625 research outputs found

    TWO GENERALIZATIONS OF SKEW-SYMMETRIC SEQUENCES WITH ODD LENGTHS

    Get PDF
    The signals, exploited by the radar sensor networks and remote control systems, have to provide simultaneously high range resolution and ability to work stable in a hostile radio electronic environment. An effective approach for satisfying of these requirements is the frequent change of many different signals, which autocorrelation functions have small sidelobes. Accounting this situation in the paper the generalizations of the skew-symmetric sequences with odd lengths, which are phase manipulated signals, possessing high autocorrelation merit factor, are explored. As a result, two methods for synthesis of infinite families of phase manipulated signals with good autocorrelation properties are substantiated

    Compressive Sensing for Spread Spectrum Receivers

    Get PDF
    With the advent of ubiquitous computing there are two design parameters of wireless communication devices that become very important power: efficiency and production cost. Compressive sensing enables the receiver in such devices to sample below the Shannon-Nyquist sampling rate, which may lead to a decrease in the two design parameters. This paper investigates the use of Compressive Sensing (CS) in a general Code Division Multiple Access (CDMA) receiver. We show that when using spread spectrum codes in the signal domain, the CS measurement matrix may be simplified. This measurement scheme, named Compressive Spread Spectrum (CSS), allows for a simple, effective receiver design. Furthermore, we numerically evaluate the proposed receiver in terms of bit error rate under different signal to noise ratio conditions and compare it with other receiver structures. These numerical experiments show that though the bit error rate performance is degraded by the subsampling in the CS-enabled receivers, this may be remedied by including quantization in the receiver model. We also study the computational complexity of the proposed receiver design under different sparsity and measurement ratios. Our work shows that it is possible to subsample a CDMA signal using CSS and that in one example the CSS receiver outperforms the classical receiver.Comment: 11 pages, 11 figures, 1 table, accepted for publication in IEEE Transactions on Wireless Communication

    On a question of Babadi and Tarokh

    Full text link
    In a recent remarkable paper, Babadi and Tarokh proved the "randomness" of sequences arising from binary linear block codes in the sense of spectral distribution, provided that their dual distances are sufficiently large. However, numerical experiments conducted by the authors revealed that Gold sequences which have dual distance 5 also satisfy such randomness property. Hence the interesting question was raised as to whether or not the stringent requirement of large dual distances can be relaxed in the theorem in order to explain the randomness of Gold sequences. This paper improves their result on several fronts and provides an affirmative answer to this question

    The Likelihood Encoder for Lossy Compression

    Full text link
    A likelihood encoder is studied in the context of lossy source compression. The analysis of the likelihood encoder is based on the soft-covering lemma. It is demonstrated that the use of a likelihood encoder together with the soft-covering lemma yields simple achievability proofs for classical source coding problems. The cases of the point-to-point rate-distortion function, the rate-distortion function with side information at the decoder (i.e. the Wyner-Ziv problem), and the multi-terminal source coding inner bound (i.e. the Berger-Tung problem) are examined in this paper. Furthermore, a non-asymptotic analysis is used for the point-to-point case to examine the upper bound on the excess distortion provided by this method. The likelihood encoder is also related to a recent alternative technique using properties of random binning

    Pseudo Random Binary Sequence Based on Cyclic Difference Set

    Get PDF
    With the increasing reliance on technology, it has become crucial to secure every aspect of online information where pseudo random binary sequences (PRBS) can play an important role in today's world of Internet. PRBS work in the fundamental mathematics behind the security of different protocols and cryptographic applications. This paper proposes a new PRBS namely MK (Mamun, Kumu) sequence for security applications. Proposed sequence is generated by primitive polynomial, cyclic difference set in elements of the field and binarized by quadratic residue (QR) and quadratic nonresidue (QNR). Introduction of cyclic difference set makes a special contribution to randomness of proposed sequence while QR/QNR-based binarization ensures uniformity of zeros and ones in sequence. Besides, proposed sequence has maximum cycle length and high linear complexity which are required properties for sequences to be used in security applications. Several experiments are conducted to verify randomness and results are presented in support of robustness of the proposed MK sequence. The randomness of proposed sequence is evaluated by popular statistical test suite, i.e., NIST STS 800-22 package. The test results confirmed that the proposed sequence is not affected by approximations of any kind and successfully passed all statistical tests defined in NIST STS 800-22 suite. Finally, the efficiency of proposed MK sequence is verified by comparing with some popular sequences in terms of uniformity in bit pattern distribution and linear complexity for sequences of different length. The experimental results validate that the proposed sequence has superior cryptographic properties than existing ones

    Hiding Symbols and Functions: New Metrics and Constructions for Information-Theoretic Security

    Get PDF
    We present information-theoretic definitions and results for analyzing symmetric-key encryption schemes beyond the perfect secrecy regime, i.e. when perfect secrecy is not attained. We adopt two lines of analysis, one based on lossless source coding, and another akin to rate-distortion theory. We start by presenting a new information-theoretic metric for security, called symbol secrecy, and derive associated fundamental bounds. We then introduce list-source codes (LSCs), which are a general framework for mapping a key length (entropy) to a list size that an eavesdropper has to resolve in order to recover a secret message. We provide explicit constructions of LSCs, and demonstrate that, when the source is uniformly distributed, the highest level of symbol secrecy for a fixed key length can be achieved through a construction based on minimum-distance separable (MDS) codes. Using an analysis related to rate-distortion theory, we then show how symbol secrecy can be used to determine the probability that an eavesdropper correctly reconstructs functions of the original plaintext. We illustrate how these bounds can be applied to characterize security properties of symmetric-key encryption schemes, and, in particular, extend security claims based on symbol secrecy to a functional setting.Comment: Submitted to IEEE Transactions on Information Theor
    • …
    corecore