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ABSTRACT:

In this paper we present an alternative method for SAR image denoising, structure enhancement, and change detection based on the
curvelet transform. Curvelets can be denoted as a two dimensional further development of the well-known wavelets. The original image
is decomposed into linear ridge-like structures, that appear in different scales (longer or shorter structures), directions (orientation of the
structure) and locations. The influence of these single components on the original image is weighted by the corresponding coefficients.
By means of these coefficients one has direct access to the linear structures present in the image. To suppress noise in a given SAR
image weak structures indicated by low coefficients can be suppressed by setting the corresponding coefficients to zero. To enhance
structures only coefficients in the scale of interest are preserved and all others are set to zero. Two same-sized images assumed even
a change detection can be done in the curvelet coefficient domain. The curvelet coefficients of both images are differentiated and
manipulated in order to enhance strong and to suppress small scale (pixel-wise) changes. After the inverse curvelet transform the
resulting image contains only those structures, that have been chosen via the coefficient manipulation. Our approach is applied to
TerraSAR-X High Resolution Spotlight images of the city of Munich. The curvelet transform turns out to be a powerful tool for image
enhancement in fine-structured areas, whereas it fails in originally homogeneous areas like grassland. In the change detection context
this method is very sensitive towards changes in structures instead of single pixel or large area changes. Therefore, for purely urban
structures or construction sites this method provides excellent and robust results. While this approach runs without any interaction of
an operator, the interpretation of the detected changes requires still much knowledge about the underlying objects.

1 INTRODUCTION

Nowadays spaceborne SAR data is easily available. Thanks to
the high resolution of up to one meter (TerraSAR-X) it is suitable
for urban applications, e.g. urban growth modeling as well as for
damage mapping in conjunction with (natural) disasters. A main
problem for SAR image interpretation apart from the geometri-
cal aspect is the high noise level caused by the combination of
deterministic (speckle effect) and random noise. The reduction
of noise, e.g. by the multi-looking approach, often goes along
with a loss of resolution. While structure preserving filters do
not enhance fine-structured areas, smoothening filters even blur
the structures apparent in SAR data over urban areas. So reso-
lution and structure preserving filter algorithms are still a topic
of research. In this context alternative image representations like
wavelets have been applied. While wavelets are used to separate
point singularities (Candès and Donoho, 1999), second genera-
tion wavelets, e.g. curvelets, are more suitable for the extraction
of two dimensional features, as they are able to describe image
discontinuities along a smooth line (an edge) with a minimum
number of coefficients (Candès and Donoho, 1999). The ele-
mentary components are the so-called ridgelets – due to their
appearance like a ridge – that can have different scales (equiv-
alent to their length), directions and positions in the image. This
enables a selection of two dimensional features to be suppressed
(assumed noise) or to be emphasized (structure) by manipulating
the corresponding coefficient of each ridgelet. In the following a
short overview to related work especially to the development of
curvelets is given. Then, the curvelet representation is roughly
explained and three applications are presented: image denoising,
structure enhancement and change detection over the city center
of Munich (imaged by TerraSAR-X in the high resolution spot-
light mode and VV polarization). So this paper shows the poten-
tial of the curvelet transform for SAR image analysis.

2 RELATED WORK

The curvelet transform used in this approach has originally been
developed by (Candès and Donoho, 1999) to describe an object
with edges with a minimal number of coefficients in the contin-
uous space. Much research work was done to examine the be-
haviour of curvelets (Candès and Donoho, 2002a, Candès and
Demanet, 2002b, Candès and Guo, 2002), to transfer the def-
initions from the continuous to the discrete space (Candès and
Donoho, 2003a, Candès and Donoho, 2003b) and to accelerate
the computing time (Candès et al., 2005) so that digital image
processing becomes feasible. Many applications in different sci-
entific fields have been published so far, e.g. in geo- and as-
trophysics, that are summarized on the curvelet homepage (De-
manet, 2007).

Denoising of SAR images to simplify image analysis has also
been a research topic during the last years where many approaches
have been published. (Ali et al., 2007) proposed a combination of
a wavelet based multi-scale representation and some filters to im-
prove the results obtained by the ”standard” filtering techniques
like the Lee-filter. A bayesian-based method using ”a trous” filter
in the wavelet domain has been proposed by (Moghaddam et al.,
2004). Because of the properties of the wavelet transform, orig-
inally developed for one dimensional data, these two methods
are able to smooth regions and to suppress point-like noise, but
they do not take into account the two dimensional nature of im-
ages. The advantage of second generation wavelets for despeck-
ling has been examined by (Gleich et al., 2008) for the bandelet
and the contourlet transform. The application of curvelets on op-
tical and ultrasound images respectively in the medical context
has been published by (Ma et al., 2007). The only publication on
the use of curvelets in the remote sensing context by (Sveinsson
and Benediktsson, 2007) presents a denoising technique with a
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combination of wavelets and curvelets. A total variation based
segmentation algorithm divides the image in structured regions,
that are subsequently denoised by a curvelet-based method, and
homogeneous regions, denoised by a wavelet approach. For large
scenes with different land cover types, this method seems to be
very promising. As we concentrate on urban applications in this
paper, we use a purely curvelet-based approach.

Change detection in SAR images being a very difficult task has
often been discussed in literature. An overview to principal SAR
change detection methods, their advantages as well as their dis-
advantages can be found in (Polidori et al., 1995). Some more
specialized methods are touched in the following. The approach
of (Balz, 2004) uses a high resolution elevation model (e.g. ac-
quired by airborne laserscanning) to simulate a SAR image which
is subsequently compared to the real SAR data. The quality of the
results is naturally highly dependent on the resolution of the digi-
tal elevation model and its co-registration to the SAR image. This
nontrivial co-registration constraints this approach to small scale
exemplary applications. Another idea starting with the fusion of
several SAR images of different incidence angles to a ”superreso-
lution” image is presented by (Marcos et al., 2006) and (Romero
et al., 2006). Man-made objects, i.e. geometrical particularities
that are not captured by the digital terrain model used for the or-
thorectification of the SAR image, are classified by their diverse
appearance in the single orthorectified images due to the different
acquisition geometries. So, seasonal changes in natural surround-
ings can easily be distinguished from changes in built-up areas.
One disadvantage is the large number of different SAR images
of the same area needed to generate the ”superresolution” image.
(Wright et al., 2005) exploits the coherence (phase information)
of two SAR images, which implies a relatively short repeat-pass
time to avoid additional incoherence caused by natural surfaces.
(Derrode et al., 2003) and (Bouyahia et al., 2008) adopt a hidden
and a sliding hidden Markov chain model respectively to select
areas with changes in reflectivity even from images with differ-
ent incidence angles. Although this method allows to process
very large images and does not need additional parameter tun-
ing, except the window size, according to the authors still a lot of
research work has to be done to improve the preliminary results.

3 CURVELET REPRESENTATION

The curvelet representation consists of three components accord-
ing to (Candès and Donoho, 1999):

Figure 1: Ridgelet in spatial domain (Candès et al., 2005)

Ridgelets These two dimensional waveforms are the basic ele-
ments of the curvelet representation. In the spatial domain,
they appear like a ridge or a needle (see Fig. 1); in the
curvelet domain their contribution to the original image is

(a) Spatial domain

(b) Curvelet coefficients

Figure 2: City center of Munich, imaged by TerraSAR-X, High
Resolution Spotlight mode, Polarisation VV, Spatially Enhanced
Multi Look Ground Range Detected product

measured by a coefficient. The magnitudes of the ridgelets
extracted from Fig. 2(a) are depicted in Fig. 2(b) by gray-
values. Bright pixels mark high magnitudes. In contrast
to wavelets, curvelets are additionally defined by their ori-
entation in the two dimensional space (Ying et al., 2005).
Hence, this is a method of image analysis suitable for image
features with discontinuities across straight lines.

Multiscale ridgelets As the decomposition into ridgelets is de-
pendent on the scale, a pyramid of windowed ridgelets is
used, renormalized and transported to a wide range of scales
and locations. For example, a ridgelet on the finest scale
(N4-neighborhood) can only be horizontally or vertically
oriented, i.e. two different orientations, while a ridgelet on
the next coarser scale has already twice as much, i.e. four
different orientations. Consequently, the resolution in ori-
entation increases with coarser ridgelet scales. The number
of directions is given by the formula 2subband. For redun-
dancy reduction a wavelet decomposition is commonly used
on the finest scale, where only horizontal and vertical direc-
tions are discriminable anyway (Candès et al., 2005). The
different scales appear in Fig. 2(b) as single rings, whereas
the outer rings show the finer scales. The gaps between the
rings are just for visualization.



Bandpass Filtering Before the computation of the ridgelets can
be done, the original image has to be separated out into a se-
ries of disjoint scales. This is done by a Laplacian pyramid
which implies a high redundancy in the order of multiply-
ing the original data volume by the factor 16 (Donoho and
Duncan, 2000). The interesting thing for images with edges
is, that most of these coefficients can be set to zero with-
out loosing any structures. So, data volume reduction gets
possible although the initial increase.

If one compares the original SAR image (Fig. 2(a)) to the coef-
ficients’ magnitudes (Fig. 2(b)) it is recognizable that the main
axes of the city center (a cross slightly rotated clockwise to the
vertical and the horizontal direction respectively) correspond in
their direction with accumulations of brighter points, i.e. with
higher coefficients, in the illustration of the curvelet representa-
tion. Now, the idea is to manipulate these coefficients to accent
certain structures by preserving the related coefficients or to sup-
press certain structures by removing the related coefficients be-
fore the inverse curvelet transform is done to get the enhanced
image in the spatial domain.

4 IMAGE ENHANCEMENT

The first application presented here is image enhancement by
simple noise suppression and structure extraction respectively.

4.1 Image denoising

Noise is commonly associated with insignificant curvelet coeffi-
cients, therefore a thresholding can set minor coefficients to zero.
One problem is that the number of coefficients preserved also
corresponds to the complexity of the scene, i.e. if the number of
coefficients preserved is defined as constant in advance the com-
plexity of all scenes is seen as equal. By contrast if a magnitude
threshold is chosen to exclude minor coefficients, the complexity
of the scenes may vary. But in this case the mean magnitude of
the coefficients, which is correlated with the contrast in the origi-
nal image, is misleadingly seen as constant. So, only structures of
a certain contrast would be extracted. Fig. 3(a) shows an exam-
ple where a magnitude threshold of 0.1 was applied, i.e. all lower
coefficients were set to zero. It is obvious that the main structures
are enhanced, but also many artifacts are produced, that constrain
the interpretation. Hence, the determination of a suitable thresh-
old is a difficult task.

4.2 Structure enhancement

Another possibility is to access the structures via their belong-
ing scale. The finest structures are gray value differences in a
N4-neighborhood. As this scale probably only contains noise, all
coefficients of this scale are set to zero. The coarsest scale influ-
ences the brightness of the image and should be kept unchanged.
The scales in-between gather the remaining structures according
to their length. So, it is possible to choose only those structures
of a certain length to be kept and to suppress all other structures
by setting the corresponding coefficients to zero. For example in
Fig. 3(b) only the structures of a length from 3 to 300 m are pre-
served to extract structures that presumably belong to buildings.
One can perceive that the main structures of the original image
(Fig. 2(a)) are strengthened and all clutter is removed. At first
glance the Touzi edge extractor (Fig. 3(c)) and the curvelet ap-
proach provide similar results. The lines extracted by the Touzi
operator (Touzi et al., 1988) are smoother and closed, but also
many lines inside the building blocks are displayed. The impor-
tant difference between the two approaches is that the curvelet

(a) Reconstructed ”denoised” image

(b) Structure reconstruction by curvelets

(c) Touzi edge extractor (r=4)

Figure 3: Denoising and structure extraction of Fig. 2(a)

approach only enhances the existing structures while the Touzi
extractor traces discontinuities in-between dark and bright struc-
tures. Hence, a single linear bright feature on a dark background
is strengthened by the curvelet approach, but it is split into two
edges by the Touzi extractor.



5 CHANGE DETECTION

As mentioned before SAR images are highly affected by noise.
Although the influence of the deterministic speckle effect should
be exactly the same under the same conditions, it is impossible to
assure exactly the same conditions over a longer period of time.
So, if two SAR images are differentiated pixel by pixel the result
is expected to appear very noisy. Alternatively this differentiation
can be calculated in the curvelet coefficient domain. If the input
images are co-registered and same-sized, the images share also
the same combination of curvelet coefficients. Before the differ-
ence image is transformed back to the spatial domain, the coef-
ficient differences can be either denoised following Section 4 or
weighted quadratically. In the latter case each coefficient is multi-
plied by its own magnitude to suppress low and to strengthen high
coefficients. Additionally the influences of the different scales are
equalized by the factor 2subband (cf. Section 3). As the resulting
image contains positive as well as negative values, the positive
values showing regions that brightened up are coded in green and
the negative values showing regions that darkened are coded in
red. For TerraSAR-X data the geolocation of the detected data
product turned out to be sufficient for the change detection, so
that no further co-registration was necessary.

A disadvantage of this method might be its high demand on mem-
ory. The curvelet representation itself is very redundant increas-
ing the data volume of an image by the factor 16. Although most
coefficients are nearly zero or set to zero during the image en-
hancement process (cf. Section 4), but they have to be processed
during the differentiation as well. If more than three images are
compared the difference matrix including all relative differences
between the input images inflates. But the increasing number of
coefficients goes along with an increasing flexibility in approxi-
mating linear features in the input image. Tests with other second
order wavelets proved that critically sub-sampled approaches do
not provide comparable results. To get an impression of the pro-
cessing time: The example in Section 5.2 including three input
images of 2091x1113 pixels are processed with a Matlab imple-
mentation and require seven minutes on a Solaris workstation.

In the following two examples over the city of Munich are pre-
sented. The first one deals with short time changes in the well-
known fairground ”Theresienwiese”, the second one surveys con-
struction activities near the central station over the period of one
year. The processed data sets are acquired by TerraSAR-X in
the High Resolution Spotlight mode and delivered as Multi Look
Ground Range Detected product.

5.1 Short time changes

The two images of the fairground ”Theresienwiese” (Fig. 4(d))
have been acquired in December 2008 and January 2009. Being
processed as spatially enhanced product they have a pixel spac-
ing of 0.5 m on ground. Because of the relatively short time lag,
the reflectivity of the surrounding is expected to be the same, so
all changes should be man-made. Comparing visually the two in-
put images (Fig. 4(a) and 4(b)) one can remark a brighter area in
the upper middle of Fig. 4(a) that darkened in the second image
(Fig. 4(b)). Especially on the streets inside the fairground many
single pixel changes are obvious. For urban applications single
pixel changes do only disturb the interpretation as one is more
interested in changes happened to structures like streets or build-
ings. So, these single pixel changes have to be excluded. Spa-
tial averaging would help to find large areas with high changes,
but fine linear structures would be smeared over and probably
get lost. The curvelet approach is able to preserve the structures
while single pixel changes are suppressed. In Fig. 4(c) there

(a) SAR image 1 (b) SAR image 2

(c) Detected changes (d) Optical image c©GoogleEarth

Figure 4: Change detection in the fairground ”Theresienwiese”
(1: 05.12.2008, 2: 18.01.2009)

is one red region in the upper middle of the image, that accords
with the visual interpretation. These changes refer to the ”Winter-
Tollwood” festival that took place during the first acquisition. The
pavilions caused a much higher reflectivity than the bare soil dur-
ing the second acquisition. Additionally there are some small
red and green structures at the bottom left of Fig. 4(c) that were
not visible before. Those refer to buses and cars on a parking
lot. The slightly darkened region in the middle right of Fig. 4(a)
and 4(b) respectively is not marked as change because it does
not contain any structure. In summary, the change image shows
nearly no disturbances as all small scale changes are excluded.
The curvelet approach is very sensitive towards structures (e.g.
buses) and very robust towards slight large scale changes caused
by environmental influences.

5.2 Long time changes

For damage mapping after natural disasters it is only seldom pos-
sible to access up-to-date reference data, as most events cannot be
predicted yet. So, seasonal changes in the surrounding of the re-
gions of interest have to be taken into account. The three images
of the railway station ”Donnersberger Brücke” acquired in March
2008 (Fig. 5(b)), September 2008 (Fig. 5(c)), and March 2009
(Fig. 5(d)) are used to map the construction progress inside the



(a) Optical image c©GoogleEarth (b) SAR image 1

(c) SAR image 2 (d) SAR image 3

Figure 5: Construction site near ”Donnersberger Brücke”
(1: 30.03.2008, 2: 22.09.2008, 3: 17.03.2009)

construction sites along the railway tracks where new residential
and office buildings are planned. As radiometrically enhanced
products they share a pixel spacing of 1.25 m on ground. The
color composite (Fig. 6(a), 1:R, 2:G, 3:B) shows many colored
regions, that help to identify the construction sites. But it is still
impossible to interpret these changes. Fig. 6(b) indicates the
detected changes by the curvelet approach. Many green struc-
tures stand for an increase in reflectivity over the period of one
year. A higher reflectivity refers to new objects, e.g. walls or
houses while the darkened regions (in red) usually refer to strong
scatterers that have disappeared, e.g. scaffoldings. At the bot-
tom left there are sequences of green and red lines which can be
interpreted as new buildings. One the one hand a new risen build-
ing causes a higher reflectivity (green), on the other hand it also
causes new radar shadows (red). Some long green or red lines
can be perceived in the middle of the image that refer to trains
in the railway depots. Having a look at Fig. 6(c) and 6(d) much
more small structures especially at the top right appear. Most of
these are marked in red in Fig. 6(c) and in green in Fig. 6(d), so
that they compensate each other over the whole year (Fig. 6(b)).

(a) Color composite (b) Detected changes 1 – 3

(c) Detected changes 1 – 2 (d) Detected changes 2 – 3

Figure 6: Change detection (cf. Fig. 5)

These changes are mainly found in the ”Hirschgarten” park (see
Fig. 5(a) at the top right) comparing the images acquired in spring
with those acquired in fall. As these changes are restricted to nat-
ural surroundings, they supposedly refer to seasonal changes in
the reflectivity by the tree’s growth. The blank branches in March
cause a much higher reflectivity in the co-polarized channel than
the leaves in September. Again the curvelet approach produces a
change image with no single pixel disturbances. Changes in the
underlying structures are emphasized. Unfortunately it is a diffi-
cult task to distinguish man-made changes from seasonal changes
in the natural surrounding without a high resolution land cover
mask.

6 CONCLUSION

A new approach for SAR image enhancement and change de-
tection based on the curvelet transform has been proposed and
applied to TerraSAR-X data of the city center of Munich. As in-
put data any amplitude image can be used, for change detection
two equally sized and co-registered images are necessary. Radar



inherent noise is reduced and underlying structures are enhanced
depending on their length, their orientation or their intensity.

In the image enhancement context this approach is most suitable
for fine-structured areas, e.g. city centers. The main problem
lies in the determination of thresholds for suppression and em-
phasis of structures. The determination of the threshold and the
number of coefficients respectively is still experiential and highly
dependent on the image content. If the scenes are reconstructed
by a fix number of coefficients, the complexity of the scene is
restricted. As the image description by the curvelet coefficients
is purely based on structures, by omitting coefficients originally
smooth areas are often affected by artifacts. At the moment the
quadratic weighting of the single curvelet coefficients seems to
be the best solution for fully automatic processing chains.

The change detection approach provides excellent results in ur-
ban areas. The great advantage over pixel based methods is the
sensitivity towards changes in structures and the possibility to
predefine the scale and the strength of changes to be mapped.
Problems occur in natural surroundings like forested areas, where
the status of the foliage has an important seasonal impact on the
backscattering behavior. Not to mention the weather conditions,
snow cover with different moistures can highly modify the ap-
pearance in a SAR image. In consequence of that the interpre-
tation of the detected changes is very challenging. Although the
change images contain clear structures without any disturbances,
it is nearly impossible to distinguish man-made from natural, e.g.
seasonal, changes, without a priori knowledge about the land
cover.

As the present results proved that two single polarized SAR im-
ages can be used to indicate changes happened to the imaged
area, but they do not provide the information needed to interpret
these changes, our future research will try to include other data
sources into the processing chain. To discriminate natural cover
from man-made objects, a coherence layer, that exploits the phase
information of the input images could be helpful. Polarimetric
layers could facilitate the interpretation by attaching information
about the scattering types to the detected changes. Apart from
remote sensing data it is quite conceivable to introduce a priori
knowledge by overlaying the change layer with land cover classi-
fications from optical data sources as well as with cadastral data
sets.
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