7,763 research outputs found

    Observability of Lattice Graphs

    Full text link
    We consider a graph observability problem: how many edge colors are needed for an unlabeled graph so that an agent, walking from node to node, can uniquely determine its location from just the observed color sequence of the walk? Specifically, let G(n,d) be an edge-colored subgraph of d-dimensional (directed or undirected) lattice of size n^d = n * n * ... * n. We say that G(n,d) is t-observable if an agent can uniquely determine its current position in the graph from the color sequence of any t-dimensional walk, where the dimension is the number of different directions spanned by the edges of the walk. A walk in an undirected lattice G(n,d) has dimension between 1 and d, but a directed walk can have dimension between 1 and 2d because of two different orientations for each axis. We derive bounds on the number of colors needed for t-observability. Our main result is that Theta(n^(d/t)) colors are both necessary and sufficient for t-observability of G(n,d), where d is considered a constant. This shows an interesting dependence of graph observability on the ratio between the dimension of the lattice and that of the walk. In particular, the number of colors for full-dimensional walks is Theta(n^(1/2)) in the directed case, and Theta(n) in the undirected case, independent of the lattice dimension. All of our results extend easily to non-square lattices: given a lattice graph of size N = n_1 * n_2 * ... * n_d, the number of colors for t-observability is Theta (N^(1/t))

    A note on uniform power connectivity in the SINR model

    Full text link
    In this paper we study the connectivity problem for wireless networks under the Signal to Interference plus Noise Ratio (SINR) model. Given a set of radio transmitters distributed in some area, we seek to build a directed strongly connected communication graph, and compute an edge coloring of this graph such that the transmitter-receiver pairs in each color class can communicate simultaneously. Depending on the interference model, more or less colors, corresponding to the number of frequencies or time slots, are necessary. We consider the SINR model that compares the received power of a signal at a receiver to the sum of the strength of other signals plus ambient noise . The strength of a signal is assumed to fade polynomially with the distance from the sender, depending on the so-called path-loss exponent α\alpha. We show that, when all transmitters use the same power, the number of colors needed is constant in one-dimensional grids if α>1\alpha>1 as well as in two-dimensional grids if α>2\alpha>2. For smaller path-loss exponents and two-dimensional grids we prove upper and lower bounds in the order of O(logn)\mathcal{O}(\log n) and Ω(logn/loglogn)\Omega(\log n/\log\log n) for α=2\alpha=2 and Θ(n2/α1)\Theta(n^{2/\alpha-1}) for α<2\alpha<2 respectively. If nodes are distributed uniformly at random on the interval [0,1][0,1], a \emph{regular} coloring of O(logn)\mathcal{O}(\log n) colors guarantees connectivity, while Ω(loglogn)\Omega(\log \log n) colors are required for any coloring.Comment: 13 page

    Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable

    Full text link
    There has been significant recent interest in parallel graph processing due to the need to quickly analyze the large graphs available today. Many graph codes have been designed for distributed memory or external memory. However, today even the largest publicly-available real-world graph (the Hyperlink Web graph with over 3.5 billion vertices and 128 billion edges) can fit in the memory of a single commodity multicore server. Nevertheless, most experimental work in the literature report results on much smaller graphs, and the ones for the Hyperlink graph use distributed or external memory. Therefore, it is natural to ask whether we can efficiently solve a broad class of graph problems on this graph in memory. This paper shows that theoretically-efficient parallel graph algorithms can scale to the largest publicly-available graphs using a single machine with a terabyte of RAM, processing them in minutes. We give implementations of theoretically-efficient parallel algorithms for 20 important graph problems. We also present the optimizations and techniques that we used in our implementations, which were crucial in enabling us to process these large graphs quickly. We show that the running times of our implementations outperform existing state-of-the-art implementations on the largest real-world graphs. For many of the problems that we consider, this is the first time they have been solved on graphs at this scale. We have made the implementations developed in this work publicly-available as the Graph-Based Benchmark Suite (GBBS).Comment: This is the full version of the paper appearing in the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 201

    On Packing Colorings of Distance Graphs

    Full text link
    The {\em packing chromatic number} χρ(G)\chi_{\rho}(G) of a graph GG is the least integer kk for which there exists a mapping ff from V(G)V(G) to {1,2,,k}\{1,2,\ldots ,k\} such that any two vertices of color ii are at distance at least i+1i+1. This paper studies the packing chromatic number of infinite distance graphs G(Z,D)G(\mathbb{Z},D), i.e. graphs with the set Z\mathbb{Z} of integers as vertex set, with two distinct vertices i,jZi,j\in \mathbb{Z} being adjacent if and only if ijD|i-j|\in D. We present lower and upper bounds for χρ(G(Z,D))\chi_{\rho}(G(\mathbb{Z},D)), showing that for finite DD, the packing chromatic number is finite. Our main result concerns distance graphs with D={1,t}D=\{1,t\} for which we prove some upper bounds on their packing chromatic numbers, the smaller ones being for t447t\geq 447: χρ(G(Z,{1,t}))40\chi_{\rho}(G(\mathbb{Z},\{1,t\}))\leq 40 if tt is odd and χρ(G(Z,{1,t}))81\chi_{\rho}(G(\mathbb{Z},\{1,t\}))\leq 81 if tt is even
    corecore