1,548 research outputs found

    K-Means Fingerprint Clustering for Low-Complexity Floor Estimation in Indoor Mobile Localization

    Full text link
    Indoor localization in multi-floor buildings is an important research problem. Finding the correct floor, in a fast and efficient manner, in a shopping mall or an unknown university building can save the users' search time and can enable a myriad of Location Based Services in the future. One of the most widely spread techniques for floor estimation in multi-floor buildings is the fingerprinting-based localization using Received Signal Strength (RSS) measurements coming from indoor networks, such as WLAN and BLE. The clear advantage of RSS-based floor estimation is its ease of implementation on a multitude of mobile devices at the Application Programming Interface (API) level, because RSS values are directly accessible through API interface. However, the downside of a fingerprinting approach, especially for large-scale floor estimation and positioning solutions, is their need to store and transmit a huge amount of fingerprinting data. The problem becomes more severe when the localization is intended to be done on mobile devices which have limited memory, power, and computational resources. An alternative floor estimation method, which has lower complexity and is faster than the fingerprinting is the Weighted Centroid Localization (WCL) method. The trade-off is however paid in terms of a lower accuracy than the one obtained with traditional fingerprinting with Nearest Neighbour (NN) estimates. In this paper a novel K-means-based method for floor estimation via fingerprint clustering of WiFi and various other positioning sensor outputs is introduced. Our method achieves a floor estimation accuracy close to the one with NN fingerprinting, while significantly improves the complexity and the speed of the floor detection algorithm. The decrease in the database size is achieved through storing and transmitting only the cluster heads (CH's) and their corresponding floor labels.Comment: Accepted to IEEE Globecom 2015, Workshop on Localization and Tracking: Indoors, Outdoors and Emerging Network

    Locating sensors with fuzzy logic algorithms

    Get PDF
    In a system formed by hundreds of sensors deployed in a huge area it is important to know the position where every sensor is. This information can be obtained using several methods. However, if the number of sensors is high and the deployment is based on ad-hoc manner, some auto-locating techniques must be implemented. In this paper we describe a novel algorithm based on fuzzy logic with the objective of estimating the location of sensors according to the knowledge of the position of some reference nodes. This algorithm, called LIS (Localization based on Intelligent Sensors) is executed distributively along a wireless sensor network formed by hundreds of nodes, covering a huge area. The evaluation of LIS is led by simulation tests. The result obtained shows that LIS is a promising method that can easily solve the problem of knowing where the sensors are located.Junta de Andalucía P07-TIC-0247

    WLAN Location Sharing through a Privacy Observant Architecture

    Get PDF
    In the last few years, WLAN has seen immense growth and it will continue this trend due to the fact that it provides convenient connectivity as well as high speed links. Furthermore, the infrastructure already exists in most public places and is cheap to extend. These advantages, together with the fact that WLAN covers a large area and is not restricted to line of sight, have led to developing many WLAN localization techniques and applications based on them. In this paper we present a novel calibration-free localization technique using the existing WLAN infrastructure that enables conference participants to determine their location without the need of a centralized system. The evaluation results illustrate the superiority of our technique compared to existing methods. In addition, we present a privacy observant architecture to share location information. We handle both the location of people and the resources in the infrastructure as services, which can be easily discovered and used. An important design issue for us was to avoid tracking people and giving the users control over who they share their location information with and under which conditions

    Dead Reckoning Localization Technique for Mobile Wireless Sensor Networks

    Full text link
    Localization in wireless sensor networks not only provides a node with its geographical location but also a basic requirement for other applications such as geographical routing. Although a rich literature is available for localization in static WSN, not enough work is done for mobile WSNs, owing to the complexity due to node mobility. Most of the existing techniques for localization in mobile WSNs uses Monte-Carlo localization, which is not only time-consuming but also memory intensive. They, consider either the unknown nodes or anchor nodes to be static. In this paper, we propose a technique called Dead Reckoning Localization for mobile WSNs. In the proposed technique all nodes (unknown nodes as well as anchor nodes) are mobile. Localization in DRLMSN is done at discrete time intervals called checkpoints. Unknown nodes are localized for the first time using three anchor nodes. For their subsequent localizations, only two anchor nodes are used. The proposed technique estimates two possible locations of a node Using Bezouts theorem. A dead reckoning approach is used to select one of the two estimated locations. We have evaluated DRLMSN through simulation using Castalia simulator, and is compared with a similar technique called RSS-MCL proposed by Wang and Zhu .Comment: Journal Paper, IET Wireless Sensor Systems, 201

    Comparative Study of Fingerprint and Centroid Localization Protocol Using COOJA

    Get PDF
    AbstractSensor networks are in a numerous number of applications. However, implementing wireless sensor networks present new challenges compared with theoretical networks. Cooja is the Contiki network simulator. It allows large and small networks of Contiki motes to be simulated; moreover, motes can be emulated at the hardware level. In this paper, we evaluate the accuracy performance of two very well-known localization protocols, namely: fingerprint and centroid protocols using Tmote sky in Cooja. It is worth mentioning that this the first time this study is conducted in Cooja. The results conform to the theory that fingerprint protocol has a better performance than centroid in terms of accuracy when accuracy is quantified

    Localization Process for WSNs with Various Grid-Based Topology Using Artificial Neural Network

    Get PDF
    Wireless Sensor Network (WSN) is a technology that can aid human life by providing ubiquitous communication, sensing, and computing capabilities. It allows people to be more able to interact with the environment. The environment contains many nodes to monitor and collect data. Localizing nodes distributed in different locations covering different regions is a challenge in WSN. Localization of accurate and low-cost sensors is an urgent need to deploy WSN in various applications. In this paper, we propose an artificial automatic neural network method for sensor node localization. The proposed method in WSN is implemented with network-based topology in different regions. To demonstrate the accuracy of the proposed method, we compared the estimated locations of the proposed feedforward neural network (FFNN) with the estimated locations of the deep feedforward neural network (DFF) and the weighted centroid localization (WCL) algorithm based on the strength of the received signal index. The proposed FFNN model outperformed alternative methods in terms of its lower average localization error which is 0.056m. Furthermore, it demonstrated its capability to predict sensor locations in wireless sensor networks (WSNs) across various grid-based topologies

    Distributed Algorithms for Stochastic Source Seeking With Mobile Robot Networks

    Get PDF
    Autonomous robot networks are an effective tool for monitoring large-scale environmental fields. This paper proposes distributed control strategies for localizing the source of a noisy signal, which could represent a physical quantity of interest such as magnetic force, heat, radio signal, or chemical concentration. We develop algorithms specific to two scenarios: one in which the sensors have a precise model of the signal formation process and one in which a signal model is not available. In the model-free scenario, a team of sensors is used to follow a stochastic gradient of the signal field. Our approach is distributed, robust to deformations in the group geometry, does not necessitate global localization, and is guaranteed to lead the sensors to a neighborhood of a local maximum of the field. In the model-based scenario, the sensors follow a stochastic gradient of the mutual information (MI) between their expected measurements and the expected source location in a distributed manner. The performance is demonstrated in simulation using a robot sensor network to localize the source of a wireless radio signal
    corecore