79,473 research outputs found

    Curvelet Approach for SAR Image Denoising, Structure Enhancement, and Change Detection

    Get PDF
    In this paper we present an alternative method for SAR image denoising, structure enhancement, and change detection based on the curvelet transform. Curvelets can be denoted as a two dimensional further development of the well-known wavelets. The original image is decomposed into linear ridge-like structures, that appear in different scales (longer or shorter structures), directions (orientation of the structure) and locations. The influence of these single components on the original image is weighted by the corresponding coefficients. By means of these coefficients one has direct access to the linear structures present in the image. To suppress noise in a given SAR image weak structures indicated by low coefficients can be suppressed by setting the corresponding coefficients to zero. To enhance structures only coefficients in the scale of interest are preserved and all others are set to zero. Two same-sized images assumed even a change detection can be done in the curvelet coefficient domain. The curvelet coefficients of both images are differentiated and manipulated in order to enhance strong and to suppress small scale (pixel-wise) changes. After the inverse curvelet transform the resulting image contains only those structures, that have been chosen via the coefficient manipulation. Our approach is applied to TerraSAR-X High Resolution Spotlight images of the city of Munich. The curvelet transform turns out to be a powerful tool for image enhancement in fine-structured areas, whereas it fails in originally homogeneous areas like grassland. In the change detection context this method is very sensitive towards changes in structures instead of single pixel or large area changes. Therefore, for purely urban structures or construction sites this method provides excellent and robust results. While this approach runs without any interaction of an operator, the interpretation of the detected changes requires still much knowledge about the underlying objects

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    A Neural Network Method for Land Use Change Classification, with Application to the Nile River Delta

    Full text link
    Detecting and monitoring changes in conditions at the Earth's surface are essential for understanding human impact on the environment and for assessing the sustainability of development. In the next decade, NASA will gather high-resolution multi-spectral and multi-temporal data, which could be used for analyzing long-term changes, provided that available methods can keep pace with the accelerating flow of information. This paper introduces an automated technique for change identification, based on the ARTMAP neural network. This system overcomes some of the limitations of traditional change detection methods, and also produces a measure of confidence in classification accuracy. Landsat thematic mapper (TM) imagery of the Nile River delta provides a testbed for land use change classification methods. This dataset consists of a sequence of ten images acquired between 1984 and 1993 at various times of year. Field observations and photo interpretations have identified 358 sites as belonging to eight classes, three of which represent changes in land use over the ten-year period. Aparticular challenge posed by this database is the unequal representation of various land use categories: three classes, urban, agriculture in delta, and other, comprise 95% of pixels in labeled sites. A two-step sampling method enables unbiased training of the neural network system across sites.National Science Foundation (SBR 95-13889); Office of Naval Research (N00014-95-1-409, N00014-95-0657); Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-042

    State-of-the-art and gaps for deep learning on limited training data in remote sensing

    Full text link
    Deep learning usually requires big data, with respect to both volume and variety. However, most remote sensing applications only have limited training data, of which a small subset is labeled. Herein, we review three state-of-the-art approaches in deep learning to combat this challenge. The first topic is transfer learning, in which some aspects of one domain, e.g., features, are transferred to another domain. The next is unsupervised learning, e.g., autoencoders, which operate on unlabeled data. The last is generative adversarial networks, which can generate realistic looking data that can fool the likes of both a deep learning network and human. The aim of this article is to raise awareness of this dilemma, to direct the reader to existing work and to highlight current gaps that need solving.Comment: arXiv admin note: text overlap with arXiv:1709.0030
    corecore