765,207 research outputs found

    Overview of two-dimensional airfoil research at Ames Research Center

    Get PDF
    The five basic elements of the two dimensional airfoil research program at Ames Research Center are illustrated. These elements are experimental, theoretical (including computational), validation, design optimization, and industry interaction. Each area is briefly discussed

    Performance predictions for an SSME configuration with an enlarged throat

    Get PDF
    The Two Dimensional Kinetics (TDK) computer program that was recently developed for NASA was used to predict the performance of a Large Throat Configuration of the Space Shuttle Main Engine (SSME). Calculations indicate that the current design SSME contains a shock wave that is induced by the nozzle wall shape. In the Large Throat design an even stronger shock wave is predicted. Because of the presence of this shock wave, earlier performance predictions that have neglected shock wave effects have been questioned. The JANNAF thrust chamber performance prediction procedures given in a reference were applied. The analysis includes the effects of two dimensional reacting flow with a shock wave. The effects of the boundary layer with a regenatively cooled wall are also included. A Purdue computer program was used to compute axially symmetric supersonic nozzle flows with an induced shock, but is restricted to flows with a constant ratio of specific heats. Thus, the TDK program was also run with ths assumption and the results of the two programs were compared

    Parametric analysis of diffuser requirements for high expansion ratio space engine

    Get PDF
    A supersonic diffuser ejector design computer program was developed. Using empirically modified one dimensional flow methods the diffuser ejector geometry is specified by the code. The design code results for calculations up to the end of the diffuser second throat were verified. Diffuser requirements for sea level testing of high expansion ratio space engines were defined. The feasibility of an ejector system using two commonly available turbojet engines feeding two variable area ratio ejectors was demonstrated

    Ceramic component reliability with the restructured NASA/CARES computer program

    Get PDF
    The Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design program on statistical fast fracture reliability and monolithic ceramic components is enhanced to include the use of a neutral data base, two-dimensional modeling, and variable problem size. The data base allows for the efficient transfer of element stresses, temperatures, and volumes/areas from the finite element output to the reliability analysis program. Elements are divided to insure a direct correspondence between the subelements and the Gaussian integration points. Two-dimensional modeling is accomplished by assessing the volume flaw reliability with shell elements. To demonstrate the improvements in the algorithm, example problems are selected from a round-robin conducted by WELFEP (WEakest Link failure probability prediction by Finite Element Postprocessors)

    PAN AIR: A computer program for predicting subsonic or supersonic linear potential flows about arbitrary configurations using a higher order panel method. Volume 3: Case manual (version 1.0)

    Get PDF
    Numerous applications of the PAN AIR computer program system are presented. PAN AIR is user-oriented tool for analyzing and/or designing aerodynamic configurations in subsonic or supersonic flow using a technique generally referred to as a higher order panel method. Problems solved include simple wings in subsonic and supersonic flow, a wing-body in supersonic flow, wing with deflected flap in subsonic flow, design of two-dimensional and three-dimensional wings, axisymmetric nacelle in supersonic flow, and wing-canard-tail-nacelle-fuselage combination in supersonic flow

    Computational design of natural laminar flow wings for transonic transport application

    Get PDF
    Two research programs are described which directly relate to the application of natural laminar flow (NLF) technology to transonic transport-type wind planforms. Each involved using state-of-the-art computational methods to design three-dimensional wing contours which generate significant runs of favorable pressure gradients. The first program supported the Variable Sweep Transition Flight Experiment and involves design of a full-span glove which extends from the leading edge to the spoiler hinge line on the upper surface of an F-14 outer wing panel. Boundary-layer and static-pressure data will be measured on this design during the supporting wind-tunnel and flight tests. These data will then be analyzed and used to infer the relationship between crossflow and Tollmein-Schlichting disturbances on laminar boundary-layer transition. A wing was designed computationally for a corporate transport aircraft in the second program. The resulting wing design generated favorable pressure gradients from the leading edge aft to the mid-chord on both upper and lower surfaces at the cruise design point. Detailed descriptions of the computational design approach are presented along with the various constraints imposed on each of the designs. Wing surface pressure distributions, which support the design objective and were derived from transonic three-dimensional analyses codes, are also presented. Current status of each of the research programs is included in the summary

    A user oriented microcomputer facility for designing linear quadratic Gaussian feedback compensators

    Get PDF
    A laboratory design facility for digital microprocessor implementation of linear-quadratic-Gaussian feedback compensators is described. Outputs from user interactive programs for solving infinite time horizon LQ regulator and Kalman filter problems were conditioned for implementation on the laboratory microcomputer system. The software consisted of two parts: an offline high-level program for solving the LQ Ricatti equations and generating associated feedback and filter gains and a cross compiler/macro assembler which generates object code for the target microprocessor system. A PDP 11/70 with a UNIX operating system was used for all high level program and data management, and the target microprocessor system is an Intel MDS (8080-based processor). Application to the control of a two dimensional inverted pendulum is presented and issues in expanding the design/prototyping system to other target machine architectures are discussed

    An automated approach to the design of decision tree classifiers

    Get PDF
    The classification of large dimensional data sets arising from the merging of remote sensing data with more traditional forms of ancillary data is considered. Decision tree classification, a popular approach to the problem, is characterized by the property that samples are subjected to a sequence of decision rules before they are assigned to a unique class. An automated technique for effective decision tree design which relies only on apriori statistics is presented. This procedure utilizes a set of two dimensional canonical transforms and Bayes table look-up decision rules. An optimal design at each node is derived based on the associated decision table. A procedure for computing the global probability of correct classfication is also provided. An example is given in which class statistics obtained from an actual LANDSAT scene are used as input to the program. The resulting decision tree design has an associated probability of correct classification of .76 compared to the theoretically optimum .79 probability of correct classification associated with a full dimensional Bayes classifier. Recommendations for future research are included

    Coupling of Transport and Chemical Processes in Catalytic Combustion

    Get PDF
    Catalytic combustors have demonstrated the ability to operate efficiently over a much wider range of fuel air ratios than are imposed by the flammability limits of conventional combustors. Extensive commercial use however needs the following: (1) the design of a catalyst with low ignition temperature and high temperature stability, (2) reducing fatigue due to thermal stresses during transient operation, and (3) the development of mathematical models that can be used as design optimization tools to isolate promising operating ranges for the numerous operating parameters. The current program of research involves the development of a two dimensional transient catalytic combustion model and the development of a new catalyst with low temperature light-off and high temperature stablity characteristics
    corecore