342 research outputs found

    A low-cost time-hopping impulse radio system for high data rate transmission

    Full text link
    We present an efficient, low-cost implementation of time-hopping impulse radio that fulfills the spectral mask mandated by the FCC and is suitable for high-data-rate, short-range communications. Key features are: (i) all-baseband implementation that obviates the need for passband components, (ii) symbol-rate (not chip rate) sampling, A/D conversion, and digital signal processing, (iii) fast acquisition due to novel search algorithms, (iv) spectral shaping that can be adapted to accommodate different spectrum regulations and interference environments. Computer simulations show that this system can provide 110Mbit/s at 7-10m distance, as well as higher data rates at shorter distances under FCC emissions limits. Due to the spreading concept of time-hopping impulse radio, the system can sustain multiple simultaneous users, and can suppress narrowband interference effectively.Comment: To appear in EURASIP Journal on Applied Signal Processing (Special Issue on UWB - State of the Art

    Ultra wideband: applications, technology and future perspectives

    Get PDF
    Ultra Wide Band (UWB) wireless communications offers a radically different approach to wireless communication compared to conventional narrow band systems. Global interest in the technology is huge. This paper reports on the state of the art of UWB wireless technology and highlights key application areas, technological challenges, higher layer protocol issues, spectrum operating zones and future drivers. The majority of the discussion focuses on the state of the art of UWB technology as it is today and in the near future

    Fine Synchronization in UWB Ad-Hoc Environments

    Get PDF

    Contribution to the Rapid Acquisition of Signals for UWB Communication Systems

    Get PDF
    Ultra Wide-band is a promising technology for future short-range wireless communications with high data rate. In generally, one of the biggest difficult tasks for researchers today is the acquisition task of signals, where they are looking through different tools for getting a good quality of transmission; the phenomenon of multipath always stands up in the front as the first problem to be faced. When we talk about the Ultra Wide Band (UWB) signals, the problem becomes more complicated due to ultrashort impulses duration used by this kind of signals that causes the generation of paths by huge numbers. In this thesis, to address the task mentioned above, the study is subdivided into two aspects. The first one is the UWB channel estimation that we have done to have information about the amplitudes and the delays of the paths. For this purpose, a maximum likelihood method is used to find the amplitudes and the delays estimate using two estimation contexts: Data Aided (DA) and Non-Data-Aided (NDA). In the second aspect, various parameters affecting the acquisition of signals are evaluated. Furthermore, several contributions in the framework of a new strategy based on an Intelligent Controlling System (ICS) are done and detailed in this thesis for the first once. This system is characterised by its flexibility through two techniques, one that allows to users to communicate even with different M-ary PPM levels at the same time. Another technique that gives the flexibility for dealing with the phenomenon of multipath, where this latter is combated through manipulating the modulation’s levels via the ICS to achieve a rapid acquisition of UWB signals

    UWB MAC Design Constraints and Considerations

    Get PDF
    In this paper, we consider the possibility of developing an optimal medium access control (MAC)layer for high data rate ultra-wideband (UWB) transmission systems that transmit minimal power. MAC in UWB wireless networks is required to coordinate channel access among competing devices. The unique UWB characteristics offer great challenges and opportunities in effective UWB MAC design. We first study the background of UWB and available MAC protocols that have been used in UWB. Secondly, we explore the constraints on UWB MAC design. Finally we present the considerations that need to be made in designing an optimal UWB MAC protocol

    Performance Comparison of TR and FSRUWB System Using Particle Filter: Effects of Frequency, Data Rate, Multi-Path and Multi-Channel Communication

    Get PDF
    In this study, we introduced a novel scheme based on Transmitted References (TR) and Frequency Shifted Reference (FSR) for ultra-wideband (UWB) system. By taking into account tracking loop-based particle filtering together with a data collecting approach for single and multi-path channel situations, the suggested method is an enhanced model. Each particle's location is determined using this filtering technique, which is then utilised to calculate the timing inaccuracy and regulate the UWB system's timing pulse. Also, it can tackle the multimodal distribution of errors then effectively approximate the optimal solution. The data distribution is discretised via a number of particles that are weighted samples evolving concerning time duration. The simulation results show that, in terms of error rate, number of particles, and delay response, the recommended model of FSR-UWB with particle filter performs better than the TR-UWB with and without considering particle filter

    A Quantitative Assessment of the Compatibility of Ultra Wideband with Broadband Wireless Access and Radar Services

    Get PDF
    In July 2008, following a request made by the Radio Spectrum Policy Unit in DG INFSO (Unit B4), a pilot phase of twelve months was agreed with Member States representatives in the Radio Spectrum Committee. During this time the Institute for the Protection and Security of the Citizen of the EC Joint Research Centre (IPSC-JRC) has been mandated to provide testing facilities to support the development of Community spectrum legal measures under the Radio Spectrum Decision (676/2002/EC). In the frame of this pilot phase, IPSC-JRC has successfully completed the implementation and extensive testing of both a state-of-the-art laboratory test-bed and a simulation tool, which have been specifically designed for two different coexistence studies. Firstly, the coexistence between broadband wireless access (BWA) and ultra wideband (UWB) services in the 3.5 GHz frequency band; and secondly, the coexistence between radiolocation (i.e. radar) and UWB services in the 3.1-3.4 GHz frequency band. The selection of these two coexistence scenarios is not casual and has been made based on the fact that they have been considered highly relevant in the CEPT-ECC studies on UWB mandated by the European Commission.JRC.G.6-Security technology assessmen
    • 

    corecore