92 research outputs found

    Distributed Resource Allocation and Performance Analysis in 5G Wireless Cellular Networks

    Get PDF
    This thesis focuses on the study of Heterogeneous Networks (HetNets), Device-to-device (D2D) communication networks, and unmanned aerial vehicle (UAV) networks in fifth generation wireless communication (5G) systems. HetNets that consist of macro-cells and small-cells have become increasingly popular in current wireless networks and 5G systems to meet the exponentially growing demand for higher data rates. Compared to conventional homogeneous cellular networks, the disparity of transmission power among different types of base stations (BSs), the relatively random deployment of SBSs, and the densifying networks, bring new challenges, such as the imbalanced load between macro and small cells and severe inter-cell interference. In the other hand, with the skyrocketing number of tablets and smart phones, the notion of caching popular content in the storage of BSs and users' devices is proposed to reduce duplicated wireless transmissions. To fulfill multi-fold communication requirements from humans, machine, and things, the 5G systems which include D2D communications, UAV communications, and so on, can improve the network performance. Among them, the performance analyses of these emerging technologies are attracting much attention and should be investigated first. This thesis focuses on these hot issues and emerging technologies in 5G systems, analyzing the network performance and conducting the allocation of available resources, such as serving BSs, spectrum resources, and storage resources. Specifically, three main research focuses are included in the thesis. The first focus of this thesis is the impact of the BS idle mode capacity (IMC) on the network performance of multi-tier and dense HCNs with both line-of-sight (LoS) and non-line-of-sight (NLoS) transmissions. I consider a more practical set-up with a finite number of UEs in the analysis. Moreover, the SBSs apply a positive power bias in the cell association procedure, so that macrocell UEs are actively encouraged to use the more lightly loaded SBSs. In addition, to address the severe interference that these cell range expanded UEs may suffer, the MBSs apply enhanced inter-cell interference coordination (eICIC), in the form of almost blank subframe (ABS) mechanism. For this model, I derive the coverage probability and the rate of a typical UE in the whole network or a certain tier. The impact of the IMC on the performance of the network is shown to be significant. In particular, it is important to note that there will be a surplus of BSs when the BS density exceeds the UE density, and thus a large number of BSs switch off. As a result, the overall coverage probability, as well as the area spectral efficiency (ASE), will continuously increase with the BS density, addressing the network outage that occurs when all BSs are active and the interference becomes LoS dominated. Finally, the optimal ABS factors are investigated in different BS density regions. One of major findings is that MBSs should give up all resources in favor of the SBSs when the small cell networks go ultra-dense. This reinforces the need for orthogonal deployments, shedding new light on the design and deployment of the future 5G dense HCNs. The second focus of this thesis is the content caching in D2D communication networks. In practical deployment, D2D content caching has its own problem that is not all of the user devices are willing to share the content with others due to numerous concerns such as security, battery life, and social relationship. To solve this problem, I consider the factor of social relationship in the deployment of D2D content caching. First, I apply stochastic geometry theory to derive an analytical expression of downloading performance for the D2D caching network. Specifically, a social relationship model with respect to the physical distance is adopted in the analysis to obtain the average downloading delay performance using random and deterministic caching strategies. Second, to achieve a better performance in more practical and specific scenarios, I develop a socially aware distributed caching strategy based on a decentralized learning automaton, to optimize the cache placement operation in D2D networks. Different from the existing caching schemes, the proposed algorithm not only considers the file request probability and the closeness of devices as measured by their physical distance, but also takes into account the social relationship between D2D users. The simulation results show that the proposed algorithm can converge quickly and outperforms the random and deterministic caching strategies. With these results, the work sheds insights on the design of D2D caching in the practical deployment of 5G networks. The third focus of this thesis is the performance analysis for practical UAV-enabled networks. By considering both LoS and NLoS transmissions between aerial BSs and ground users, the coverage probability and the ASE are derived. Considering that there is no consensus on the path loss model for studying UAVs in the literature, in this focus, three path loss models, i.e., high-altitude model, low-altitude model, and ultra-low-altitude model, are investigated and compared. Moreover, the lower bound of the network performance is obtained assuming that UAVs are hovering randomly according to homogeneous Poisson point process (HPPP), while the upper bound is derived assuming that UAVs can instantaneously move to the positions directly overhead ground users. From the analytical and simulation results for a practical UAV height of 50 meters, I find that the network performance of the high-altitude model and the low-altitude model exhibit similar trends, while that of the ultra-low-altitude model deviates significantly from the above two models. In addition, the optimal density of UAVs to maximize the coverage probability performance has also been investigated

    Coordinated Multi-Point Clustering Schemes: A Survey

    Full text link

    Resource management with adaptive capacity in C-RAN

    Get PDF
    This work was supported in part by the Spanish ministry of science through the projectRTI2018-099880-B-C32, with ERFD funds, and the Grant FPI-UPC provided by theUPC. It has been done under COST CA15104 IRACON EU project.Efficient computational resource management in 5G Cloud Radio Access Network (CRAN) environments is a challenging problem because it has to account simultaneously for throughput, latency, power efficiency, and optimization tradeoffs. This work proposes the use of a modified and improved version of the realistic Vienna Scenario that was defined in COST action IC1004, to test two different scale C-RAN deployments. First, a large-scale analysis with 628 Macro-cells (Mcells) and 221 Small-cells (Scells) is used to test different algorithms oriented to optimize the network deployment by minimizing delays, balancing the load among the Base Band Unit (BBU) pools, or clustering the Remote Radio Heads (RRH) efficiently to maximize the multiplexing gain. After planning, real-time resource allocation strategies with Quality of Service (QoS) constraints should be optimized as well. To do so, a realistic small-scale scenario for the metropolitan area is defined by modeling the individual time-variant traffic patterns of 7000 users (UEs) connected to different services. The distribution of resources among UEs and BBUs is optimized by algorithms, based on a realistic calculation of the UEs Signal to Interference and Noise Ratios (SINRs), that account for the required computational capacity per cell, the QoS constraints and the service priorities. However, the assumption of a fixed computational capacity at the BBU pools may result in underutilized or oversubscribed resources, thus affecting the overall QoS. As resources are virtualized at the BBU pools, they could be dynamically instantiated according to the required computational capacity (RCC). For this reason, a new strategy for Dynamic Resource Management with Adaptive Computational capacity (DRM-AC) using machine learning (ML) techniques is proposed. Three ML algorithms have been tested to select the best predicting approach: support vector machine (SVM), time-delay neural network (TDNN), and long short-term memory (LSTM). DRM-AC reduces the average of unused resources by 96 %, but there is still QoS degradation when RCC is higher than the predicted computational capacity (PCC). For this reason, two new strategies are proposed and tested: DRM-AC with pre-filtering (DRM-AC-PF) and DRM-AC with error shifting (DRM-AC-ES), reducing the average of unsatisfied resources by 99.9 % and 98 % compared to the DRM-AC, respectively

    A comprehensive survey on radio resource management in 5G HetNets: current solutions, future trends and open issues

    Get PDF
    The 5G network technologies are intended to accommodate innovative services with a large influx of data traffic with lower energy consumption and increased quality of service and user quality of experience levels. In order to meet 5G expectations, heterogeneous networks (HetNets) have been introduced. They involve deployment of additional low power nodes within the coverage area of conventional high power nodes and their placement closer to user underlay HetNets. Due to the increased density of small-cell networks and radio access technologies, radio resource management (RRM) for potential 5G HetNets has emerged as a critical avenue. It plays a pivotal role in enhancing spectrum utilization, load balancing, and network energy efficiency. In this paper, we summarize the key challenges i.e., cross-tier interference, co-tier interference, and user association-resource-power allocation (UA-RA-PA) emerging in 5G HetNets and highlight their significance. In addition, we present a comprehensive survey of RRM schemes based on interference management (IM), UA-RA-PA and combined approaches (UA-RA-PA + IM). We introduce a taxonomy for individual (IM, UA-RA-PA) and combined approaches as a framework for systematically studying the existing schemes. These schemes are also qualitatively analyzed and compared to each other. Finally, challenges and opportunities for RRM in 5G are outlined, and design guidelines along with possible solutions for advanced mechanisms are presented
    corecore