376,227 research outputs found

    Feasible Automata for Two-Variable Logic with Successor on Data Words

    Full text link
    We introduce an automata model for data words, that is words that carry at each position a symbol from a finite alphabet and a value from an unbounded data domain. The model is (semantically) a restriction of data automata, introduced by Bojanczyk, et. al. in 2006, therefore it is called weak data automata. It is strictly less expressive than data automata and the expressive power is incomparable with register automata. The expressive power of weak data automata corresponds exactly to existential monadic second order logic with successor +1 and data value equality \sim, EMSO2(+1,\sim). It follows from previous work, David, et. al. in 2010, that the nonemptiness problem for weak data automata can be decided in 2-NEXPTIME. Furthermore, we study weak B\"uchi automata on data omega-strings. They can be characterized by the extension of EMSO2(+1,\sim) with existential quantifiers for infinite sets. Finally, the same complexity bound for its nonemptiness problem is established by a nondeterministic polynomial time reduction to the nonemptiness problem of weak data automata.Comment: 21 page

    Two-Variable Logic with Two Order Relations

    Full text link
    It is shown that the finite satisfiability problem for two-variable logic over structures with one total preorder relation, its induced successor relation, one linear order relation and some further unary relations is EXPSPACE-complete. Actually, EXPSPACE-completeness already holds for structures that do not include the induced successor relation. As a special case, the EXPSPACE upper bound applies to two-variable logic over structures with two linear orders. A further consequence is that satisfiability of two-variable logic over data words with a linear order on positions and a linear order and successor relation on the data is decidable in EXPSPACE. As a complementing result, it is shown that over structures with two total preorder relations as well as over structures with one total preorder and two linear order relations, the finite satisfiability problem for two-variable logic is undecidable

    Reasoning about Data Repetitions with Counter Systems

    Full text link
    We study linear-time temporal logics interpreted over data words with multiple attributes. We restrict the atomic formulas to equalities of attribute values in successive positions and to repetitions of attribute values in the future or past. We demonstrate correspondences between satisfiability problems for logics and reachability-like decision problems for counter systems. We show that allowing/disallowing atomic formulas expressing repetitions of values in the past corresponds to the reachability/coverability problem in Petri nets. This gives us 2EXPSPACE upper bounds for several satisfiability problems. We prove matching lower bounds by reduction from a reachability problem for a newly introduced class of counter systems. This new class is a succinct version of vector addition systems with states in which counters are accessed via pointers, a potentially useful feature in other contexts. We strengthen further the correspondences between data logics and counter systems by characterizing the complexity of fragments, extensions and variants of the logic. For instance, we precisely characterize the relationship between the number of attributes allowed in the logic and the number of counters needed in the counter system.Comment: 54 page

    Path Checking for MTL and TPTL over Data Words

    Full text link
    Metric temporal logic (MTL) and timed propositional temporal logic (TPTL) are quantitative extensions of linear temporal logic, which are prominent and widely used in the verification of real-timed systems. It was recently shown that the path checking problem for MTL, when evaluated over finite timed words, is in the parallel complexity class NC. In this paper, we derive precise complexity results for the path-checking problem for MTL and TPTL when evaluated over infinite data words over the non-negative integers. Such words may be seen as the behaviours of one-counter machines. For this setting, we give a complete analysis of the complexity of the path-checking problem depending on the number of register variables and the encoding of constraint numbers (unary or binary). As the two main results, we prove that the path-checking problem for MTL is P-complete, whereas the path-checking problem for TPTL is PSPACE-complete. The results yield the precise complexity of model checking deterministic one-counter machines against formulae of MTL and TPTL

    An automaton over data words that captures EMSO logic

    Full text link
    We develop a general framework for the specification and implementation of systems whose executions are words, or partial orders, over an infinite alphabet. As a model of an implementation, we introduce class register automata, a one-way automata model over words with multiple data values. Our model combines register automata and class memory automata. It has natural interpretations. In particular, it captures communicating automata with an unbounded number of processes, whose semantics can be described as a set of (dynamic) message sequence charts. On the specification side, we provide a local existential monadic second-order logic that does not impose any restriction on the number of variables. We study the realizability problem and show that every formula from that logic can be effectively, and in elementary time, translated into an equivalent class register automaton

    Finite Countermodel Based Verification for Program Transformation (A Case Study)

    Get PDF
    Both automatic program verification and program transformation are based on program analysis. In the past decade a number of approaches using various automatic general-purpose program transformation techniques (partial deduction, specialization, supercompilation) for verification of unreachability properties of computing systems were introduced and demonstrated. On the other hand, the semantics based unfold-fold program transformation methods pose themselves diverse kinds of reachability tasks and try to solve them, aiming at improving the semantics tree of the program being transformed. That means some general-purpose verification methods may be used for strengthening program transformation techniques. This paper considers the question how finite countermodels for safety verification method might be used in Turchin's supercompilation method. We extract a number of supercompilation sub-algorithms trying to solve reachability problems and demonstrate use of an external countermodel finder for solving some of the problems.Comment: In Proceedings VPT 2015, arXiv:1512.0221
    corecore