24,410 research outputs found

    Model-Checking the Higher-Dimensional Modal mu-Calculus

    Full text link
    The higher-dimensional modal mu-calculus is an extension of the mu-calculus in which formulas are interpreted in tuples of states of a labeled transition system. Every property that can be expressed in this logic can be checked in polynomial time, and conversely every polynomial-time decidable problem that has a bisimulation-invariant encoding into labeled transition systems can also be defined in the higher-dimensional modal mu-calculus. We exemplify the latter connection by giving several examples of decision problems which reduce to model checking of the higher-dimensional modal mu-calculus for some fixed formulas. This way generic model checking algorithms for the logic can then be used via partial evaluation in order to obtain algorithms for theses problems which may benefit from improvements that are well-established in the field of program verification, namely on-the-fly and symbolic techniques. The aim of this work is to extend such techniques to other fields as well, here exemplarily done for process equivalences, automata theory, parsing, string problems, and games.Comment: In Proceedings FICS 2012, arXiv:1202.317

    Model-checking Quantitative Alternating-time Temporal Logic on One-counter Game Models

    Full text link
    We consider quantitative extensions of the alternating-time temporal logics ATL/ATLs called quantitative alternating-time temporal logics (QATL/QATLs) in which the value of a counter can be compared to constants using equality, inequality and modulo constraints. We interpret these logics in one-counter game models which are infinite duration games played on finite control graphs where each transition can increase or decrease the value of an unbounded counter. That is, the state-space of these games are, generally, infinite. We consider the model-checking problem of the logics QATL and QATLs on one-counter game models with VASS semantics for which we develop algorithms and provide matching lower bounds. Our algorithms are based on reductions of the model-checking problems to model-checking games. This approach makes it quite simple for us to deal with extensions of the logical languages as well as the infinite state spaces. The framework generalizes on one hand qualitative problems such as ATL/ATLs model-checking of finite-state systems, model-checking of the branching-time temporal logics CTL and CTLs on one-counter processes and the realizability problem of LTL specifications. On the other hand the model-checking problem for QATL/QATLs generalizes quantitative problems such as the fixed-initial credit problem for energy games (in the case of QATL) and energy parity games (in the case of QATLs). Our results are positive as we show that the generalizations are not too costly with respect to complexity. As a byproduct we obtain new results on the complexity of model-checking CTLs in one-counter processes and show that deciding the winner in one-counter games with LTL objectives is 2ExpSpace-complete.Comment: 22 pages, 12 figure

    Insecurity of position-based quantum cryptography protocols against entanglement attacks

    Full text link
    Recently, position-based quantum cryptography has been claimed to be unconditionally secure. In contrary, here we show that the existing proposals for position-based quantum cryptography are, in fact, insecure if entanglement is shared among two adversaries. Specifically, we demonstrate how the adversaries can incorporate ideas of quantum teleportation and quantum secret sharing to compromise the security with certainty. The common flaw to all current protocols is that the Pauli operators always map a codeword to a codeword (up to an irrelevant overall phase). We propose a modified scheme lacking this property in which the same cheating strategy used to undermine the previous protocols can succeed with a rate at most 85%. We conjecture that the modified protocol is unconditionally secure and prove this to be true when the shared quantum resource between the adversaries is a two- or three- level system

    Cross-level Validation of Topological Quantum Circuits

    Full text link
    Quantum computing promises a new approach to solving difficult computational problems, and the quest of building a quantum computer has started. While the first attempts on construction were succesful, scalability has never been achieved, due to the inherent fragile nature of the quantum bits (qubits). From the multitude of approaches to achieve scalability topological quantum computing (TQC) is the most promising one, by being based on an flexible approach to error-correction and making use of the straightforward measurement-based computing technique. TQC circuits are defined within a large, uniform, 3-dimensional lattice of physical qubits produced by the hardware and the physical volume of this lattice directly relates to the resources required for computation. Circuit optimization may result in non-intuitive mismatches between circuit specification and implementation. In this paper we introduce the first method for cross-level validation of TQC circuits. The specification of the circuit is expressed based on the stabilizer formalism, and the stabilizer table is checked by mapping the topology on the physical qubit level, followed by quantum circuit simulation. Simulation results show that cross-level validation of error-corrected circuits is feasible.Comment: 12 Pages, 5 Figures. Comments Welcome. RC2014, Springer Lecture Notes on Computer Science (LNCS) 8507, pp. 189-200. Springer International Publishing, Switzerland (2014), Y. Shigeru and M.Shin-ichi (Eds.

    The Arity Hierarchy in the Polyadic μ\mu-Calculus

    Full text link
    The polyadic mu-calculus is a modal fixpoint logic whose formulas define relations of nodes rather than just sets in labelled transition systems. It can express exactly the polynomial-time computable and bisimulation-invariant queries on finite graphs. In this paper we show a hierarchy result with respect to expressive power inside the polyadic mu-calculus: for every level of fixpoint alternation, greater arity of relations gives rise to higher expressive power. The proof uses a diagonalisation argument.Comment: In Proceedings FICS 2015, arXiv:1509.0282

    Symmetric Strategy Improvement

    Full text link
    Symmetry is inherent in the definition of most of the two-player zero-sum games, including parity, mean-payoff, and discounted-payoff games. It is therefore quite surprising that no symmetric analysis techniques for these games exist. We develop a novel symmetric strategy improvement algorithm where, in each iteration, the strategies of both players are improved simultaneously. We show that symmetric strategy improvement defies Friedmann's traps, which shook the belief in the potential of classic strategy improvement to be polynomial

    Experimental realization of nondestructive discrimination of Bell states using a five-qubit quantum computer

    Full text link
    A scheme for distributed quantum measurement that allows nondestructive or indirect Bell measurement was proposed by Gupta et al., (Int. J. Quant. Infor. \textbf{5} (2007) 627) and subsequently realized experimentally using an NMR-based three-qubit quantum computer by Samal et al., (J. Phys. B, \textbf{43} (2010) 095508). In the present work, a similar experiment is performed using the five-qubit super-conductivity-based quantum computer, which has been recently placed in cloud by IBM Corporation. The experiment confirmed that the Bell state can be constructed and measured in a nondestructive manner with a reasonably high fidelity. A comparison of the outcomes of this study and the results obtained earlier in the NMR-based experiment has also been performed. The study indicates that to make a scalable SQUID-based computer, errors by the gates (in the present technology) have to be reduced considerably.Comment: 7 figures,13 pages including 1 appendi
    corecore