduction performs significantly better than Ward reduction. 

Slack
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Figure 4.13 Three-bus test system 

 

 

Figure 4.14 Voltage magnitude error for 3-bus system, Ward reduction 

 

Figure 4.15 Voltage magnitude error for 3-bus system, S(α) reduction 
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4.5 Network reduction using direction-of-change scaling formulation 

The results presented so far in this chapter were based on the formulation described 

in Section 3.1 which is an exact equivalent when all loads and real-power-generation 

are scaled uniformly across the entire system. It was shown that the HEPF-based re-

duction remained more accurate than Ward reduction even when the operating condi-

tions change non-uniformly. Another way to further improve the accuracy of the HEPF-

based reduction when the system load profile changes non-uniformly is to use a differ-

ent ‘α line’ along which the HEPF-based reductions are exact such that the change in 

operating condition is closer to this new ‘α line’. If an approximate judgement can be 

made of the expected change in load profile for the study such as the areas in which the 

load will increase and the generators from which the incremental MWs be supplied, an 

approximate ΔS vector can be formed which would represent the direction in which the 

injections are expected to change. The formulation from Section 3.7 can then be used 

to obtain voltage that are exact when this ΔS vector is scaled. The HEPF-based reduc-

tion obtained using this formulation will result in more accurate voltages (with respect 

to the actual voltages in the full network) than the results presented in previous sections 

(which was exact when all injections were scaled uniformly), as the‘α line’ for this ΔS 

vector is expected to be closer to the actual direction of change than the previous ‘α 

line’ where all injections were scaled uniformly.  
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4.5.1 Obtaining the incremental complex power injection as a function of α 

Once the power-flow problem has been solved for the full network using the formulation 

in Section 3.7, the voltages are obtained as a function of α where α scales the incremental 

injections at all buses, i.e., ΔS. This approach uses a two-bus equivalent for a given network, 

consisting of the slack bus connected to its adjacent bus with a branch of the same impedance 

as that in the original network. An equivalent complex power injection accounting for any scal-

ing of ΔS in the external network is modeled at bus 2, given by ΔS(α) as shown in Figure 4.16. 

The constant complex-power injection Snet represents the sum of all the non-slack bus injections 

in the original network. 
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Figure 4.16 Two-bus equivalent with incremental power injection as function of α 

The embedded PBE for the equivalent network is given by, 
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where V1(α), V2(α) and W2(α) are the series obtained for the full network using (3.81). 

The recurrence relation to obtain the terms of ΔS(α) is derived as follows: 
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Once the series ΔS(α) is obtained, a Padé approximant can be used to obtain a con-

verged rational approximant and then the approximant can be evaluated at any desired 

value of α say α1, and the resulting reduced network will exactly represent the original 

network when the elements of ΔS are scaled by α1, provided sufficient computation 

precision is used. This reduction will be referred to as the ΔS(α) reduction. 

In order to test the above-described formulation, the loads were increased at three 

buses for the radialized 14-bus system: bus numbers 5, 8 and 14. All of these three 

buses are connected to different radial branches of the network. By scaling the ΔS on 

these buses, the power-flow problem was solved for the full-network. The two-bus 

ΔS(α) reduction was generated and the change in the injection for the network was then 

evaluated by plugging the values of α in the Padé approximant for ΔS(α). The power-

flow problem for the reduced network was solved using the new net injection at bus 2 

and the reduced-network solution was compared with the full-network solution in terms 

of accuracies of the voltage at bus 2 and the slack bus power. The voltage magnitude 

errors and the slack bus power errors between the full network and the reduced network 

are shown in Figure 4.17 and Figure 4.18. It is seen that the ΔS(α) reduction provides a 

very accurate voltage solution (errors less than 10-5 pu as long as the loads are changed 

along this new ‘α line’) up to the SNBP, which occurs at α = 1.28. 
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Figure 4.17 Error in voltage magnitude along the ‘α line’ for the ΔS(α) reduction 

of the 14-bus system 

 

Figure 4.18 Percent error in slack bus power along the ‘α line’ for the ΔS(α) re-

duction of the 14-bus system 
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It has been shown in section 4.4 that even for large deviations from the ‘α line’, the 

HEPF-based reductions are more accurate than Ward reduction. With the reduction 

based on a new ‘α line’ presented in this section, even more accurate reduced networks 

can be obtained than those discussed in section 4.1. 

4.6 Conclusions 

Three different HEPF-based network reduction methods are proposed in this work: 

using the series-branch admittance as a function of α, the shunt admittance as a function 

of α and the complex-power injection as a function of α. It is shown that when all loads 

are scaled uniformly, the network equivalents exactly represent the original network in 

terms of bus voltages, up to the SNBP, given computational precision limitations. While 

the slack bus power is also accurately preserved by the Y3(α) and the S(α) reduction 

methods along the real α line, the Y(α) reduction cannot preserve slack bus power. It is 

shown that the basic Ward-reduction method can have high errors in voltage and the 

slack bus power as the operating condition of a system is changed. Different methods 

of estimating α are discussed in order to have reasonably accurate network equivalents 

when there are non-uniform changes in loads. Using these different estimates, it is 

shown that even when the loads are not scaled uniformly, the S(α) reduction method 

can better preserve the voltage and slack-bus power when compared to a Ward reduc-

tion which retains the same set of boundary and internal buses. The authors have ob-

served the Y3(α) reduction to have similar behavior to the S(α) reduction. Two different 
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α estimation methods which work well when the loads are randomly changed have been 

recognized. These two-bus equivalents can be useful when trying to accurately represent the 

distribution networks in the transmission network model. Further, reduced equivalents were 

developed which were exact along a pre-defined direction of change and did not require all 

injections to be scaled uniformly. If a reasonable estimate can be made for the direction of 

change for the load profile, this HEPF-based reduction can result in higher accuracies than 

the methods which are exact when all loads are scaled uniformly. Note that in this work of 

generating HEPF-based network equivalents, the point of interconnection between the trans-

mission system and the distribution system is assumed to be fixed at a voltage of 1 pu, which 

may not necessarily be the case. However, the HE-reduction is still expected to outperform 

the traditional Ward reduction at operating conditions other than the base-case since it cap-

tures the nonlinear behavior of the original system. Additionally, one can use the open-circuit 

voltage or the base-case voltage at the point of interconnection to be the voltage at that point 

to obtain more accurate results. 
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5 THEORETICAL CONVERGENCE GUARANTEE VERSUS NUMERICAL 

CONVERGENCE BEHAVIOR OF THE HOLOMORPHICALLY EMBED-

DED POWER FLOW METHOD 

It has been observed that, with limited precision, the HEPF method faces conver-

gence issues for some ill-conditioned systems and heavily loaded systems that are close 

to SNBP. Higher precision (more than double precision) and a very high number of 

terms may be necessary in order to obtain convergence for some problems. From Chap-

ter 3, it can be seen that one of the important steps involved in the HEPF method is 

analytic continuation using near-diagonal Padé approximants to evaluate the voltage 

series of all buses. Once the bus voltages are represented as Maclaurin series, they are 

evaluated using analytic continuation which can be used to represent the voltage func-

tions outside the radius of convergence of their power series. Stahl’s theorem proves 

that a series of near-diagonal Padé approximants is guaranteed to converge to the orig-

inal function in its domain, provided the precision of the computing engine is sufficient. 

Stahl’s theorem does not guarantee theoretical convergence with either limited preci-

sion or when a limited number of series terms is used. Further Stahl’s theorem is silent 

about whether other (non-Padé-approximant) convergence acceleration and analytic 

continuation techniques might also guarantee theoretical convergence. It will be shown 

here that, indeed, while theoretical convergence may be guaranteed when using Padé 
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approximants, numerical convergence is not guaranteed and is dependent on the numer-

ical method chosen. A second objective is to assess whether other convergence accel-

eration techniques, which may or may not be the silent beneficiaries of an undiscovered 

theoretical convergence guarantee, have acceptable performance when applied to the 

power-flow problem. In the past, only two ways of obtaining Padé approximants have 

been applied to the power-flow problem: the matrix method and the Viskovatov method 

[16], [17] and [105]. It has been seen that the higher precision is required when the 

matrix method is used in solving power-flow problems that are considered “ill-condi-

tioned” [105]. The primary loss of accuracy was shown to occur during the calculation 

of the Padé approximants, for the systems tested in [105]. 

This chapter explores various methods of accelerating the convergence of the power 

series.   

5.1 Different methods of accelerating the convergence of HEPF series 

This section examines eight different methods of accelerating the convergence of 

HEPF series as enumerated below. 

a) Matrix Method 

b) Aitken’s Δ2Algorithm 

c) Epsilon Algorithm 

d) Eta Algorithm 

e) Viskovatov Method (Continued Fractions and Three-term Recursion) 
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f) Van Wijngaarden Transformation 

g) Wynn’s Rho Algorithm 

h) Brezinski’s Theta Algorithm 

5.1.1 Matrix Method 

Consider the power series representation of an analytic function f(α): 
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where fn is the coefficient of αn in the power series. 

For a power series given by (5.1), the [L/M] Padé approximant is a rational function 

of α given by, 
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where L is the degree of the numerator polynomial and M is the degree of the denomi-

nator polynomial. 

The procedure to obtain the [L/M] Padé approximant from a truncated power series 

will be discussed first followed by some important observations and properties. 

The aim is to evaluate the [L/M] Padé approximant from (5.1) in the form shown 

below, 
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where the coefficients f0 through fL+M are known and O(αL+M+1) indicates the truncation 

error for the [L/M] Padé. Thus, there are L+M+1 known coefficients in the power series 

while there are L+M+2 unknowns in the Padé approximant. Hence, one of the coeffi-

cients in the Padé approximant can be chosen as a free variable to scale the entire equa-

tion. The constant term in the denominator polynomial b0 is chosen to be 1 [22]. Mul-

tiplying (5.3) by b(α) on both sides we get: 
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Equating the coefficients of αL+1 to αL+M
 on LHS to 0: 
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This is a system of M linear equations; it can be expressed in a matrix form as shown 

in (5.6). Equation (5.6) can be solved using traditional LU factorization techniques to 

obtain the denominator polynomial coefficients. 
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By equating the coefficients of like powers of α on both sides from α 0 to α L, the 

numerator polynomial coefficients can be evaluated. 
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In (5.7), the coefficients of the f series are known from the given data while the b 

series coefficients are available from the solution of (5.6). Thus from equation (5.7) the 

numerator polynomial coefficients can be evaluated. Thus, both the numerator and de-

nominator polynomials of the Padé approximant can be obtained. 

The matrix method described in [22] allows the calculation of rational approximant 

of any arbitrary degree. From Stahl’s convergence theory, the diagonal/near-diagonal 

Padé approximants yield the maximal analytic continuation and hence are of interest. 

A diagonal Padé approximant for a series with a finite number of terms can be taken to 

be a rational approximant whose numerator and denominator polynomial degrees are 

equal (i.e., L=M). If the difference between the degree of the numerator and denomina-

tor polynomial is 1, (i.e. |L-M|=1), it is said to be a near-diagonal Padé approximant. 

The advantage of this method is that the power series of α is approximated with a 

rational approximant as a function of α. This rational approximant may then be evalu-

ated repeatedly for any value of α to find the value of f(α). As will be seen in the fol-

lowing sections, most other methods of accelerating the convergence of a series can be 

used only at a specific value of α. 
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The requirement of numerical accuracy is one of the main drawbacks of the matrix 

method. There can be ill-conditioned problems where small variations in the series co-

efficients can lead to larger variations of the Padé approximant’s coefficients. The most 

conservative guiding rule is to maintain M guarding decimal places for a [L/M] Padé 

approximant [22]. For the matrix method, the primary loss of accuracy is expected in 

the matrix operation to obtain the coefficients of the denominator polynomial, and no 

further loss of accuracy is expected in the calculation of the numerator polynomial [22]. 

It is also important to not use diagonal Padé approximants whose polynomial degree 

is too high. For instance, for a geometric series, all [L/2] Padé approximants are degen-

erate and a lower-degree denominator polynomial is needed. 

Other caveats of the matrix method of calculating Padé approximants such as de-

fects (also known as Froissart doublets) when using a matrix method are discussed in 

[106]. Defects are spurious pole-zero pairs which are transient in nature, i.e. they appear 

and disappear when increasing or decreasing the degree of the approximant and are not 

indicators of the true singularities of a function [22]. It is advised to ignore the results 

obtained from Padé approximants with defects close to zero since it is nearly a degen-

erate Padé approximant [22]. Since the power-flow equations are algebraic equations, 

Stahl’s theorem [21] shows that Froissart doublets can occur only due to numerical 

round-off and not with exact arithmetic. Thus for the power-flow problem, spurious 
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pole-zero pairs can be avoided by increasing the Padé order [106] and using the behav-

ior of the smallest roots of successive approximants to identify these anomalous pairs. 

5.1.2 Aitken’s Δ2 Method 

The Aitken’s Δ2 method is one of the best known and simplest techniques of accel-

erating the convergence of a sequence [22]. The details of the implementation and some 

rigorous proofs of the convergence properties of this method are presented in [22], [33], 

[35] and [36]. Consider a sequence of real or complex numbers, 

},2,1,0,{  nSn  (5.8) 

such that Sn→S as n→∞. 

Aitken’s Δ2 method finds a new sequence that converges faster to S. Define the 

forward differences for the sequence defined in (5.8) as follows:  
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Let the new sequence be defined as, 
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This new sequence converges to S, i.e., Tn→S as n→∞. If the terms of the series con-

verge (up to roundoff error) i.e., Sn ≈ Sn+1, the terms in Tn become meaningless noise. 

Thus for a given sequence of real or complex numbers, the Aitken’s Δ2 method finds 
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a new sequence of forward differences that converges faster to the value of the function 

at α =1.0. To evaluate the series at any other value of α, one would need to multiply the 

series coefficients with the values of the non-unity α raised to the corresponding expo-

nents and then use the Δ2method. Since it depends on the Δ2 term (forward differences 

of forward differences), it is called the Δ2 method. Aitken’s Δ2 method is ideally de-

signed for sequences which have close-to-geometric convergence and the method does 

not converge well for sequences whose convergence is not nearly geometric, and thus 

is not very robust [22]. This can be demonstrated on the Maclaurin series for ln(1+x) as 

shown in Appendix B where the numerical results for the epsilon method for the same 

series are also provided.  

It can be shown that the Aitken’s Δ2 method is equivalent to using [L/1] Padé ap-

proximants [22] (Derivation of the proof is provided in Appendix A) and hence the 

guarantee of Stahl’s theorem does not apply to this approach. However when a large 

number of terms is present in the series, the method is computationally less intensive. 

Thus if the interest is only in the value of the function at a specific value of α, this 

approach can be more economical than the matrix method. Note that in order to apply 

Aitken’s Δ2 method to the power-flow problem, a new series of partial sums of the 

voltage series terms needs to be constructed since the Aitken’s Δ2 method assumes that 

the sequence/series itself eventually converges to the final value, and not the sum of the 

series. 
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5.1.3 Wynn’s Epsilon Method 

As mentioned earlier, Aitken’s Δ2 method is useful if the function is to be evaluated 

only at a specific value of α. However it has also been shown that it is not a very robust 

method, with applicability to a very limited category of functions. Another method that 

gives the same computational advantage, but is more robust than Aitken’s Δ2 method, 

is the epsilon algorithm. The epsilon algorithm derived from Shank’s transformation 

developed in [23] involves the transformation of the power series into the epsilon table 

(ϵ table). The derivation of Shank’s transformation and further development of the ep-

silon method can be found in [26]. Shank’s transformation involves the calculation of 

two determinants for a given number of terms in the power series and is thus computa-

tionally expensive, particularly when the series contains a large number of terms. The 

epsilon algorithm eliminates the need to compute such determinants. The calculation 

procedure (constructing the ϵ table) and some rigorous proofs of the convergence prop-

erties of this method can be found in [22], [25] , [27], and [33] - [36].  

The notation ϵk
(j)

 is used to indicate the entries of the epsilon table as shown in Table 

5.1. The subscript k denotes the column and the superscript j indicates the progression 

down the column. 
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Table 5.1 Structure of the ϵ table 
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The first column is ϵ-1
(j) is defined to be zeros. The second column is defined as the 

partial sums of the series which is to be evaluated. The remaining elements are calcu-

lated from the epsilon algorithm which connects the elements in a rhombus pattern as 

shown in Table 5.2. 

Table 5.2 Rhombus pattern to evaluate entries of the ϵ table 
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The entries of Table 5.1 are calculated using the relation shown in (5.12).  
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It is assumed that all the entries of the table exist. Since the epsilon algorithm uses 

the reciprocal differences of the power series coefficients, the trailing digits of the co-

efficients are more critical in accurately representing the function. It can be observed 

that when two successive elements of a column ϵk
(j+1), ϵk

(j) are equal, from (5.12) ϵk+1
(j) 

is not defined. If all the elements of the ϵ table do not exist, the table is said to be 

degenerate. There seems to be no general theory regarding the root causes of such de-

generacy. 

The relation between epsilon table and Padé approximants is given by (5.13) where 

’s subscript 2k denotes the column index, the superscript j indicates the progression 

down the column and the right-hand-side expression is the [k+j/k] Padé approximant 

for the power series f(α) (indicated by f subscript), evaluated at α =1.0 [22]. The results 

of the epsilon algorithm presented in this report include the equivalent of the diagonal 

Padé approximant (j=0), since it is consistent with Stahl’s theoretical convergence guar-

antee, as well as the equivalent of an off-diagonal (j=2k) Padé approximant.  
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2 f
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k kjk   (5.13) 

The epsilon algorithm is computationally appealing for calculating Padé approxi-

mants since it does not involve solving a matrix equation. It is a widely used method 

and is believed to be fairly robust.  
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5.1.4 Eta Method 

One of the other methods that can be used if the interest is only in the value of the 

approximant at a specific value of α, is the eta algorithm [23]. Similar to the epsilon 

algorithm, the eta algorithm involves the transformation of the sequences into a two 

dimensional array called the η table and is also computationally more efficient than the 

matrix method since it does not involve solving a dense matrix equation. The calcula-

tion procedure in constructing the η table is provided in [22] and [32]. 

The structure of the η table is same as that of the ϵ table as seen from Table 5.3. The 

notation ηk
(j)

 is used to indicate the entries of the eta table, where the subscript k denotes 

the column and the superscript j indicates the progression down the column. 

Table 5.3 Structure of the η table 
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The elements of the first column is η-1
(j) is defined to be infinity as follows:  
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The second column contains the terms of the power series as follows: 
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The remaining elements are calculated from the epsilon algorithm which connects the 

elements in two rhombus patterns as shown in Table 5.4. 

Table 5.4 The two rhombus patterns to evaluate entries of the η table 
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The entries of Table 5.4 are calculated using the relations shown in (5.16) and (5.17).  
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(5.17) 

The summation of the first entries of all columns then gives the converged value of 

the series. It is proved in [22] that the epsilon and eta algorithms are related as given by 

(5.18) where r is the column number. 
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From (5.13) and (5.18) it is seen that the eta algorithm will always yield diagonal 

Padé approximants and hence the algorithm is consistent with Stahl’s theorem. The eta 
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algorithm is also computationally more efficient than calculating Padé approximants, 

since it does not involve solving a matrix equation. 

A comparison of the convergence performance of the methods discussed so far for 

the Gregory’s pi series, which is known for its slow convergence, is provided in Ap-

pendix C. 

5.1.5 Viskovatov Method (Continued Fraction and Three-Term Recursion) 

The Viskovatov method involves two steps. The first step it to convert the given 

power series into a continued fraction. The second step is to convert the continued frac-

tion into a rational function which, when evaluated at α = 1.0, gives the converged value 

of the series. 

For the Taylor’s series given in (5.1), obtaining the continued fraction involves re-

cursively inverting partial series which requires that all the inverses of the partial series 

that are required, exist [22]. 

)(
]0[

][]2[]1[

1
]0[

)][]2[]1[(]0[

][]2[]1[]0[)(

)1(

1

1

2













f
f

nfff

f

nffff

nfffff

n

n

n





















  (5.19) 

The quantity f(1)(α) in (5.19) is the reciprocal of another power series given by: 
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Equation (5.20) can be written as (5.21) to obtain the coefficients of f(1)(α). 
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Equating the constant term in (5.21), we obtain: 
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The coefficients of the remaining powers of α in (5.21) should be zero. Hence the 

coefficients, ,3,2,1],[)1( nnf  can be calculated using the relation given by (5.23). 
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Applying the technique described above recursively to (5.19) yields: 
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A three-term recursion relationship can be used to find an equivalent rational func-

tion as given by (5.26). This is proved by the principle of mathematical induction in 

[22] and the iterative re-expansion of the continued fraction in [29]. 
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The relationship between the Viskovatov method and the diagonal Padé approxi-

mants is given by (5.27) where Ai and Bi are polynomials in α (not necessarily of degree 

i) [22]. 
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One of the primary advantages of this method is that, like the matrix method, it can 

be used to evaluate the given series at different values of α. Since the Viskovatov 

method is equivalent to constructing a diagonal or near-diagonal Padé approximant, it 

is theoretically guaranteed to converge to the function’s value at the desired value of α 

(as long as the point-of-evaluation is within the function’s domain); however numerical 

results show that this method is not very efficient and can at times fail to converge 

numerically, as will be shown later. 

5.1.6 Van Wijngaarden Transformation 

This method is based on the Euler’s transformation which is used to accelerate the 

convergence of an alternating series [38]. Given a convergent alternating series with 

the sum: 
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A row of partial sums is computed as given by: 
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Note that in the implementation of this method for the solution of the power-flow 

problem, actual complex voltages were used for an and thus the (-1)n  term was not 

included. Rows of averages are formed between neighbors as given by the relation: 
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The last entry of the first column then represents the converged value. Van 

Wijngaarden’s contribution was to show that it is better to not carry out this procedure 

to the end but stop two-thirds of the way. For instance, s16,8 is a better approximation 

than s24,0. 

This method does not have a theoretical convergence guarantee and the numerical 

performance of this method for the power-flow problems will be discussed in later sec-

tions. 

5.1.7 Wynn’s Rho Algorithm 

Wynn’s ρ algorithm, similar to his ε algorithm, is used to evaluate a given Taylor 

series and has a smaller number of operations than most similar recursive algorithms 

[36], [37]. The details of implementation and the convergence properties of this method 

are presented in [36] and [37]. It follows a recursive scheme that is almost identical to 

that of the epsilon method. The recurrence relations are given by, 
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where sn indicates the partial sums of the series with n terms in the series. This recur-

rence relation is used to complete the ρ rhombus which is similar to the ε structure and 

is shown in Table 5.5. 

Table 5.5 Structure of the ρ table 
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As in the epsilon method, the even columns give the converged values. Depending 

on the implementation, the rho method can yield either diagonal or off-diagonal Padé 

approximants. The numerical performance of this method for the power-flow problems 

will be discussed in later sections. 

5.1.8 Brezinski’s Theta Algorithm 

While Wynn’s ε method accelerates the convergence of a linearly converging series 

[116] and even some wildly diverging series, it is not able to accelerate the convergence 

of a series with logarithmic convergence [36]. On the other hand, Wynn’s ρ method 

accelerates series with logarithmic convergence but fails to accelerate linear conver-

gence and cannot sum wildly diverging series [36]. Brezinski’s ϑ algorithm is said to 
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combine the advantageous features of the ε and ρ algorithms. The details of implemen-

tation of this method are presented in [35], [36] and [37]. The recursive scheme for the 

ϑ algorithm is given by: 
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(5.32) 

where sn indicates the partial sums of the series with n terms in the series. The above 

relations are used to obtain the entries of the ϑ table along a relatively complicated path 

which has the following patterns:  

Table 5.6 Structure of the ϑ table for relation (5.32b) 
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Table 5.7 Structure of the ϑ table for relation (5.32c) 
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This algorithm is based on some arbitrary choices and was purely experimental, 

however the experimental results were quite good on the problems tested in [36]. While 

its recursive scheme is known to be more complicated than most other such methods, 
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relatively little is known about the theoretical properties of this method [36] so this 

method does not provide a theoretical convergence guarantee. The numerical perfor-

mance of this method for the power-flow problems will be discussed in the next section. 

5.2 Comparison of the different methods of Analytic Continuation for The 

Power-Flow Problem  

The above-described methods were applied to the IEEE 118-bus and IEEE 300-bus 

systems [107] using the HEPF formulation provided in Section 3.1 and the largest 

power balance equation (PBE) mismatches in pu were plotted on a log scale against the 

number of terms used in the voltage series as shown in Figure 5.1 and Figure 5.2. Dou-

ble precision was used for the experiment and if the largest PBE mismatch using any 

method fell below 10-16 pu using a 100 MVA base, the corresponding plot was termi-

nated at that point. For bulk-power transmission systems, typically an accuracy 0.1 MW 

which is 10-3 pu on a 100 MVA base, is considered to be a sufficient level of accuracy. 

Since the base-case of 118-bus system was not heavily loaded, the voltage series were 

fast-converging and the desired level of accuracy was achieved by simply taking a sum 

of the series terms (referred to as partial sums in the plots) with seven terms in the series. 

At this level of accuracy, the diagonal-Padé-approximant-equivalent epsilon method 

and Van Wijngaarden need 13 and 15 terms respectively to converge, while the others 

converged with seven to 11 series terms. 
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Figure 5.1 Convergence behavior of different algorithms to the power series of the 

118-bus system 

For the IEEE 300-bus system, the matrix and the eta methods needed 14 to 15 terms, 

while the partial sum, Aitken’s Δ2 and epsilon (both diagonal and non-diagonal equiv-

alents) methods needed 17 to 19 terms to converge within the desired accuracy level 

(0.1 MW) as shown in Figure 5.2. Note that while the eta method converges at a rate 

similar to the matrix method, it is computationally less expensive than the matrix 

method. The rho, theta and Van Wijngaarden methods need 21, 27 and 29 terms respec-

tively to meet the desired convergence tolerance. The Viskovatov method is the slow-

est-converging of all methods, needing 101 terms to meet the desired tolerance and the 

power balance mismatches never decrease below 10-5.  



135 

 

Figure 5.2 Convergence behavior of different algorithms to the power series of the 

300-bus system 

For a 6057-bus model of the ERCOT system, the Viskovatov method never attained 

the desired level of accuracy (despite its theoretical guarantee of convergence) and the 

theta method had unacceptable oscillatory behavior (reaching a maximum mismatch of 

1031) until an excessive number of terms, 101, were included in the series, as shown in 

Figure 5.3. Summing the series, theta, rho and Van Wijngaarden methods resulted in a 

sufficient level of accuracy with 25, 27, 27 and 39 terms respectively. For the other 

methods, the number of terms needed to attain an acceptable level of accuracy were 

similar to those for the 300-bus system (mid-teens to low 20’s). 
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Figure 5.3 Convergence behavior of different algorithms to the power series of the 

6057-bus ERCOT system 

It can be seen that in general the convergence rate was slower for all algorithms for 

the ERCOT and IEEE 300-bus systems as compared to the IEEE-118 bus system. This 

is because with the given operating conditions, the ERCOT and IEEE 300-bus systems 

were much closer to its SNBP as compared to the IEEE 118-bus system, and the voltage 

series were very slowly converging. In order to observe the performance of these algo-

rithms on the IEEE 118-bus system when it is close to voltage collapse, the loads were 

scaled such that the system was loaded to 92% of its estimated SNBP (obtained from 

MATPOWER [102]) and the results are shown in Figure 5.4. It can be seen that the 

convergence rate fell for all methods due to the heavier loading. The theta algorithm 

performed unacceptably for this heavily-loaded system, despite the claim that it can 

sum even wildly diverging series [36]. The Viskovatov method needed 97 series terms 

to achieve the desired level of accuracy of 10-3 p.u. Of the other methods, the Van 
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Wijngaarden transformation, partial sum, rho and Δ2 methods (none of which are theo-

retically guaranteed to converge) had convergence floors with the highest PBE mis-

matches, (on the order of 10-4 p.u. with 101 terms in the series). The epsilon (both di-

agonal and off-diagonal Padé approximant equivalents), the eta and the matrix methods 

eventually achieved the best accuracy of all methods.   

 

Figure 5.4 Convergence behavior of different algorithms to the bus voltage power 

series of the 118-bus system with the loading of the system close to its SNBP loading. 

Also, of the different methods investigated, only the matrix method, eta method, the 

diagonal epsilon method and Viskovatov method yield diagonal Padé approximants or 

their numerical equivalents and hence only these methods are consistent with Stahl’s 

theoretical convergence guarantee [20], [21]. The number of terms required to converge 

within a tolerance of 0.1MW for these four algorithms was plotted against the load-

scaling factor (expressed as a percentage of the SNBP-loading) for the ERCOT system, 

in Figure 5.5.. It was seen that when the system load was less than 50% of the SNBP, 
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all four methods were competitive; however when the system was stressed beyond 50% 

of the SNBP-load, the Viskovatov method failed to converge with 60 series terms (in-

dicated by the early termination of the plot). Beyond 90% of the SNBP-load, the eta 

and matrix methods needed fewer terms to converge than other methods, and all four 

methods needed more than 60 terms to achieve numerical convergence beyond 98-99% 

of the SNBP, with the matrix method converging at slightly higher loading levels than 

other methods. 

 

Figure 5.5 Number of terms needed for convergence, ERCOT 

For the IEEE test systems, it was observed that the eta method converged at slightly 

higher loading levels than the matrix method (2.33% higher for the 118-bus system and 

1.46% higher for the 300-bus system, assuming uniform scaling of injections).   

An example of the sensitivity of the Padé approximant calculation to even subtle 

algorithmic differences is demonstrated by comparing the diagonal [M/M] approxi-

mant, with the near-diagonal [M/M+1] and [M+1/M] approximants, when the matrix 
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method is used. The diagonal Padé-approximants suffered from oscillations in the so-

lution accuracy for the first few terms, which were not seen in the near-diagonal Padé-

approximants, as shown in Figure 5.6 for the ERCOT system. Observe that accuracy of 

the [M/M+1] and [M+1/M] approximants form an envelope enclosing the eta method 

results as seen in Figure 5.6. The minimum number of terms needed for convergence 

for the ERCOT system as it was stressed to be more than 90% of its SNBP-load was 

also observed to be higher for the diagonal-Padé-approximants than the near-diagonal-

Padé-approximants. 

 

Figure 5.6 Diagonal vs. near-diagonal Padé-approximant using matrix method, ER-

COT 

Note that all of the above results were generated using double precision. Hence 

beyond a certain number of terms, no benefit is gained from adding more series terms 

as seen from Figure 5.1 - Figure 5.3 where the plots flatten out after a certain number 

of series terms. One possible cause of the poor numerical performance of Viskovatov 
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could be the nested inversions of power series required in the continued fraction expan-

sion, which necessitate nested convolutions, which in turn lead to significant com-

pounding of the round-off errors, especially if the numerical values involved become 

extremely large or small, which are seen often.  

Of the methods discussed here, only the matrix method and Viskovatov method 

yield analytic expressions in α while others calculate the numerical value of the analytic 

continuation at a specific value of α. Of all of the Padé-approximant-based methods, 

the matrix method and the eta method of obtaining analytical and numerical diagonal 

Padé approximants respectively, converged at the fastest rate, for the systems tested 

here. However, the eta method is computationally less expensive than the matrix 

method, and it was observed that for a series with 41 terms, the eta method was about 

4.94 times faster to execute using Matlab than the matrix method. Additionally, while 

the matrix and Viskovatov methods require the entire process to be re-started again 

from scratch whenever adding another term in the series, for Aitken’s Δ2, epsilon, rho, 

eta, theta and Van Wijngaarden methods, the previously computed tables can be ap-

pended to obtained updated values with additional series terms. The properties of all 

these different algorithms has been summarized in Table 5.8. 
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Table 5.8 Properties of different algorithms 

Algorithm 

Yields ana-

lytic continu-

ation (or nu-

merical 

equivalent) 

through Padé 

approxi-

mants? 

Theoretically 

guaranteed to 

converge 

(with appro-

priate imple-

mentational 

choice)? 

Yields an ana-

lytical expres-

sion as a solu-

tion? 

Does not 

need re-

start as ad-

ditional se-

ries terms 

are in-

cluded? 

Observed to 

numerically 

converge for 

all systems 

tested with 

double preci-

sion? 

Matrix  ✓ ✓ ✓  ✓ 

Epsilon ✓ ✓  ✓ ✓ 

Eta ✓ ✓  ✓ ✓ 

Viskovatov ✓ ✓ ✓   

Rho ✓ ✓  ✓ ✓ 

Aitken’s Δ2
 ✓   ✓ ✓ 

Van 

Wijngaarden 
   ✓ ✓ 

Theta    ✓  

5.3 Hermite-Padé approximants 

The Hermite-Padé approximants are higher order approximants that are divided into 

two subtypes, algebraic Hermite-Padé approximants and integral Hermite-Padé approx-

imants [22], [108] - [111] which will be briefly described in this section. Note that 

Hermite-Padé approximants can be used to calculate only the numerical value of the 

analytic continuation at a specific value of α and do not provide an analytic expression, 

with one caveat described below. None of the Hermite-Padé approximants have pub-

lished theory stating whether or not theoretical convergence is guaranteed; however as 

the numerical results will show, in some cases these approximants converge at loading 

conditions where even the diagonal Padé approximants fail to converge (using double 
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precision), which indicates that the algebraic Hermite-Pade approximants are numeri-

cally more robust, at least in some cases. 

5.3.1 Algebraic Hermite-Padé approximants 

Consider a function represented by a finite power series given by (5.1). The con-

verged value of the function can be obtained using algebraic Hermite-Padé approxi-

mants by solving: 

  0)()(
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

j
k

j

mj fQ
j

  (5.33)  

where Qj,mj(α) are polynomials of degree mj. The functions (f(α))j can be computed by 

performing convolutions of the given f(α) series. The coefficients of Qj,mj(α) can then 

be calculated by equating the like powers of α on both sides of (5.33) and assuming the 

constant term of Qk,mk(α) to be 1.0. The matrix method of calculating a diagonal Padé 

approximant involves solving a (N/2)×(N/2) linear system of equations, where N is the 

number of terms in the truncated series, followed by N/2 convolutions of average length 

N/4 to get all the terms of the approximant. The Hermite-Padé approximants involve 

solving a dense N×N linear system of equations to obtain Qj,mj(α). For a quadratic ap-

proximant, i.e. k = 2, once the values of polynomials Qj,mj(α) are obtained at α = 1.0, a 

closed-form solution can then be obtained given by (5.34b), where the higher root is 

selected. Thus the amount of computation required for calculating the quadratic approx-

imant of a given power series is comparable with the matrix method for obtaining Padé 
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approximants. If the analytic expression in (5.34b) is used, without evaluating the pol-

ynomials Qj,mj(α) at α = 1.0, an analytic expression is obtained, which is the caveat 

referred to above. 
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 (5.34)  

For higher order algebraic Hermite-Padé approximants, the roots of (5.33) can be ob-

tained using numerical methods. However, it might not be as straightforward to select 

the root that represents the operable voltage for higher-order algebraic approximants, 

as it is with the closed-form solution for quadratic approximants. If the wrong root is 

selected, a non-solution (not a low voltage solution) is obtained. In order to obtain a kth 

order approximant, k+∑mj terms are needed in f(α). Finally, there exists no proven the-

oretical convergence guarantee analogous to Stahl’s theorem for algebraic Hermite-

Padé approximants. 

5.3.2 Integral Hermite-Padé approximants 

The converged value of the function given by (5.1) can be obtained using integral 

Hermite-Padé approximants by solving, 
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 (5.35)  

where f(j)(α) is the jth derivative of f(α) and Qj,mj(α) are polynomials of degree mj. 
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The coefficients of Qj,mj(α) are calculated by equating the like powers of α on both 

sides of (5.35) and assuming the constant term of Qk,mk (α) to be 1.0. With the 

knowledge of values of Qj,mj(α) known at α = 1.0, the converged value of the function 

can then be obtained by solving the ordinary differential equation given by (5.35) to 

obtain the value of f(α) at α = 1.0. From the authors’ experience, higher-order integral 

Hermite-Padé approximants are needed to converge to the solution even for moderately 

loaded systems and thus they are computationally more expensive. For instance, for a 

small three-bus system, even under very lightly loaded conditions, an integral approxi-

mant with k = 2 was required in order to obtain a solution within the convergence tol-

erance of 0.1 MW. A solution cannot be obtained using an integral approximant with k 

= 2 if the system load increases to more than 40% of the load at the SNBP, even with 

201 terms in the voltage series. Hence only quadratic approximants will be considered 

in the remainder of this paper. 

5.4 Relation of algebraic Hermite-Padé approximants to the HEPF solution 

Consider a two-bus power system consisting of a slack bus connected to a PQ bus 

as shown in Figure 5.7. 

 

Figure 5.7 Two-bus system diagram 
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The holomorphically embedded power balance equation for the above system is 

given by, 

 
 **

*
0





V

S

Z

V

Z

V
  (5.36)  

where V(α) is the unknown voltage represented by a power series whose value at α = 

1.0 is to be determined. Equation (5.36) can be rewritten as (5.37). 
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By combining the known network parameters into a constant σ, (5.37) can be reduced 

to (5.38), which can be further reduced to (5.39) by separating the real and imaginary 

components. 
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 (5.39)  

The functions UR (α) and UI (α) are the real and imaginary parts of the unknown voltage 

divided by the slack bus voltage. While, UI (α) can be directly determined using (5.39b), 

it is seen that the equation to obtain UR (α) is the same as (5.34a) with Q2,m2(α) = 1.0, 

Q1,m1(α) = -1.0 and Q0,m0(α) = α2σI
2(α)- ασR. Thus if these three polynomials are known, 

i.e., if a quadratic approximant is obtained for the real part of the unknown voltage with 

m2 = 0, m1 = 0, and m0 = 2, the exact solution (if it exists) for the unknown voltage can 

be obtained using only four terms in its representative series. The fact that the quadratic 
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approximants can exactly model the power-flow solution for a two-bus system was dis-

covered by the author and then subsequently published in [112]. In Figure 5.8, the num-

ber of terms needed for Padé approximants and quadratic approximants to converge to 

the solution for the two-bus system are plotted against the load (as a percentage of the 

load at the SNBP). Note that for a two-bus system, the actual voltage at the PQ bus and 

the load at the SNBP can be computed exactly. The number of terms needed for con-

vergence of the diagonal Padé approximants increased as the system load increased and 

it failed to converge at the SNBP even with 201 terms in the series. However, the quad-

ratic approximants with m2 = 0, m1 = 0, and m0 = 2 always converged to the solution 

using only four terms in the voltage series and it was observed that the differences be-

tween the actual solution and the quadratic approximants were of the order of 10-16. 

 

Figure 5.8 Padé approximation vs. quadratic approximation for two-bus system 
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Similarly, if the PBEs for a three-bus system are split into real and imaginary parts 

and solved analytically in the software Maple [113], it can be seen that the exact volt-

ages can be obtained using 6th order polynomials. Our conjecture is that for larger sys-

tems as well, higher-order algebraic Hermite-Padé approximants will accurately repre-

sent the voltages, and that the order of these algebraic approximants will increase ex-

ponentially with system size. However, it will be shown in the next section that with 

the correct choice of m2, m1 and m0, the quadratic approximants can obtain a solution 

within the desired tolerance using fewer terms than diagonal Padé approximants for the 

systems tested. 

5.5 Numerical results for quadratic approximants 

Three parameters m2, m1 and m0 are necessary in order to calculate the quadratic 

approximants for a given function. While it is clearly stated in Stahl’s theorem that the 

maximal analytic continuation of any function can be obtained using diagonal or near-

diagonal Padé approximants, no such clear choice of m2, m1 and m0 can be made, to our 

knowledge. Thus, for the IEEE 14-bus and 118-bus systems, different combinations of 

m2, m1 and m0 were tried in order to obtain convergence (using a tolerance of 0.1 MW) 

using the minimum possible number of terms. The load was increased from zero until 

the diagonal Padé approximants did not converge using the HEPF formulation from 

section 3.1, with the number of series terms limited to 61 due to precision considera-

tions. In Figure 5.9a and Figure 5.10a (on the left side of the page), the number of terms 
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needed for the best choice of quadratic approximants and diagonal Padé approximants 

are plotted against the load-scaling factor for the 14-bus and 118-bus systems respec-

tively. As the system load increases, the percentage reduction obtained in number of 

terms by using quadratic approximants as opposed to using Padé approximants in-

creases, with up to 32% reduction in number of terms being observed. In Figure 5.9b 

and Figure 5.10b (on the right side of the page), the best combinations of m2, m1 and m0 

and N (total number of terms) needed for the quadratic approximants are plotted against 

the load-scaling factor for the 14-bus and 118-bus systems respectively. 

 
Figure 5.9 Performance of quadratic approximation for the IEEE 14-bus system 

a Number of terms needed for Padé approximation vs. quadratic approximation 

b Best choice for m2, m1 and m0 for quadratic approximation 
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Figure 5.10 Performance of quadratic approximation for the IEEE 118-bus system 

a Number of terms needed for Padé approximation vs. quadratic approximation 

b Best choice for m2, m1 and m0 for quadratic approximation 

Since no clear pattern was seen for the best choice of m2, m1 and m0 that would work 

for all loading conditions for any system, a different experiment was performed for dif-

ferent loading conditions for five different systems, starting from approximately 10% of 

the SNBP (estimated using MATPOWER [102]) and increasing the load and real-power 

generation up to the SNBP. The ratios of m2 and m1 to the sum (m2 + m1 + m0), were 

varied from 0 to 1.0 in steps of 0.1 and quadratic approximants were calculated with a 

given ratio combination. Series terms were added for each combination until either the 

desired convergence tolerance was met or the maximum number of terms (61) was 

reached. The average number of terms needed for different loading conditions for each 

combination was calculated and the best proportions of m2, m1 and m0 were determined 

as the combination needing the minimum average number of terms, shown in Table 5.9. 

It was seen that, on average, a 20% reduction was obtained in the requisite number of 

terms to obtain convergence using quadratic approximants; however the best proportions 

of m2, m1 and m0 were system-dependent. It was observed that quadratic approximants 
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achieved convergence at slightly higher loading levels than diagonal Padé approximants, 

which can be useful for studies where the accuracy of the estimated SNBP is important; 

however, if the degrees of the polynomials are chosen poorly, the sequence of approx-

imants may not converge (our experience is limited to double precision implementa-

tions) and there are no obvious rules for choosing wisely. 

Table 5.9 Best average ratios of m2/(m2 + m1 + m0) and m1/(m2 + m1 + m0) for different systems 

System size Best choice 

for m2/(m2 + 

m1 + m0) 

Best choice 

for m1/(m2 

+ m1 + m0) 

Average num-

ber of terms us-

ing Quadratic 

approximants 

Average number 

of terms using 

diagonal Padé 

approximants 

Percent improve-

ment in average 

number of terms 

 

3-bus system with 

two PQ buses 

0.1 0.4 9.0833 12.3333 26.35 

3-bus system with 

one PQ and one PV 

bus 

0 0.4 7.3556 11.2667 34.71 

IEEE 14-bus 0 0.5 8.3684 11.2105 25.35 

IEEE 118-bus 0 0.7 18.2 18.2 0 

6057-bus ERCOT 0.8 0.1 17 19.4 12.37 

      

Further research is needed to determine a system-independent choice for the pro-

portions of m2, m1 and m0 that require fewer terms than the Padé approximants on aver-

age. However, quadratic approximants can be used to advantage, especially where Padé 

approximants fail to converge. Like Padé approximants, quadratic approximants of dif-

ferent voltage series are parallelizable. 
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5.6 Conclusions 

 This chapter compared different rational approximants and acceleration schemes 

for obtaining converged values of voltage series for the holomorphically embedded 

power-flow problem. Of the methods discussed, only the matrix method, the eta method, 

appropriately chosen epsilon and rho methods and Viskovatov method are consistent 

with Stahl’s theoretical convergence guarantee. The matrix method of obtaining near-

diagonal Padé approximants and the eta method have the best numerical convergence 

properties and are the most robust for the systems tested here. The eta method has the 

following beneficial properties: it is computationally more efficient (almost five times 

faster (with 41 series terms) than the matrix method), does not need to re-start the cal-

culations when more series terms are added, and does not require matrix factorization 

to be performed. Interestingly, for heavily-loaded systems, the performance of the near-

diagonal Padé approximants (as measure by number of series terms need for conver-

gence) performed slightly better than the diagonal Padé approximants when using the 

matrix method. Of the other methods that have a theoretical convergence guarantee, the 

epsilon method was the third most numerically robust and the Viskovatov approach had 

almost universally unacceptable performance, not converging in many cases (when 

double precision is used).  

Of the methods that do not have any theoretical convergence guarantee, it was found 

that while most methods yielded sufficient accuracy with double precision (provided a 
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sufficient number of terms was used), Brezinski’s theta method performed unaccepta-

bly for heavily-loaded systems. None of these methods were observed to perform better 

than the matrix or eta methods in any of the cases. 

While the higher-order integral approximants are not competitive with Padé approx-

imants, higher-order algebraic Hermite-Padé approximants are capable of providing the 

theoretically exact power-flow solution for a two-bus system without using an infinite 

number of series terms, and it is conjectured that this can be achieved for systems of 

arbitrary size, provided the problem of selecting the appropriate polynomial degree can 

be solved. Another significant caveat with algebraic approximants is that the order of 

the algebraic approximants which accurately represent the voltages is conjectured to 

increase exponentially with the system-size, which will impact complexity. When 

quadratic approximants are used with a suitable choice of m2, m1 and m0, they outper-

form Padé approximants for the limited test cases observed. While a search for a suita-

ble choice of m2, m1 and m0 is needed to determine the best combination of polynomial 

degrees for quadratic approximants, results suggest they can be used to advantage for 

cases where Padé approximants fail to converge numerically, such as operating condi-

tions that are very close to the system SNBP. Since Stahl’s theorem only guarantees 

that diagonal/near-diagonal Padé approximants will converge to the function’s value, 

quadratic approximants do not have any theoretical convergence guarantee.  
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The most important conclusion is that the important guarantee of theoretical con-

vergence provided by Stahl’s theorem does not confer a guarantee of numerical con-

vergence (as seen from the numerical results for the Viskovatov method). Numerical 

convergence is determined by the robustness and stability properties of the power-series 

convergence-acceleration/analytic-continuation algorithm chosen, some of which have 

been examined here. For the cases tested, the eta and matrix methods have the best 

numerical performance of all the algorithms studied. 
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6 LOCAL-MEASUREMENT-BASED METHODS OF STEADY-STATE 

VOLTAGE STABILITY ANLAYSIS 

6.1 Local-measurement-based methods of estimating the steady-state voltage 

stability margin 

Local-measurement-based methods of estimating the steady-state voltage stability 

margin [117] - [127] use the load voltage and load current measurements at the bus-of-

interest to build a Thévenin equivalent network (assuming that the parameters of the 

Thévenin equivalent remain constant during the sampling period) as shown in Figure 

6.1. Impedance matching is then used to estimate the steady-state voltage stability mar-

gin [117] - [127]. 

ETh
AC

Vi

ZTh

-Ii

 
Figure 6.1 Thévenin equivalent at the bus of interest 

A minimum of two distinct measurements each, of the load voltage and the load 

current are needed to estimate the Thévenin network parameters. The equations used to 

estimate the Thévenin equivalent parameters are given by (6.1). 

iThiTh VZIE   (6.1)  

where ETh is the Thévenin voltage, ZTh is the Thévenin impedance, Vi is the load voltage 

and Ii is the load current. If perfect measurements are used, two distinct measurements 
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are sufficient and the expression for the Thévenin equivalent parameters are given by 

(6.2) and (6.3) [119], [123]. 

)/()( 1221 IIVVZTh   (6.2)  

)/()( 121221 IIIVIVETh   (6.3) 

However, in the absence of perfect measurements, and with the changes in Thévenin 

parameters due to changing system conditions, a larger number of measurements are 

required to obtain a reasonable estimate of the Thévenin equivalent parameters, i.e. ETh 

= ERe+jEIm and ZTh = RTh+jXTh [117]. If one has K (K>2) number of measurements of 

the voltage at bus i (Vi = VRe+jVIm) and the load current at bus i, (Ii = IRe+jIIm), the 

estimation of ETh and ZTh may be performed by solving the overdetermined set of equa-

tions given by (6.4) which is a least-squares minimization of the error. 
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It is well known that if the voltage source is constant and the load power factor is 

allowed to vary, maximum real power is delivered to the load when ZL = ZTh
*. For a 

load with a fixed power factor, the maximum power is transferred to the load when 

|ZTh|=|ZL| (where |.| refers to the magnitude operator), which can be derived as follows: 

Consider the load to be represented by an equivalent impedance ZL as shown in 

Figure 6.2. 
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Figure 6.2 Thévenin impedance and load impedance 

The real power delivered to the load is given by: 

LLL RIP
2

  (6.5)  

The load current in the Thévenin equivalent network is given by: 

 LTh
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L
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E
I


  (6.6)  

Using (6.5) and (6.6), we get: 
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Assuming the power factor angle of the load, Φ, is kept fixed, the load impedance 

can be written as: 

 tanLLLLL jRRjXRZ   (6.8)  

Equation (6.7) can thus be written as: 

   22

2

tanLThLTh

LTh

L
RXRR

RE
P


  (6.9)  

The derivative of PL with respect to RL is given by (keeping in mind that ETh and 

ZTh are assumed to be constant): 
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 (6.10)  

When the power delivered to the load is maximum, the derivative of PL with respect 

to RL is zero. Equating the right hand side expression (RHS) of (6.10) to zero, we get: 
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Equation (6.11) can be expanded as follows: 
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 (6.12)  

Equation (6.12) can be further simplified to get the final impedance magnitude 

matching condition for a constant source connected to a fixed power factor load. 
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 (6.13)  

Hence once the Thévenin equivalent parameters are obtained, assuming the power-

factor of the load remains constant, the steady-state voltage collapse occurs when 

|ZTh|=|ZL| [117], [120]. A common voltage stability index used is 1– |ZTh|/|ZL|. When 

this index is closer to 1.0, the system is in a stable operating region; whereas an index 

closer to 0 indicates that the system is close to steady-state voltage collapse. Some re-

searchers use the fact that at the SNBP, the voltage drop across the Thévenin impedance 
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is the same as the load voltage, i.e. ETh – V = V and thus define the voltage stability 

index as |(ETh – V)/V| [129] or |V|/|ETh – V| [130], which when closer to 1.0. is indicative 

of the system’s proximity to voltage collapse. Some other indices (using the same un-

derlying principle of maximum power transfer) such as power margin have been used 

in [119], [122]. Wide-area measurements have been proposed to be used wherein sys-

tem-wide installed PMUs send their data to a central computer and Thévenin equiva-

lents are built at all the monitored buses to estimate the voltage stability margin [125]. 

Multi-bus equivalent networks have been built using the measurements in a load area 

to estimate the voltage stability margin in order to better account for the different limits 

of individual tie-lines connecting the load area to the rest of the network [82], [124], 

[132] - [134]. Effort has been focused on accurately estimating the Thévenin equivalent 

parameters from measurements in [126], [135], [136]. A comparison of different meth-

ods using local measurements or wide-area measurements to estimate the voltage sta-

bility margin has been done, in terms of their computational costs and the PMU cover-

age required to be able to reliably estimate the SNBP using such measurement-based 

methods (including methods that involve building multi-bus equivalent networks), in 

[121], [118]. 

It can be shown that the Thévenin impedance obtained from (6.2) is actually the 

incremental source impedance (also known as differential impedance). The incremental 
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source impedance Zdiff is given by (6.14) where v is the voltage across the impedance 

and i is the current flowing through the impedance. 
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
  (6.14)  

The voltage across the impedance and the current flowing through it can be substi-

tuted into (6.14) to get: 
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It is seen from (6.2) and (6.15) that the measurement-based method calculates the 

incremental source impedance. However, since the Thévenin source is assumed to be 

linear, its impedance is the same as its incremental impedance. Additionally, the ETh 

calculated using (6.3) is not actually the open-circuit voltage at the bus-of-interest as 

obtained from the full network. It is obtained using only local measurements, without 

any information about the rest of the network and it will be shown that the behavior of 

ETh calculated using (6.3) as the load increases can be counter-intuitive in some cases 

wherein the |ETh| increases as the system load increases. Also the ZTh obtained using 

measurements is not the same as VOC/ISC, where VOC is the open-circuit voltage at the 

bus and ISC is the short-circuit current at the bus. In fact it is quite likely that in the 

presence of nonlinear injections, a power-flow problem will not have a solution if the 

bus-of-interest is short-circuited and hence it is not possible to calculate the ISC. Addi-

tionally, since only local load measurements are used in this method, the power supplied 
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by the Thévenin source is only sufficient to meet the local load and the losses due to 

ZTh, and hence the slack-bus power is not preserved in the Thévenin equivalent. 

It is observed that the behavior of the ETh and ZTh as the load increases depends on 

the bus-of-interest. For example, if the IEEE 14-bus system is modified, such that all 

non-slack buses are PQ buses with positive loads, the behavior of ZTh and ETh as the 

load increases, is different at different buses in the system. The two distinct pseudo-

measurements necessary to calculate ZTh at each load-scaling factor λ, are obtained by 

solving two power-flow problems when (a) all injections are scaled by λ and (b) all 

injections (used for the first measurement) are perturbed by 1% of their respective base-

case injections. The Newton-Raphson method (MATPOWER [102]) is used to solve 

both power-flow problems using a convergence tolerance of 10-6 MVA. At bus number 

4, both |ZTh| and |ETh| increase as the load increases (not considering VAr limits) as 

shown in Figure 6.3. Contrary to the behavior expected from the “open-circuit voltage”, 

as the load in the network increases the magnitude of the ETh increases, as mentioned 

earlier. The increase in ETh and ZTh compensate each other such that the voltage at the 

retained bus (bus number 4 in this case) decreases as the load increases which is ex-

pected. However at bus number 13, both |ZTh| and |ETh| decrease as the load increases 

(not considering VAr limits) as shown in Figure 6.4.  
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Figure 6.3 |ZTh| and |ETh| at bus number 4 vs. the load-scaling factor when generator 

VAr limits are ignored 

 

Figure 6.4 |ZTh| and |ETh| at bus number 13 vs. the load-scaling factor when genera-

tor VAr limits are ignored 
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The angle of ZTh does not necessarily increase/decrease uniformly with load as 

shown in Figure 6.5 where the angle of ZTh at bus number 13 is plotted against the load-

scaling factor. This causes the real part of the ZTh to initially decrease as the load in-

creases and then start increasing after a certain point as shown in Figure 6.6. 

 

Figure 6.5 Angle of ZTh at bus number 13 vs. the load-scaling factor when generator 

VAr limits are ignored 
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Figure 6.6 RTh at bus number 13 vs. the load-scaling factor when generator VAr 

limits are ignored 

Thus, no general conclusions can be drawn about the behavior of ZTh and ETh as the 

system load increases, except that the behavior of ZTh and ETh are similar at a given bus.  

In order to estimate the steady-state voltage stability margin, the |ZL| and |ZTh| are 

plotted on the same graph as shown in Figure 6.7. It is seen that as the load-scaling 

factor increases, the |ZL| and |ZTh| approach each other and are very close to each other 

at the SNBP which occurs at λ= 1.2009 obtained using CPF. In order to ensure that the 

simulation was able to approach the SNBP as closely as possible, the step-size of the 

load-scaling factor λ was reduced from 0.01 to 0.001 after λ = 1.15. The |ZL| and |ZTh| 

at all buses are very close to each other at the SNBP and Figure 6.7 is a representative 

plot. 
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Figure 6.7 Magnitude of ZL and ZTh at bus number 13 vs. the load-scaling factor 

when generator VAr limits are ignored 

In the following section, the effect of discrete changes on the purely local-measure-

ment-based methods of estimating the SNBP will be demonstrated. 

6.2 Effect of discrete changes on local measurement-based methods of estimat-

ing the steady-state voltage stability margin 

In order to demonstrate the effect of discrete changes on local measurement-based 

methods of estimating the steady-state voltage stability margin, the IEEE 14-bus system 

as shown in Figure 6.8 is used. 
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Figure 6.8 IEEE 14-bus system [128] 

6.2.1 Effect of generator VAr limits 

The impact of generators being forced to be on their VAr limits, on the estimated 

ZTh for the 14-bus system, is shown in Figure 6.9 in which the magnitude of ZTh seen at 

bus number 4, is plotted against the load-scaling factor which scales all the loads and 

real-power-generation in the system. The two distinct pseudo-measurements necessary 

to calculate ZTh at each load-scaling factor λ, were obtained by solving two power-flow 

problems when (a) all injections were scaled by λ and (b) injections of the PQ buses 

(used for the first measurement) were perturbed by 0.01% of their respective base-case 

injections. The Newton-Raphson method (MATPOWER [102]) was used to solve both 

power-flow problems using a convergence tolerance of 10-6 MVA. It is seen from Figure 
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6.9 that the measurement-based Thévenin impedance increased in magnitude each time 

a generator was forced to be on its VAr limit, with the discrete increase becoming larger 

as the number of generators with available VAr capabilities reduced. For this system, 

up to a 11.65% increase was seen in |ZTh| when any one of the generators reached its 

respective VAr limit. The SNBP obtained using CPF (MATPOWER [102]) for this sys-

tem occurs at a load-scaling factor of 1.7780. In order to ensure the simulated results 

were able to approach the SNBP as closely as possible, the step-size of the load-scaling 

factor λ was reduced from 0.01 to 0.0001 beyond λ = 1.7 and the perturbation added to 

get the second measurement was also reduced from -10-4 to -10-6. The last point at which 

two measurements were successfully obtained was at λ = 1.7779. 

 

Figure 6.9 Magnitude of ZTh vs. the load-scaling factor when generator VAr limits 

are respected 
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It was observed that as the load-scaling factor increased, the ETh at bus number 4 

had a similar behavior as that of ZTh. This is shown in Figure 6.10 where the magnitude 

of ETh is plotted along with the magnitude of ZTh (with the magnitude of ZTh being 

shifted such that |ETh|=|ZTh-shifted| at λ = 1.0).  

 

Figure 6.10 Magnitude of ETh and the “shifted” ZTh vs. the load-scaling factor 

The proximity of the generator that reaches its VAr limit to the bus-of-interest is 

expected to play an important role in determining the extent of its impact on the |ZTh| 

obtained using local measurements at the bus. This can be seen from the percent in-

crease in |ZTh| observed at buses 11, 12 and 13 when different generators reach their 

maximum VAr limits, tabulated in Table 6.1. For instance, the order of buses that are 

electrically closest to farthest from bus number 8 are buses 11, 13 and 12. Correspond-

ingly, the order of buses that see the largest to smallest impact on the |ZTh| when the 



168 

generator at bus 8 reaches its maximum VAr limit is also 11, 13, 12. Similarly, the order 

of buses that are electrically closest to farthest from bus 6 are buses 13, 11 and 12 and 

this matches the order of the buses with the largest to smallest increase in |ZTh| when 

the generator at bus 6 reaches its maximum VAr limit. However one cannot expect a 

perfect one-to-one correspondence between the order of buses that are electrically 

closer to a generator and the order of buses that see the largest impact of that generator’s 

VAr limit being reached, in all meshed systems. However, buses that are electrically 

close to a generator reaching its VAr limit are generally expected to undergo a larger 

change in |ZTh| than those that are significantly farther. It is also observed that the fol-

lowing trend holds true at all buses: as more generators reach their VAr limits, the per-

cent increase in |ZTh| caused by imposing these var limits increases.  

Table 6.1 Percent increase in |ZTh| due to VAr limits observed at different buses 

Bus number of genera-

tor going on VAr limit 

Bus-of-inter-

est: 11 

Bus-of-in-

terest: 12 

Bus-of-in-

terest: 13 

Bus 2 0.7% 0.86% 0.81% 

Bus 3 0.77% 1.13% 1% 

Bus 6 5.21% 4.65% 5.31% 

Bus 8 5.9% 5.65% 5.68% 

The impedance magnitude matching theorem is seen to hold true (as it should) even 

in the presence of VAr limits, as shown in Figure 6.11 where the |ZL| and |ZTh| are plotted 

on the same plot, with the bus-of-interest being bus number 4. It is seen that as the load-
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scaling factor increases, the |ZL| and |ZTh| approach each other and are very close to each 

other at the SNBP. The small gap between the two at the last point can be attributed to 

the inability to obtain a converged power-flow solution at two loading conditions that 

are very close to the SNBP, and also to the approximation involved in assuming that the 

Thévenin source remains constant over the window of measurements.  

 

Figure 6.11 Magnitude of ZL and ZTh at bus number 4 vs. the load-scaling factor 

when generator VAr limits are respected 

It is well-known that if the generator reactive power capabilities are not taken into 

consideration, the estimated SNBP can be very non-conservative. The |ZTh|, with and 

without VAr limits being considered, is plotted against the load-scaling factor (varying 

from the base-case through to the respective SNBPs) in Figure 6.12. It is seen that the 

net increase in the magnitude of the Thévenin impedance due to VAr limits is 154% and 
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that there is a growth factor of 2.2556 between the estimated SNBP without VAr limits 

over that with VAr limits. Thus, if purely local-measurement-based methods are used 

to estimate the steady-state voltage stability margin when none of the generators are on 

VAr limits (for example at λ = 1.0), the estimated margin will be very non-conservative 

as one cannot predict, based purely on only local measurements, if and when different 

generators will be forced to be on their respective VAr limits.  

 

Figure 6.12 Magnitude of ZTh vs. the load-scaling factor with and without VAr lim-

its 

 Thus, using purely local measurements, one cannot predict all the changes in the 

magnitude of ZTh, which makes continuous monitoring and updating of local-measure-

ment-based models necessary. More than just local measurements are necessary in or-

der to foresee such discrete changes in the system. This thought is echoed in [131] 
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where information about generator field currents in the system is used to anticipate the 

activation of over-excitation limiters for generators.  

6.2.2 Effect of other discrete changes 

In order to judge the impact of other discrete changes in the system such as tap 

changes, the |ZTh|, |ZL| and |ETh| before and after the following discrete changes are noted: 

1. Increasing tap of the transformer between buses 4 and 7 from 0.978 to 1.0. 

2. Increasing phase-shift of the transformer between buses 4 and 7 from 0° to 5°. 

3. Increasing phase-shift of the transformer between buses 4 and 7 from 0° to 30°. 

(While such a dramatic discrete change is not expected to occur in a short span 

of time under typical operating conditions, this change was simulated to observe 

the extent of the effect that phase-shifting transformers can have on |ZTh|.) 

4. Switching off a 19 MVAr capacitor bank on bus 9. 

The percent change in |ZL| and |ZTh| caused by each of the above discrete changes is 

shown in Figure 6.13 and Figure 6.14 respectively. It is seen that in the case where the 

|ZL| increases due to a discrete change, |ZTh| also increases, with the increase in |ZTh| 

being slightly more than the increase in |ZL|. This causes the SNBP to be slightly re-

duced. Likewise, in the cases where |ZL| decreases, |ZTh| either increases slightly or also 

decreases but the decrease in the |ZL| is more pronounced than that in |ZTh|, which again 

leads to a reduction in the estimated SNBP. It is seen from Figure 6.15 that an in-

crease/decrease in the |ZTh| is also accompanied by an increase/decrease, respectively, 
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in |ETh| (except at buses 4 and 7 when the phase-shift of the transformer is increased to 

5°, in which case the percent change in |ZTh| is very small). The effect of the discrete 

changes on the estimated SNBP is shown in Figure 6.16, where it is clearly seen that 

the 30° phase shift of the transformer causes the highest reduction in SNBP, however 

this is a dramatic change which is not expected to occur in a single step in the field.  

The goal of this analysis was to determine which types of discrete changes had the 

greatest effect on the SNBP. It is seen that the effect of discrete changes such as tap 

changing and phase changing on the estimated SNBP is not as pronounced as the effect 

of bus-type switching, for the system tested. 

 
Figure 6.13 Effect of other discrete changes on ZL 
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Figure 6.14 Effect of other discrete changes on ZTh 

 
Figure 6.15 Effect of other discrete changes on ETh 
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Figure 6.16 Effect of other discrete changes on estimated SNBP 

6.2.3 Limit-induced bifurcation points 

Another phenomenon that cannot be foreseen based on local measurements alone, 

is the occurrence of a limit-induced bifurcation point. A limit-induced bifurcation point 

occurs when a physical limit such as generator VAr limit is reached, and the system 

loses its steady-state stability despite the Jacobian being non-singular at the point [137]. 

In fact, the system changes such that one of the eigenvalues of the Jacobian has a posi-

tive real part when the limit is encountered, indicating that the operating point is unsta-

ble [137]. In other words, the equilibrium point obtained for the operating condition 

when a generator reaches its VAr limit, coincides with the unstable equilibrium point 

(low-voltage solution) for the system if the generator had been modeled as a PQ bus to 

begin with [75], [137], [138]. Due to the operating point being unstable at least mo-
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mentarily, the likelihood of the system experiencing voltage collapse due to the inevi-

table small disturbances is at least as high as the possibility of the system converging 

to a nearby stable equilibrium point [137]. If only local measurements are used, one 

cannot foresee the occurrence of limit-induced bifurcation points. It is important to note 

here, that in the numerical experiments reported in [67], with test systems of sizes var-

ying from 14 buses to 2158 buses, the limit induced bifurcation points occurred very 

close to the SNBP and thus the differences between the loadability limits with or with-

out limit-induced bifurcation points were negligible for all systems tested. Since power 

systems are not allowed to operate at such high load levels such that the system is very 

close to its SNBP, limit-induced bifurcations are possibly not a concern for system op-

erators and this may be more of a theoretical concern than a practical one. However, 

the results from [67] do not preclude the possibility of such a phenomenon occurring at 

lower loading levels i.e., theoretically there is no guarantee that a limit-induced bifur-

cation will always occur only at higher loading levels [137]. If they occur at moderate 

loading levels, not accounting for them could lead to a larger difference in the loadabil-

ity margin.  

In short, in the presence of discrete changes in the system (which indeed occur in 

all power systems), voltage stability margin predictions should use both system-based 

models and local-measurement-based models: the local-measurement-based models 

should be used to inform and correct the system based models. 
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6.3 Validation of pseudo-measurements obtained using HEPF 

It has already been shown that HEPF can be used to solve power-flow problems 

and that the solution obtained using HEPF for a given power-flow problem matches 

that obtained using NR, with the extent of the difference between the two solutions 

depending on the convergence tolerance used for NR and the number of terms used for 

HEPF. Since the measurement-based methods calculate the Thévenin voltage and im-

pedance using the voltage and current measurements at the load bus, it naturally follows 

that the Thévenin voltage and impedance obtained using pseudo-measurements calcu-

lated using HEPF (by solving two power-flow problems as explained in section 6.1) 

will match those obtained when NR is used to obtain the pseudo-measurements. This 

is shown in Figure 6.17 where the |ZL| and |ZTh| obtained using NR and HEPF are plotted 

against the load-scaling factor for the 14-bus system, with the bus-of-interest being bus 

number 4. It is seen that the |ZL| and |ZTh| obtained using HEPF match those obtained 

using NR. A total of 61 terms were used for the HEPF method and a convergence tol-

erance of 10-6 MW was used for the NR method. Generator VAr limits were not con-

sidered for this test, however, as long as the same set of buses are on maximum and 

minimum VAr limits respectively, the ZL and ZTh obtained using pseudo-measurements 

using HEPF are expected to match those obtained using NR. 
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Figure 6.17 Validation of HEPF pseudo-measurements 

6.4 Developing a Thévenin-like network using HE reduction 

Two-bus equivalent networks for distribution systems that preserve the bus voltage 

at the retained bus theoretically exactly as long as the load changes along a pre-defined 

direction have been demonstrated in chapter 4. Multi-bus reduced-order networks for 

larger meshed systems have been developed in [139], which preserve the voltages at all 

the retained buses, and the system SNBP as long as the load changes along a pre-defined 

direction. Similar to the HE reduction for distribution systems, the HE reduction for 

meshed systems also involves solving the full-network power-flow problem using 

HEPF before proceeding with the network reduction. HE reduction is essentially a non-

linear variation of Ward reduction wherein the injections at the boundary buses are 

nonlinear functions of α instead of being obtained using linearization at the base case. 
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The topology of the reduced network and the network parameters of the reduced net-

work are the same as those obtained from Ward reduction. HE reduction for meshed 

systems has been demonstrated on the 14-bus and 118-bus IEEE test systems and a 

6057-bus ERCOT system, with approximately a 50% reduction in the network size 

[139]. Using HE reduction, reduced-order networks can also be built that are structur-

ally similar to the Thévenin networks described in section 6.1, but are nonlinear i.e. a 

nonlinear voltage source connected to the load through a constant series impedance, 

i.e., a series impedance that is not a function of loading level. How would one build 

such nonlinear Thévenin-like networks and use them to estimate the SNBP will be in-

vestigated in the rest of this section. The advantage of building such a nonlinear network 

would be that if measurements are eventually used to build the Thévenin-like network, 

it may better capture the nonlinear behavior of the original system. Fitting a polynomial 

function for the voltage at the bus-of-interest using measurements, can also give more 

information about the expected voltage at that bus under different operating conditions.  

6.4.1 Steps involved in obtaining the Thévenin-like network 

Consider a simple four-bus system as shown in Figure 6.18 with the bus-of-interest 

being bus number 3 (i.e. the farthest bus from the slack bus). The parameters for this 

system are provided in Table 6.2. 
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Figure 6.18 Four-bus system 

Table 6.2 System parameters for four-bus system 

Parameter 

name 
Value Parameter name Value 

S2 50.0 + 10.0j (MVA) ZSource 0.01j (Ω-pu) 

S3  10.0 + 5.0j (MVA) V0 1.0 pu 

Z1 0.01 + 0.1j (Ω-pu) MVABase 100 MVA 

Z2 0.02 + 0.2j (Ω-pu)   

The first step to obtain the Thévenin-like network is to reduce the original system 

to a three-bus network as shown in Figure 6.19, obtained by eliminating bus number 2 

using HE reduction. The current injection at bus number 2, I2(α) is given by:  

 
 **

2

*

2
2






V

S
I 

 

(6.16)

 

The functions I1_2(α) and I3_2(α) represent the parts of the external (nonlinear) cur-

rent injections (i.e., I2(α)), that are moved to the boundary buses, i.e., bus 1 and bus 3, 

respectively, for this system. Note that at this stage, the slack bus power in the reduced 

network is the same as that in the original full network. 
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Figure 6.19 HE-reduced network 

Once a network with a structure as shown in Figure 6.19 is obtained (and this to-

pology is what we will obtain even for more complex network reductions), we need to 

transform it into a Thévenin-like network. The first step in doing this is to convert the 

voltage source at the slack bus to a Norton source as shown in Figure 6.20.  

αS3=αP3+jαQ3

V3(α)V1(α)

I1_2(α) I3_2(α)V0/Zsource

Zsource ZWard

 

Figure 6.20 Step1 of getting a Thévenin-like network from the HE-reduced network 

Though Thévenin-Norton conversions have been shown to be strictly valid for only 

linear systems, one can show that the conversion shown in Figure 6.20, preserves the 

load voltage and current profiles. The net current flowing into bus 1 in the reduced 

network shown in Figure 6.19 should be zero and is given by Iin_1: 

 
 

   

WardSource

in
Z

VV
I

Z

VV
I




 13

2_1

10

1_


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


 

(6.17)

 

The current flowing into bus 1 in the network shown in Figure 6.20 is: 
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Note that the current injection into bus 1 is the same in both networks as seen from 

(6.17) and (6.18). Clearly the net injection into bus 3 is also the same in both networks. 

Hence the load voltage and load current are preserved in this Thévenin-Norton conver-

sion. Given that the roots of the voltage Padé approximants provide a tight upper bound 

on the SNBP, and that the voltage series in the two networks is the same, it follows that 

the SNBP of the network is preserved after such a Thévenin-Norton conversion. The 

net current injection at bus 1 in Figure 6.20 can then be converted to a voltage source 

using a Norton-to-Thévenin conversion, as shown in Figure 6.21.  

V0+I1_2(α)Zsource
AC

αS3=αP3+jαQ3

V3(α)

I3_2(α)

Zsource ZWard

V1(α)

 

Figure 6.21 Step-2 of getting a Thévenin-like network from the HE-reduced net-

work 

It can be shown that this Norton-Thévenin conversion preserves the load voltage and 

current despite the nonlinear nature of the source. The current flowing into bus 1 in 

Figure 6.21 is given by: 

       

WardSource

Source

stepin
Z

VV

Z

VZIV
I


1312_10

2_1_





  (6.19) 

Note that the current injection into bus 1 is the same in the networks shown in Figure 
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6.20 and Figure 6.21 as seen from (6.18) and (6.19). Hence the load voltage, load cur-

rent as well as the system SNBP are preserved through the Norton-Thévenin conversion. 

The voltage source can then be converted again to a current source (again while pre-

serving the load characteristics and the system SNBP as shown earlier) as shown in 

Figure 6.22. 

(Zsource +ZWard)

αS3=αP3+jαQ3

V3(α)

I3_2(α)
(V0+I1_2(α)Zsource)/(Zsource +ZWard)

 

Figure 6.22 Step-3 of getting a Thévenin-like network from the HE-reduced net-

work 

The net current injection at bus 3 can then be converted back to a voltage source, as 

shown in Figure 6.23, which is the Thévenin-like network consisting of a variable volt-

age source Vsource(α), connected to the bus-of-interest through a constant impedance.  

V0+I1_2(α)Zsource +I3_2(α)(Zsource +ZWard)
AC

αS3=αP3+jαQ3

V3(α)

(Zsource +ZWard)

 

Figure 6.23 Final step of getting a Thévenin-like network from the HE-reduced net-

work 

 Note that when such Thévenin-Norton conversions are performed, the slack bus 

power is no longer preserved, i.e., it does not match the slack bus power from the full 

network. Additionally, similar to the measurement-based Thévenin equivalent, the 
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source voltage, Vsource(α), is not the open-circuit voltage at the bus-of-interest (if the 

uniform scaling HEPF formulation is used). If evaluated at α=0, it represents the voltage 

the bus-of-interest when all the buses in the network are open-circuited. One can use 

the direction-of-change scaling formulation to scale the load only at the bus-of-interest, 

in which case Vsource(α) evaluated at α=0, represents the open-circuit voltage at the bus-

of-interest. The formulation that one uses to solve the power-flow problem for the 

whole network depends on the study one wants to perform with the reduced model. 

Hence depending on the assumptions one makes about the full-model load behavior, 

one should choose an appropriate scaling formulation. The series impedance of the non-

linear Thévenin-like network is not the same as VOC/ISC either, it is simply the series 

combination of Zsource and the impedance obtained from Ward reduction i.e. ZWard. Since 

the loads are modeled as nonlinear current injections, it is not surprising that the series 

impedance is a constant that is independent of the system loading condition. Instead, it 

is Vsource that is a function of α since it is dependent on the external current injections. 

While a simple radial 4-bus system was used to explain the approach for arriving at 

the Thévenin-like network, no inherent assumptions are made that would restrict this 

approach to radial systems. Results will be demonstrated on the meshed 14-bus system 

in the following sections. 

Numerically validating the foregoing approach is an important component of the 
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research approach. In order to validate the foregoing Thévenin-like network with a non-

linear voltage source, obtained using HE reduction, the power-flow problem is solved 

for this reduced network to obtain the voltage at the retained bus. The voltage solution 

obtained from the reduced network is compared with the full network solution for the 

four-bus system at different load-scaling factors up to the SNBP (estimated at load-

scaling factor = 5.0243, using CPF). It was seen that the voltage solution from the Thé-

venin-like network matched that obtained from the full network at all loading levels as 

shown in Figure 6.24 and Figure 6.25 in which the voltage magnitudes and voltage 

angles for the full and reduced networks are plotted against the load-scaling factor. The 

magnitude of the difference between the voltage at the retained bus obtained from the 

full network and that obtained from the Thévenin-like network is plotted against the 

load-scaling factor in Figure 6.26. It is seen that the difference is on the order of 10-15 

pu at load levels that are not too close to the SNBP. 
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Figure 6.24 Voltage magnitude from Thévenin-like network and full network, 4-bus 

system 

 

Figure 6.25 Voltage angle from Thévenin-like network and full network, 4-bus sys-

tem 
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Figure 6.26 Difference between the voltage magnitudes obtained from the Thé-

venin-like network and the full network, 4-bus system 

For a second test case, the IEEE 14 bus system was used. Similarly, the voltage 

solution from the Thévenin-like network matched that obtained from the full network 

for the 14-bus system at all loading levels through to the SNBP (estimated to be at load-

scaling factor = 4.012, using CPF) as shown in Figure 6.27 and Figure 6.28 in which 

the voltage magnitudes and voltage angles are plotted respectively for the full and re-

duced networks against the load-scaling factor, with the bus-of-interest being bus num-

ber 4. Note that an additional bus, ‘bus 0’ was added to the system and made the slack 

bus in the new system, connected to the original slack bus (bus number 1) in the IEEE 

14-bus system via the series impedance Zsource (assumed to be 0.01j), thus making the 

total number of buses 15. This system will be referred to as the modified 14-bus system 

in the rest of the document. The magnitude of difference between the voltage at the 
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retained bus (bus number 4) obtained from the full network and that obtained from the 

Thévenin-like network for the modified 14-bus system is plotted against the load-scal-

ing factor in Figure 6.29 and it is seen that the differences are very low. The gaps in the 

plot represent loading levels where the error was exactly zero, when using Matlab’s 

double precision arithmetic. 

 

Figure 6.27 Voltage magnitude from Thévenin-like network and full network, mod-

ified 14-bus system 
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Figure 6.28 Voltage angle from Thévenin-like network and full network, modified 

14-bus system 

 

Figure 6.29 Difference between the voltage magnitudes obtained from the Thé-

venin-like network and the full network, modified 14-bus system 
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Since the voltage at the retained bus from the Thévenin-like network matches that 

obtained from the full network, it follows that the local-measurement-based Thévenin 

network parameters obtained using (6.2) from the reduced network would match that 

obtained from the full network. This is shown for the modified 14-bus network in Figure 

6.30 where the |ZL| and |ZTh| obtained from the full system and the Thévenin-like net-

work for bus number 4, are plotted against the load-scaling factor. It is seen that the |ZL| 

and |ZTh| obtained from the full network match those obtained from the Thévenin-like 

network. 

 

Figure 6.30 Validation of pseudo-measurements from the Thévenin-like network 

One aspect of the Thévenin-like network obtained using HE reduction is the behav-

ior of the voltage source as the system load increases. It was shown in section 6.1 that 

if the IEEE 14-bus system is modified, such that all non-slack buses are PQ buses with 
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positive loads, at some of the buses the ETh increases as the load increases, which is 

counter-intuitive. For the modified 14-bus system with an additional slack-bus ‘0’, if 

all possible (14) two-bus nonlinear Thévenin equivalents are generated, it is shown in 

Figure 6.31, that the magnitudes of the voltage sources in the nonlinear Thévenin-like 

networks decrease as the load increases. Similar decreasing behavior was also observed 

for the IEEE 14-bus system with PV buses.  

 

Figure 6.31 Magnitude of Vsource(α) vs. α 

6.4.2 Impact of modeling loads as nonlinear currents or nonlinear impedances 

In the numerical results demonstrated in section 6.4.1, the loads were modeled as non-

linear current injections. However, it is possible to model the loads as nonlinear impedances 

as well. This can be shown by replacing I3_2(α) (the external current injection at bus 3) in 
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Figure 6.21 by an equivalent nonlinear impedance given by (6.20) as shown in Figure 6.32. 
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Z3_2(α)

 

Figure 6.32 Load modeled as nonlinear impedance in step-3 of getting a Thévenin-

like network 

The effective series impedance in the resultant Thévenin-like network is then a parallel 

combination of Z3_2(α) with (Zsource+ZWard). The Thévenin-like network will appear as 

shown below.  

{(V0+I3_2(α)Zsource)/(Zsource +ZWard)}* 

{Z3_2(α)||(Zsource +ZWard)}AC

αS3=αP3+jαQ3

V3(α)

{Z3_2(α)||(Zsource 

+ZWard)}

 

Figure 6.33 Load modeled as nonlinear impedance in step-3 of getting a Thévenin-

like network 

Note that in the above network, the voltage source as well as the series impedance as 

nonlinear functions of α. The current flowing into bus 3 in the above network is given 

by: 
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By substituting the expression for Z3_2(α) from (6.20) into (6.21), one gets 
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(6.22) 

By further simplification of (6.22) as given below, one can show that the net current 

flowing into bus 3 in the network given by Figure 6.33 is the same as that in the network 

given by Figure 6.23. 
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(6.23) 

This was tested numerically on the modified 14-bus system by solving the power-

flow problem for the network given by Figure 6.32 with a nonlinear impedance at the 

retained bus and it was observed that the voltage series at the bus-of-interest matched 

the voltage series of that bus from the full-network solution, with an accuracy of the 
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order of 10-14 and the system SNBP was preserved as well. This shows that it is not 

necessary to model the loads as nonlinear current injections that are functions of α but 

the loads can also be modeled as nonlinear shunt impedances. Given that both the mod-

els can be used, there is no obvious motivation to model the loads as impedances be-

cause that would make the admittance matrix a function of α, thus making the network 

reduction very complicated and computationally expensive. Additionally, since the 

source voltage as well as impedance are nonlinear in this case, if the Maclaurin series 

are to be estimated using local voltage and current measurements, one would need to 

fit two 40th degree polynomials (the degree of the polynomials would depend on the 

number of terms needed to accurately estimate the SNBP and 40 is an empirically ob-

tained approximate number) instead of one polynomial. This would make the process 

more complicated and prone to inaccuracies, particularly in the presence of noisy meas-

urements. Hence, while there is no compulsion to do so, it is recommended that the 

loads be modeled as nonlinear current injections for ease of computation.  

6.4.3 Arbitrary Thévenin-like networks 

As demonstrated in section 6.4.2, depending on how the loads are modeled (non-

linear current injections or nonlinear shunt impedances), one can get different Thé-

venin-like networks, while still preserving the voltage at the load bus and the system 

SNBP. In fact, one can even model some of the loads as nonlinear shunt impedances 
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and the rest as nonlinear currents. This flexibility can be extended to fixed shunt im-

pedances as well. The traditional way of modeling fixed shunts is to keep them as con-

stants in the admittance matrix while performing the reduction, which would result in 

fixed shunt impedances appearing in the reduced network. The other way of modeling 

fixed shunt impedances is to model them as nonlinear current injections given by -

YshuntV(α) before performing the reduction (keeping in mind that all the voltage series 

from the full network are available before performing the reduction). This would result 

in a reduced-order network that doesn’t have any shunt impedances. Thus there are an 

infinite number of ways in which some/all the shunt impedances (or even parts of the 

series impedances if one so desires) can be modeled as nonlinear current injections by 

suitably multiplying them by the voltage series before performing the HE-reduction. 

This implies that there are an infinite number of different Thévenin-like networks that 

can be obtained for any given system. The implication that this has on using measure-

ments to build the Thévenin-like networks is that, one can arbitrarily choose a value for 

the series impedance and fit the series for the source voltage such that the load behavior 

at the bus-of-interest is preserved. In order to prove that this can be done, consider a 

three-bus network obtained using HE-reduction as shown in Figure 6.19, where only 

the series impedances were retained in the admittance matrix and the shunt impedances 

were modeled as nonlinear current sources to yield the model of Figure 6.19. The Thé-
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venin-like network, would consequently not have any shunt impedances and would ap-

pear as shown in Figure 6.23. One can add a shunt impedance at bus 1 to the network 

shown in Figure 6.23 along with a compensatory current injection as shown in Figure 

6.34. 

V0
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ZWard

AC

αS3=αP3+jαQ3

V3(α)

Zsource

V1(α)

I1_2(α)+YaddV1(α) I3_2(α)Yadd

 

Figure 6.34 Shunt impedance and compensatory shunt current added at bus 1. 

Note that since the additional shunt impedance is negated by an equivalent injected 

current, the bus voltages and current flows in the network are still preserved. The ef-

fective input impedance of the above network is then given by: 
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(6.24) 

Since the additional shunt impedance can be arbitrarily chosen, this implies that the 

effective source impedance Ẑseries can also be arbitrary and the nonlinear source voltage 

will then ensure that the load voltage and current characteristics are preserved. One can 

reverse engineer the above process to calculate the additional shunt impedance one 
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needs to add on to bus 1, Zadd =Yadd
-1 given by (6.25), in order to get the desired value 

of effective source impedance, Zdesired.  
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Warddesiredsource
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Z
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
  (6.25) 

This was verified numerically on the four-bus and 14-bus systems where the source 

impedance was arbitrarily forced to be 0.01+0.1j and the necessary shunt impedance 

calculated from (6.27) and compensatory current was added at bus 1. The voltage series 

of the bus-of-interest obtained by solving the power-flow problem for this reduced-

order network was the same as that from the full-network with an accuracy on the order 

of 10-14. Thus, one can arbitrarily choose a value for the series impedance and fit the 

series for the source voltage using measurements such that the voltage at the bus-of-

interest is preserved and such a model will perserve the system SNBP. Expectedly, if 

one chooses the series impedance value to be the measurement-based ZTh from section 

6.1, that value of VS(α), evaluated at that particular loading-level, matches the measure-

ment-based ETh with an accuracy of 10-15. This shows that the measurement-based Thé-

venin equivalent network, is obtained by linearizing one of the infinitely-many nonlin-

ear Thévenin-like networks about the base-case operating point. 
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6.4.4 Maximum power-transfer condition in the presence of a variable voltage 

source 

It is known that if the voltage source and impedance are constant, the maximum 

power transfer to the load occurs when the magnitude of the load impedance is equal to 

the magnitude of the source impedance, i.e., |ZSource|=|ZL|. However, the Thévenin-like 

network developed in section 6.4 has a voltage source that is a function of the load-

scaling factor α. Hence the assumption of a constant source is no longer valid, conse-

quently the condition |ZSource|=|ZL| is no longer true at the maximum power transfer point. 

This is shown in Figure 6.35, in which the magnitude of the load impedance and the 

magnitude of the source impedance is plotted against the load-scaling factor, α. It is 

seen that there is a significant difference between the magnitude of the source imped-

ance and the load impedance even at the SNBP which occurs at α = 4.012 obtained 

using CPF. Note that the source impedance remains constant as the system load in-

creases, which is expected. 
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Figure 6.35 |ZL(α)| and |ZSource| vs. α for the modified 14-bus system 

Since the end goal is to use nonlinear HE-reduced networks to estimate the voltage 

stability margin, it is important to derive the condition at which maximum power trans-

fer will occur. While one can use the roots (poles/zeros) of the voltage series, it is not 

clear as to which method would work the best when building the networks using actual 

noisy measurements. Hence it is important to have alternatives such as the maximum 

power transfer theorem for nonlinear networks. Using the same approach as that used 

for linear networks, i.e., equating to zero the derivative of the real-power transferred to 

the load w.r.t. to the load resistance, the appropriate condition can be derived as de-

scribed below. 

The power delivered to the load in the Thévenin-like network shown in Figure 6.23, 

is given by (6.26) which is similar to (6.9), with the only difference being that ETh is 
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replaced by VS(α) which is the nonlinear voltage source in the Thévenin-like network 

and RTh ,XTh are replaced by RS, XS which are the resistive and reactive components of 

the net series impedance. 
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Assuming that the power factor angle of the load, Φ, is kept fixed, the load imped-

ance can be written as: 
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Equation (6.26) can thus be written as: 

   22

2

)tan()()(

)()(





LSLS

LS

L

RXRR

RV
P


  (6.28)  

The derivative of PL with respect to RL is given by: 
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When the power delivered to the load is maximum, the derivative of PL with respect 

to RL is zero. Equating (6.29) to zero, we get: 
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Equation (6.30) can be rearranged as follows: 
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The terms of the right-hand side expression can be expanded to obtain: 
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Equation (6.32) is reduced to: 
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Equation (6.33) can then be reduced to obtain the final maximum power transfer 

condition given by (6.34) when the source voltage is not constant. 
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The Maclaurin series for the expression ∂|VS(α)|2 /∂RL(α) used in (6.34) is obtained 

as: 
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The Maclaurin series for |VS(α)|2 can be obtained as: 

)()()( **2
 SSS VVV   (6.36)  

and then the derivative of |VS(α)|2 wrt to α can be calculated. For load buses with PQ 

loads, the load impedance ZL(α) is given by: 
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Note that if the expression for ZL(α) on the RHS of (6.37) is expanded as a power series, 

one will get a term with a negative exponent of α. Hence the expression for RL(α) will 

also have a term with a negative exponent of α. In order to avoid the negative exponent, 

the values of the load resistance at different values of α can be obtained using the value 

of αRL(α), for which the Maclaurin series is given by (6.38),  
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where the function Re(.) indicates the real part of the operand. The value of ∂RL(α)/∂α 

at different values of α can be obtained using the value of ∂αRL(α)/∂α as shown below: 
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It is seen that the left-hand-side (LHS) and right-hand-side expressions (RHS) of 

(6.34) are purely real. However, the ∂|VS(α)|2 /∂RL(α) term on the LHS is obtained by 
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first performing convolutions of complex-valued power series and then taking deriva-

tives with respect to α. While theoretically the series should be purely real, performing 

a convolution of two complex-valued power series, leads to small imaginary parts in 

the resultant series with magnitudes less than 10-19. At loading levels that are not very 

close to the SNBP, the imaginary part of the LHS of (6.34) is observed to be of the order 

of 10-15. However when the system load is modeled to be within 1% of the SNBP, the 

numerically small imaginary parts in the different series involved in the LHS of (6.34) 

become significant since they are multiplied by high-order exponents of α, which 

causes the imaginary part of the Padé approximants of the series on the LHS to be of 

the order of 10-3. This is shown in Figure 6.36 and Figure 6.37 in which the imaginary 

parts of the LHS and RHS of (6.34) are plotted against α for the four-bus system and 

the modified 14-bus system (when bus 9 is retained), respectively. Since the imaginary 

parts of the LHS and RHS should theoretically be zero and are numerically of the order 

of 10-15
 unless the system load is modeled to be within 1-2% of the SNBP, the imaginary 

parts will be ignored in the rest of the discussion. 
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Figure 6.36 Imaginary parts of the LHS and RHS of (6.34) vs. α for the four-bus 

system 

 

Figure 6.37 Imaginary parts of the LHS and RHS of (6.34) vs. α for the modified 

14-bus system 
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The validity of the condition given by (6.34) is verified using the four-bus system 

shown in Figure 6.18 and the modified 14-bus system. In Figure 6.38 the LHS and RHS 

for the four-bus system are plotted against the load-scaling factor varying up to the 

SNBP and it is seen that at the SNBP, the LHS and RHS are very close to each other. 

Similarly, the LHS and RHS are plotted in Figure 6.39 against α for the modified 14-

bus system (with the bus-of-interest chosen to be bus number 4) and the two approach 

each other at the SNBP as expected. It is observed that when the system load is modeled 

to be within 0.1% of the SNBP, a cross-over occurs between the values of the LHS and 

RHS expressions, which can be attributed to precision issues and is left as future work. 

It is well-known that precision limitations become an issue for the HEPF-based meth-

ods when the system is modeled to be very close to the SNBP. 

 

Figure 6.38 LHS vs. RHS of (6.34) for the four-bus system 
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Figure 6.39 LHS vs. RHS of (6.34) for the modified 14-bus system 

The condition also holds true for a Thévenin-like network with an arbitrarily chosen 

impedance as explained in section 6.4.3. This was verified numerically on the modified 

14-bus system with the source impedance forced to be 0.15j (while the series impedance 

obtained using traditional HE reduction was approximately 0.03 + 0.1j). The necessary 

additional shunt impedance was calculated using (6.27) with compensatory current 

added at bus number 1. This is shown in Figure 6.40 where the LHS and RHS are plot-

ted against α (varying up to the SNBP) for the above described arbitrarily chosen Thé-

venin-like network, with the bus-of-interest being bus number 4. 
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Figure 6.40 LHS vs. RHS of (6.34) for the modified 14-bus system with an arbi-

trary Thévenin-like network 

6.4.5 Some implementation details 

6.4.5.1 Handling ZIP-load models and arbitrary load models 

While so far in this section only constant PQ loads were considered, the actual load 

may have ZIP-load characteristics or other more complex characteristics which need to 

be accounted for appropriately. The model for solving a power-flow problem in the 

presence of ZIP-loads was described in section 3.9 where the loads were represented as 

nonlinear current injections of α. Thus the reduction process to obtain the Thévenin-

like networks would be the same as described in section 6.4.1. The maximum power 

transfer condition for nonlinear networks given by (6.34) holds true in the presence of 
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ZIP-load models as well. While evaluating the two sides of the condition, one would 

need to calculate the effective load impedance ZL(α) given by: 
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 (6.40)  

The LHS and RHS of (6.34) are plotted against α in Figure 6.41, for the 14-bus 

system with ZIP loads (equal proportions of the constant impedance, constant current 

and constant power assumed), with the bus-of-interest being bus number 2. The load-

scaling factor is varied through to the SNBP in Figure 6.41 and it is seen that the LHS 

and RHS are numerically close to each other at the SNBP. 

 

Figure 6.41 LHS and RHS of (6.34) for the modified 14-bus system with ZIP 

loads 
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In fact, any arbitrary load can effectively be represented as a nonlinear current in-

jection in order to get the Thévenin-like networks. This can be demonstrated using an 

arbitrary load model that looks like: 
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 (6.41)  

The above load model looks like a ZIP-load model along with a sine-series with 11 

terms. Such a load model was added at each bus in the 14-bus system with the coeffi-

cient Ki being randomly chosen from uniformly distributed numbers between 0 and 10 

MW (the base-case real-power loads at the different buses vary between 3.5 MW and 

94.2 MW for this system). With this load modeled as a nonlinear current injection, the 

HEPF was used to solve the power-flow problem and then HE-reduction was performed. 

It was observed that as long as the reduction rules provided in this work are followed, 

the series terms of the voltage series (truncated at 61 terms) at the retained bus were 

preserved, when compared to the full network voltage series terms, with an accuracy of 

the order of 10-14 and the SNBP of the system was also preserved. 

6.4.5.2 Handling transformers 

6.4.5.2.1 Handling transformers with off-nominal tap-ratios 

Transformers with off-nominal tap-ratios, are effectively modeled using pi models 

and hence shunt impedances are added at the terminal buses. As explained in section 

6.4.3, fixed shunt impedances can either be represented in the admittance matrix, which 

would result in shunt impedances appearing in the HE-reduced network; or they may 
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be modeled as nonlinear current injections given by -YshuntV(α) which would result in a 

reduced-order network that doesn’t have any shunt impedances. Eventually, whether  

shunt impedances are retained in the HE-reduced network or converted to nonlinear 

current injections, the full model will be reduced to a Thévenin-like network shown in 

Figure 6.23 if the network reduction procedure given here is followed.  

6.4.5.2.2 Handling transformers with non-zero phase-shifts 

Transformers with non-zero phase-shifts lead to an asymmetric admittance matrix. 

If the phase-shifts are represented in the admittance matrix before performing HE-re-

duction, the reduced order network will have an effective phase-shifting transformer 

(i.e. the admittance matrix for the reduced network will also be asymmetric). It was 

shown in [40] that in order to obtain a power-flow solution using a non-scalable formu-

lation in the presence of phase-shifting transformers (which is needed to obtain the germ 

as explained in 3.1.1), the asymmetric part of the admittance matrix needs to be moved 

to the right-hand side of the node-balance equation as an equivalent current injection. 

Phase-shifting transformers have not been accounted for in the previously published 

work on network reduction [139] as it is not straightforward to segregate the asymmet-

ric components from the symmetric components using only the reduced-network ad-

mittance matrix for meshed reduced-order systems. Phase-shifting transformers can be 

handled in a similar manner as shunts in the system, i.e., the asymmetric components 
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of the full-network admittance matrix that are present due to the phase-shifting trans-

formers, can be modeled as nonlinear current injections before performing the HE-re-

duction and thus removed from the admittance matrix. This would result in a simpler 

reduced-order network without any phase-shifting transformer, that is structurally sim-

ilar to Figure 6.23. This was numerically tested on the modified 14-bus system, by add-

ing non-zero phase shifts to the three transformers in the system (with the phase-shifts 

chosen to be 7°, 9° and 25°). It was observed that the voltages were preserved as well 

as the condition given by (6.34) was obeyed at the SNBP as shown in Figure 6.42 where 

the LHS and RHS of (6.34) are plotted against α with the α being varied from 1.0 (i.e., 

the base-case loading condition) through to the SNBP, with the bus-of-interest being 

bus number 4. 

 

Figure 6.42 LHS and RHS of (6.34) for the modified 14-bus system with phase-

shifting transformers 
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6.4.6 Multi-bus reduced-order equivalent networks 

As mentioned in section 6.1, multi-bus equivalent networks have been used to esti-

mate the voltage stability margin using the measurements in a load area in order to 

better account for the different limits of individual tie-lines connecting the load area to 

the rest of the network [82], [124], [132] - [134]. Hence it may be desirable to develop 

multi-bus nonlinear equivalent networks as well. It has already been shown that HE-

reduction can be used to obtain multi-bus reduced-order equivalent networks which 

preserve the nonlinear behavior of the original system when there are no phase-shifting 

transformers in the system [139]. Using the strategy described in section 6.4.5.2 for 

modeling phase-shifters, multi-bus reduced networks can also developed for systems 

with phase-shifting transformers such that the voltages at the retained buses are pre-

served. This is shown in Figure 6.43, in which the magnitude of worst error (taken over 

all retained buses) between the bus voltages of the full network and those of the reduced 

network is plotted on a log scale against α for the 14-bus system with three phase-

shifting transformers, when buses 0, 1, and 9 through 11 are preserved in the reduced 

network. 
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Figure 6.43 Error between the voltages of the full system and a multi-bus reduced-

order system for the 14-bus system with phase-shifting transformers 

As pointed out in section 6.4.3, there are an infinite number of ways of developing 

such reduced-order networks. Consider a reduced-order network obtained using HE-

reduction with the admittance matrix YReduced given by (6.42), where the subscripts b 

and i denote the boundary (i.e. buses that are connected to the buses that have been 

eliminated), and internal buses respectively.  
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The node-balance equations in the reduced network are given by (6.43) where the 

subscripts e denotes external buses (i.e., buses in the full model that are not a part of 

the reduced network). As seen from (6.43) the boundary buses have additional current 



213 

injections given by I’e(α) that account for the injections and losses in the external net-

work (i.e., in addition to the native loads at these buses). 
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Note just as there is much flexibility in selecting the value of the series impedance 

branch for a two-bus equivalent, there is similar flexibility for a multi-bus equivalent. 

One can modify the admittance matrix (and hence the series impedances) of the reduced 

network by adding compensatory nonlinear current injections on the RHS of (6.43) as 

shown below: 
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Thus the modified admittance matrix of the reduced network is given by (6.45) and 

the modified current injections are given by (6.46). 
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In fact, not only can the impedance values in the HE-reduced network be modified 

using (6.44), but the topology can also be changed, though we believe in most cases it 

is unwise to do so. One could add additional branches that did not exist in the HE-
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reduced network. For example, for the 14-bus system with three phase-shifting trans-

formers, when buses 0, 1, 9 through 11 are preserved in the reduced network, there is 

no connection between bus number 1 and bus number 10. However, a branch with im-

pedance 0.01+0.1j was added between these two buses and compensatory currents 

added at buses 1 and 10 using (6.44). When the power-flow problem for such a reduced 

network was solved, it was observed that each term of the truncated Maclaurin voltage 

series (up to 61 terms) at all the retained buses in the new reduced network, matched 

those from the full network, with an accuracy of the order of 10-14. Similarly, one could 

remove an existing branch by setting Y’
ik to be zero. For the 14-bus system reduction 

example described above, two branches were removed to effectively obtain a radial 

reduced-order network, while still preserving each term of the truncated voltage series 

(up to 61 terms) at the retained buses with an accuracy of the order of 10-14 when com-

pared to the voltage series for the full model.  

The implication that this has on using measurements to build multi-bus equivalent 

networks is that, one does not need to know the appropriate topology and network pa-

rameters prior to building the network, though it is believed results would be best if the 

topology chosen matches that in the real world. One can assume a certain topology and 

network parameters for the reduced network and fit the Maclaurin series for the nonlin-

ear current injections using measurements at the retained buses. Note that the multi-bus 
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reduced order networks, require more polynomials to be fitted than the Thévenin-like 

equivalent networks since each bus has a nonlinear current injection. 

6.5 Revisiting the sigma method 

It was shown in section 3.4 that the original sigma method as shown in [101], has 

some fundamental flaws. It was shown that while it is true that to ensure a valid oper-

ating point for any system, the sigma condition must be obeyed for all of the system 

buses, the proximity of the σ condition to violating its limit at any of the buses is not an 

indicator of the proximity of the system to voltage collapse. This occurs because the σ 

indices of some of the buses can come very close to the boundary condition at loading 

levels far below the SNBP, and then start moving away from the boundary with further 

load increase. The fundamental issue is that, while the distance of the σ condition from 

its limit is an indicator of the proximity of the system to voltage collapse for a two-bus 

system, it is not an indicator for a two-bus equivalent of a larger system. The voltage 

source in the two-bus equivalent from which the original σ indices are obtained is con-

stant (slack-bus voltage) whereas it has been shown in section 6.4 that a proper equiv-

alent obtained using network-reduction procedures where the loads are modeled as non-

linear current injections would have a voltage source that depends on the loading con-

dition. It will be shown numerically that if the σ indices are calculated corresponding 

to the Thévenin-like network obtained in section 6.4, these revised σ indices do not face 



216 

the same issues as the original σ indices. The U(α) for the Thévenin-like network as 

shown in Figure 6.23 is given by: 

)(

)(
)(






sourceV

V
U   (6.47)  

Substituting the above expression for U(α) into (3.65), one gets the revised σ indices, 

with the only difference being that U(α) is no longer V(α)/VSlack but is given by (6.47). 

For the four-bus system from Figure 6.18, the σ condition at buses 3 and 4, evaluated 

using the original and revised σ indices are plotted against the load-scaling factor α in 

Figure 6.44. It is seen that the use of the original σ indices causes the σ condition at bus 

4 be very close to zero at α = 4.85 and then bounce back, whereas the σ condition at 

both buses evaluated using the revised σ indices have a consistent decreasing behavior 

as α increases. The other claim made in [101] was that the buses that are closer to vio-

lating the σ condition can be deemed to be the “weak buses” in the system. It was dis-

cussed in section 3.4.3 that theoretically there is no clear connection between the sigma 

method of determining weak buses and the modal analysis method of determining weak 

buses. Using modal analysis [103], the weak bus for this small system is consistently 

obtained to be bus number 4 at different loading conditions (nearly 20%, 40%, 60%, 

80% and 100% of the SNBP loading). However, it is seen that the “weak” bus obtained 

using the revised σ condition is not consistent at all loading conditions, shown by the 

cross-over in Figure 6.44. It is seen from Figure 6.44 that even when using the revised 

σ indices, at most operating conditions the “weak” bus obtained using the σ condition 
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does not match that obtained using modal analysis, despite the small size and radial 

nature of the system being tested. 

 

Figure 6.44 Original and revised σ conditions vs. α for the four-bus system 

The σ scatter plot for bus number 4 as the system load increases is shown in Figure 

6.45. The “turn-around” of the original σ index in Figure 6.45 occurs at α = 4.85, which 

is consistent with its “turn-around” point observed on the σ condition plot in Figure 

6.44. 
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Figure 6.45 σ scatter plot with original and revised σ indices, bus 4 

The σ condition with the revised σ indices was observed to have consistent behavior 

with load increase for the modified 14-bus system as well, as opposed to the σ condition 

with the original σ indices. This is shown in Figure 6.46 and Figure 6.47 where the 

value of the σ condition for the PQ buses is plotted against α for the revised and original 

σ indices respectively. Note that bus 7 has no load on it and hence the Vsource(α) is the 

same as V(α) which causes the U(α) to be a constant (1.0) and hence the σ condition for 

bus 7 using the revised σ index remains constant as seen from Figure 6.46. 
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Figure 6.46 σ condition vs. α with revised σ indices, modified 14-bus system 

 
Figure 6.47 σ condition vs. α with original σ indices, modified 14-bus sys-

tem 

While the revised σ indices resolve the issue of approaching the boundary condition 

well ahead of the SNBP and then increasing again, it is seen from Figure 6.46 that for 
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some of the buses, the σ condition has a somewhat flat profile as the system load in-

creased and then a sharp decrease as the modeled load gets very close to the SNBP. This 

highly nonlinear behavior of the σ condition, makes it unfavorable to use the σ condition 

as a measure of the proximity to the SNBP, even with the revised σ indices. Additionally, 

even for the revised σ indices, no correlation was found between the “weak buses” ob-

tained using the σ condition and the “weak buses” from modal analysis, for the modified 

14-bus system. 

6.6 Conclusions 

In this chapter, the measurement-based method of building a Thévenin equivalent 

at the bus-of-interest is discussed along with the impact that discrete changes can have 

on such purely local-measurement-based methods of estimating the SNBP. HE-reduc-

tion was used to build nonlinear Thévenin-like networks which preserved the nonline-

arity of the original system. Using measurements, the polynomials in such a nonlinear 

Thévenin-like network can be fitted and it was shown that one can assume any value 

for the source impedance and the source voltage Maclaurin series can then be appropri-

ately calculated. The maximum power transfer theorem for such nonlinear networks 

was derived and validated, while accounting for ZIP-load models and phase-shifting 

transformers. While multi-bus nonlinear reduced-order networks can also be built, these 

would require a greater number of polynomials to be fitted and hence are more compli-

cated, particularly in the presence of noisy measurements. While the original sigma 
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indices were modified such that their behavior became monotonic as the system load 

increased, it was observed that the revised sigma indices could still not easily be used 

to determine the weak buses in the system. In this work, it was assumed that the load 

changes along a pre-defined direction, and hence when measurements are used to build 

a nonlinear Thévenin-like network, the network will be fitted for a particular pattern of 

load/generation change. Once the nonlinear Thévenin-like network is built using meas-

urements, if the loading vector changes drastically, the estimated SNBP may not be 

accurate. This will have to be carefully investigated going forward. 
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7 CONCLUSION AND FUTURE WORK 

7.1 Summary 

Given an infinite number of terms in the voltage series and infinite computing pre-

cision, the holomorphically embedded power flow (HEPF) algorithm is theoretically 

guaranteed to converge to the operable solution of the power-flow problem if the PBE’s 

are structured to conform with Stahl’s requirements [16], [17]. 

Two different formulations for the HEPF were presented in this report which have 

the advantage of providing the voltage solution as an analytic expression of the embed-

ding parameter ‘α’. This parameter could represent either the uniform scaling factor for 

all loads and real-power generation, or it could scale the incremental load and genera-

tion in a certain pre-defined direction, similar to the CPF. The advantage of these for-

mulations is that a single power-flow solution can then provide the solutions for differ-

ent operating conditions by using a representative value of ‘α’ in the solution expression.  

Four HEPF-based methods were proposed in order to estimate the SNBP. The ad-

vantage of having an analytic solution was used in three of these methods, and conse-

quently multiple power-flow solutions were not required using these three approaches, 

as opposed to the CPF, which requires many solutions. Of the four HEPF-based ap-

proaches (which estimated the SNBP with reasonable accuracy in comparison with the 

NR-based software), it was determined that the roots method required the minimum 

amount of extra execution time over and above the time required for solving the power-
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flow problem. It was shown for the 6057-bus ERCOT system that the roots method can 

significantly reduce the execution time for estimating the SNBP for a given set of bus-

types. 

Another application of the two scalable formulations was to develop a two-bus 

equivalents for distribution networks that better estimated the losses in the distribution 

lines even as the operating conditioned changed. Different ways of estimating the 

equivalent ‘α’ were compared and it was shown that for two of the ways of estimating 

α, the HEPF-based nonlinear reduction gave more accurate voltages and flows than the 

Ward reduction even when the load profile changed in a limited random fashion. 

One of the issues faced in the past in using the HEPF algorithm has been higher 

precision requirements (more than double precision) for some ill-conditioned systems. 

It has been shown that the primary requirement for this higher precision arises in the 

matrix method of calculating Padé approximants for the systems tested [105]. Eight 

different ways of calculating equivalent Padé approximants/accelerating convergence 

were explored. It was determined that the matrix and the eta methods were the most 

robust and converged the fastest, for the systems tested, with the eta method being more 

efficient than the matrix method, though the eta method did not provide an analytical 

representation of the voltage functions, just a numerical value. It was also shown that 

the algebraic Hermite-Padé approximants can better fit the power-flow problem and the 

quadratic approximants were shown to be theoretically exact for a two-bus power-flow 
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problem. For larger systems, it was shown that quadratic approximants can converge 

within a desired level of tolerance using fewer terms than Padé approximants, although 

this requires the use of the most appropriate choice of intermediate polynomial degrees 

for quadratic approximants, something which cannot be easily determined. However, it 

was shown that in some cases the quadratic approximants can converge at slightly 

higher loading levels than diagonal Padé approximants and thus can be used to ad-

vantage in cases where accurate estimation of the SNBP is important. 

The local-measurement-based methods of estimating the SNBP using linear Thé-

venin networks was explored along with the possible impacts of discrete changes on 

such methods. HE-reduction was used to develop nonlinear Thévenin-like networks for 

which the maximum power transfer condition was derived and verified. It was shown 

that for such Thévenin-like networks as well as nonlinear multi-bus reduced-order net-

works, the topology and impedances of the reduced network can be arbitrarily assumed 

and measurements be used to fit the polynomials for the nonlinear voltage source/cur-

rent injections. A revised sigma index was obtained using the nonlinear Thévenin-like 

network, however it was seen that it cannot be used in raw form to estimate the weak 

buses in the system. Whether the sigma index can be used in some form to identify 

weak buses remains an open problem. 
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7.2 Future work 

One of the aspects that can be explored in the future includes looking at some other 

formulations (other than the scalable formulations discussed in this document), which 

may be valid only at α = 1.0, but present some advantages in terms of numerical robust-

ness and convergence properties.  

While the theory has been developed for using measurements to build nonlinear 

networks that can be used for SNBP estimation, the use of actual measurements that 

are corrupt with noise is complicated and the pros and cons of doing so need to be 

carefully studied. The nonlinear HE-reduced networks have been built assuming that 

the load/generation profile changes along a pre-defined direction. The impacts of this 

assumption when using actual measurements will have to be carefully investigated.
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APPENDIX A  

DERIVATION OF EQUIVALENCY BETWEEN AITKEN’S Δ2 METHOD 

AND PADÉ APPROXIMANTS 
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In order to establish the equivalence between Aitken’s Δ2 method and Padé ap-

proximants, consider the definition of the [L/M] Padé approximant for (5.1) as de-

fined by Jacobi [22], given by: 
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The definition given by (A.1) - (A.3) will be used to establish an equivalence be-

tween Aitken’s Δ2 method and the Padé approximants. The value of Q[L/M](0), called a 

Hankel determinant is critical to determine if the desired Padé approximant exists. It is 

given by:  
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The name Hankel determinant originates from the symmetric way in which its rows 

are formed from the power series coefficients fj. This determinant is the determinant of 

the matrix in (5.6). Thus if this determinant is non-zero it implies that the matrix in (5.6) 

is non-singular and thus the linear system of equations can be solved to obtain the co-

efficients of the denominator polynomial of the Padé approximant. Hence it is crucial 

that this determinant be non-zero, since a determinant being zero would imply that one 

is trying to invert a singular matrix when solving for the Padé approximant’s coeffi-

cients. 

The series defined in (5.1) can be expressed as: 
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where Sn are the partial sums of the series. Based on the generalized equation for an 

[L/M] Padé approximant from (A.1) - (A.3), we get: 
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 (A.6) 

It can be seen that (5.11) and (A.6) are identical, thus the equivalence between Ait-

ken’s Δ2 method and the [L/1] Padé approximants is proved [22]. 
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APPENDIX B  

COMPARISON OF AITKEN’S Δ2 AND WYNN’S Ε METHODS FOR THE 

LN(1+X) SERIES 
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As mentioned in section 5.1.2, Aitken’s Δ2 method does not work reliably for all 

functions and works best for functions with geometric convergence. To demonstrate 

that it is not robust, it was tested on the Maclaurin series for ln(1+x) given by (B.1), 

evaluated at x=2.0. 


432

)1ln(
432 xxx

xx  
(B.1) 

It can be seen from Figure B.1 that the error keeps getting worse as terms are added 

to the series and Aitken’s Δ2 method fails to converge to the function even with 60 terms 

in the series. This shows that the method cannot give good results for all series. 

 

Figure B.1 Performance of Aitken’s Δ2 method in estimating ln(1+x) at x=2.0 

The epsilon method was also tested on the Maclaurin series for ln(1+x), as given by 

(B.1), evaluated at x=2.0. It can be seen from Figure B.2 that the error reduces as two 
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terms are added to the series, until the error reaches a minimum of 10-10 at 32 terms, 

after which adding extra terms to the series worsens the error. 

 

Figure B.2 Performance of the epsilon method in estimating ln(1+x) at x=2.0 
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APPENDIX C  

COMPARING PADÉ APPROXIMANTS, AITKEN’S Δ2, EPSILON AND ETA 

METHODS FOR GREGORY’S PI SERIES 
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The numerical implementation of the different analytic continuation techniques dis-

cussed in Sections 5.1.1 - 5.1.4 are discussed here. For the illustration of these analytic 

continuation techniques, the irrational constant π is evaluated from a slowly converging 

series. Consider the Gregory series for π [25] shown in (C.1). 










0
12

4)1(

k

k

k
  

 

(C.1) 

Equation (C.2) shows the Gregory’s series truncated up to seven terms. 
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It can be seen that even though the increasing terms in the sequence get smaller, 

their signs keep alternating. As we add more and more terms, any two consecutive terms 

taken at a time tend to cancel each other and the contribution to the series is essentially 

a small residual. Thus the Gregory’s π series is known to have a very slow convergence. 

The analytic continuation of this power series is evaluated from the truncated series 

using the matrix method, Aitken’s Δ2 method, the epsilon algorithm and the eta algo-

rithm and the errors with respect to the actual value of π were compared. All calcula-

tions were completed using double precision in MATLAB. Figure C.1 shows the errors 

between the value of π as approximated by these different methods when compared 

with the actual value of π. The X axis represents the number of terms that were used in 

Gregory’s series and the Y axis represents the absolute error on a log scale. 

The illustration of evaluating π shows that matrix method give the best performance 

for accelerating slowly converging series while the rate of decay for the error using 
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Aitken’s Δ2 method is the worst. More importantly, the matrix method can be used to 

evaluate the maximal analytic continuation of the function as proved in Stahl’s theory 

[20], [21]. Even though the epsilon method starts off with very high errors, its accuracy 

improves quickly with additional terms. It is interesting that an improvement is obtained 

using the epsilon method only when four terms are added to the series unlike the other 

methods where an improvement can be seen for every two additional terms in the series. 

 
Figure C.1 Convergence behavior of Aitken’s 2, epsilon and eta methods for 

Gregory’s pi series 
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APPENDIX D  

PROOF THAT THE HEPF SERIES OBTAINED IS THE MACLAURIN SE-

RIES 
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It can be shown that the voltage power series obtained for any given HEPF formu-

lation are the Maclaurin series for the bus voltage functions. For sake of simplicity, 

consider an N+1-bus system with N PQ buses, although the proof can be extended to 

general power systems with PV buses. The system of HEPF equations for PQ buses is 

given by: 

miWSVY ii

N
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The Maclaurin series for the voltage function at bus i is given by 
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The Maclaurin series for the reciprocal of the voltage at bus i is given by 
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(D.3)  

Note that the reciprocal of the Maclaurin series of the voltage at bus i is given by: 
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(D.4)  

which was also provided in (3.46). From (D.3) and (D.4), it is seen that the Maclaurin 

series for the reciprocal of the voltage at bus i is the same as the reciprocal of the Mac-

laurin series of the voltage at bus i (the equivalency for higher order terms can be sim-

ilarly shown). 

Consider the set of linear equations solved to calculate the nth term of the Maclaurin 

series of the voltage functions: 
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It is seen that (D.5) is the same as the recursion relation used to calculate the HEPF 

voltage series terms for PQ buses given in (3.40). Since the set of equations used to 
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obtain the HEPF series is the same as that used to obtain the Maclaurin series for the 

voltage function, this shows that the series obtained in HEPF is the Maclaurin series for 

the voltage. 


