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Abstract: With the increasing reliance on technology, it has become crucial to secure every aspect of
online information where pseudo random binary sequences (PRBS) can play an important role in
today’s world of Internet. PRBS work in the fundamental mathematics behind the security of different
protocols and cryptographic applications. This paper proposes a new PRBS namely MK (Mamun,
Kumu) sequence for security applications. Proposed sequence is generated by primitive polynomial,
cyclic difference set in elements of the field and binarized by quadratic residue (QR) and quadratic
nonresidue (QNR). Introduction of cyclic difference set makes a special contribution to randomness
of proposed sequence while QR/QNR-based binarization ensures uniformity of zeros and ones in
sequence. Besides, proposed sequence has maximum cycle length and high linear complexity which
are required properties for sequences to be used in security applications. Several experiments are
conducted to verify randomness and results are presented in support of robustness of the proposed
MK sequence. The randomness of proposed sequence is evaluated by popular statistical test suite,
i.e., NIST STS 800-22 package. The test results confirmed that the proposed sequence is not affected
by approximations of any kind and successfully passed all statistical tests defined in NIST STS 800-22
suite. Finally, the efficiency of proposed MK sequence is verified by comparing with some popular
sequences in terms of uniformity in bit pattern distribution and linear complexity for sequences
of different length. The experimental results validate that the proposed sequence has superior
cryptographic properties than existing ones.

Keywords: finite field; primitive polynomial; quadratic residue; pseudo random binary sequence;
NIST statistical test suite

1. Introduction

Pseudo random binary sequences (PRBS) are widely used in many applications such as wireless
communications and cryptography [1–4]. In cryptography, many security protocols such as SSL/TLS,
HTTP are developed based on pseudo random sequences. Randomness of a sequence indicates the
degree of difficulty of predicting next bit in that sequence whether it is physical or statistical analysis.
Such ideal random sequences can easily be produced from natural resources, for example, atmospheric
noises, radioactive decay and other natural phenomena. However, reproducibility of such sequences
is impossible mathematically because of variation in natural resources [4,5]. Due to this disadvantage,
sources of such true random sequences are unreliable for practical computer applications. On the
counterpart, pseudo random sequences are derived using mathematical formulas but have some
standard properties that are investigated in true random sequences. Sequences can be regenerated
using deterministic mathematics and a large sequence can be produced in short time using small
random seeds. Reproducibility and features like true random sequence make pseudo random
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sequences an essential part of different mathematical protocols in cryptography and security based
computer applications.

In recent years, many cryptographic systems have been developed based on pseudo
random sequences. The levels of security of such applications rely mostly on the degree of
randomness of sequences being used. Sequences for cryptographic applications are evaluated by
some distinguishing properties such as cycle length of sequence also called period, linear complexity,
correlation and uniformity of zeros and ones in sequence. Sequences having long cycle length,
high linear complexity and uniform bit pattern are considered to be ideal for security applications.
In literature, various studies are being conducted in an attempt to generate ideal pseudo random
sequences. There are several sequences such as Maximum value-sequence [6], Gold sequence [7]
and Kasami sequence [8] possess long cycle length and good correlation properties. However, linear
complexity of these sequences is low, hence unsuitable in security based applications. Contrarily,
sequences such as NTU sequence [9], Sidelnikov sequence [10–12] and Legendre sequence [13–15]
possess high linear complexity. However, a closer look to literature reveals their shortcomings in
correlation property compared to other sequences, hence, have limited applications. An increasing
number of studies are still in progress to find pseudo random sequences with all desired properties for
specific applications.

Considering the above mentioned correspondences, in this work, we propose a new PRBS, MK
sequence with an aim to use in cryptographic applications in future. The proposed sequence is
generated from a primitive element of finite field and cyclic difference set in elements of the extension
field. Finally, the elements are binarized i.e., 0’s and 1’s, using quadratic residue and quadratic
nonresidue. The randomness of proposed sequence is evaluated with popular statistical test suite
namely NIST (National Institute of Standards and Technology) STS (Statistical Test Suite) 800-22 [16,17].
Several sequences up to 10 million bits are generated using proposed method to demonstrate the
robustness of the proposal in statistical characteristics set by NIST. Then, linear complexity and
uniformity of bit pattern distribution properties of MK sequence are investigated and numerical results
are demonstrated theoretically for different length of sequences. Finally, we verify the efficiency of
proposed sequence by comparing with sequences generated from primitive polynomial and primitive
element. In this work, we compare our results with NTU sequence [9].

Rest of the paper is organized as follows: Section 2 presents mathematical definition of properties
and some basics of finite field related to proposed research. Section 3 describes generation of proposed
sequence with necessary mathematics. Section 4 evaluates our proposal using NIST, experiments
with linear complexity and uniformity and compared results with NTU sequence. Finally, Section 5
summarizes the contributions of this paper and concludes with some prospects for future work.

2. Preliminaries

This section briefly describes fundamental terminologies related to finite field theory and
mathematical definitions of primitive polynomial, primitive element, quadratic residue, quadratic
nonresidue and linear complexity of pseudo random sequence.

2.1. Notation and Convention

Throughout this paper, we use following notations to present definitions, properties and terms
related to pseudo random sequences:

• p : a prime number.
• Fp : prime field of p elements.
• Fpm : finite field of pm elements where m is a non-negative integer and m ≥ 2.
• F∗pm : Fpm − {0}.
• f (x) : a primitive polynomial of degree m in characteristic field Fpm .
• ω : a primitive element of primitive polynomial, f (x).
• λ : period of sequence.
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2.2. Primitive Polynomial

In field theory, a primitive polynomial is a minimal polynomial whose root is a primitive element
determining the extension field. Finite field, F∗pm constructs a cyclic group with respect to multiplication
and consists of pm− 1 non-zero elements. Every finite field has a generator and every non-zero element
is represented as a power of the generator.

Definition 1. A generator of a finite field F∗pm is an element of order pm − 1 and the powers of generator runs
through all elements of F∗pm .

Let, g be a generator of F∗pm , any non-zero element is derived from power of g, i.e., gi

for i = 0, 1, .., pm − 2. gi is said to be primitive if and only if gcd(i, pm − 1) = 1. In particular,
there are a total of ϕ(pm − 1) different primitive elements [18] of F∗pm where ϕ(·) represents euler
totient function [19].

Definition 2. A polynomial f (x) is said to be primitive if and only if ω, i.e., root of f (x), forms a cyclic group
consisting of all elements in F∗pm .

Following two conditions hold for f (x) to be primitive polynomial:

¬ xpm−1 ≡ 1(mod f (x)),
­ xk 6≡ 1(mod f (x)) for 1 ≤ k ≤ pm − 2.

It is well known that the number of primitive polynomials of degree m is
ϕ(pm − 1)

m
in F∗pm .

Theorem 1. For a generator g in F∗pm , a non-zero element g(pm−1)/(p−1) in prime field Fp is a generator of F∗p
as well.

Proof. Let, g be a generator of F∗pm whose order is pm − 1. Then, for a non-zero element gi, its order
can be derived as follows:

pm − 1
gcd(i, pm − 1)

. (1)

Therefore, for g(pm−1)/(p−1), the order is p − 1. This implies that g(pm−1)/(p−1) is a generator
of F∗p .

Theorem 2. A polynomial of degree n over a finite field has at most n roots.

Proof. Here we prove by induction over n. The result is clearly true for n = 0 and n = 1. Let f (x) be a
polynomial with degree m. Let us assume that f (x) has at most m roots where m < n. If a is a root
of f (x), a polynomial of degree n over a field, then f (x) = (x− a)q(x) where q(x) has degree n− 1
and q(a) 6= 0. If f (x) has no root other than a, we are done. On the other hand, if f (b) = 0 then either
a = b or q(b) = 0. This follows by induction that f (x) has at most n roots.

Theorem 3. For any element a 6= 0 in F∗pm we have aq = 1 where q = pm − 1.

Proof. Let m be the order of a in F∗pm , i.e., the least positive integer for which am = 1.
Then Fsub := {1, a, a2, · · ·, am−1} is a subgroup of F∗pm . Since m divides q, we have,

aq = (am)
q
m = 1

q
m = 1
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2.3. Quadratic Residue and Quadratic Nonresidue

An element a in finite field F∗p is a quadratic residue modulo p if it is congruent to a perfect square
in Fp , i.e., there exists an element x such that:

a ≡ x2 mod p (2)

If there is no such x, then a is called quadratic nonresidue modulo p. In this work, we utilize
quadratic residue in extension field F∗pm .

Definition 3. For any element a in F∗pm , it is quadratic residue (QR) and quadratic nonresidue (QNR) if

a ∈ QR if and only if a
pm−1

2 = 1

a ∈ QNR if and only if a
pm−1

2 = −1

Furthermore,

|QR| = pm − 1
2

= |QNR|

(3)

Proof. Let a be an element in F∗pm . Then by the fact in Theorem 3, apm−1 = 1. It follows that every
element a ∈ F∗pm is a root of polynomial xpm−1 − 1 = 0. On the other hand, by Theorem 2 the
polynomial can have at most pm − 1 roots in F∗pm .

From both the facts, it can be concluded that xpm−1 − 1 = 0 has pm − 1 roots. Consequently, since

xpm−1 − 1 = (x
pm−1

2 − 1)(x
pm−1

2 + 1) and the field has no zero divisors, we get either x
pm−1

2 − 1 = 0

or x
pm−1

2 + 1 = 0. Again, Theorem 2 implies that both factors (x
pm−1

2 − 1) and (x
pm−1

2 + 1) must have
exactly pm−1

2 roots.

If a = x2 is a quadratic residue in F∗pm , then a
pm−1

2 = xpm−1 = 1. Hence, a is a root of x
pm−1

2 − 1.

Therefore, |QR| ≤ pm−1
2 . On the other hand, by Theorem 2 polynomial x2 − a has at most two roots for

any quadratic residue a. Therefore,

pm − 1 =| F∗pm |≤ ∑
a∈QR

| {x : x2 = a} |≤ 2× | QR | .

We conclude that | QR |= pm−1
2 and QR is equal to set of roots of x

pm−1
2 − 1 = 0. Then it follows

that, | QNR |= pm−1
2 and QNR is equal to set of roots of x

pm−1
2 + 1 = 0.

2.4. Linear Complexity

Linear complexity is a measure of unpredictability of a sequence. A sequence of low
linear complexity can be easily determined if a number of consecutive terms of the sequence is
known. Only 2× l-consecutive terms are required to recover a sequence with l-linear complexity.
Therefore, sequence with high linear complexity is a fundamental requirement for security applications.

Definition 4. Linear complexity is defined as the length of the shortest linear feedback shift register (LFSR)
that can generate the sequence. Linear complexity is considered to be zero for sequence of length zero.

Definition 5. Let LCi(S) be the linear complexities of first i elements of a sequence S where
i = 0, 1, 2, · · ·, (λ− 1). Then, linear complexity profile of the sequence is considered as the finite sequence
LC0(S), LC1(S), ..., LC(λ−1)(S).
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Let, S be a sequence of period λ. The linear complexity LC(S) is presented as:

LC(S) = λ− deg(gcd(xλ − 1, hS (x))), (4)

where hS is called the generating polynomial. For a sequence Sλ = {si} where i = 0, 1, · · · , λ− 1,
generating polynomial is defined as:

hS = s0 + s1x + s2x2 + · · ·+ sλ−1xλ−1

=
λ−1

∑
i=0

sixi.
(5)

This work is focused on binary sequence. Therefore, gcd(xλ − 1, hS ) in Equation (4) is computed
in F2 . A popular algorithm, Berlekamp-Massey algorithm [20] can find linear complexity in Fpm .

3. Proposal of MK Sequence

3.1. Cyclic Difference Set

In this section, we introduce cyclic difference set which differs from the ones proposed in [21–24].
In this work, we use differences in elements in extension field to change order of elements and named
cyclic difference set in this work. For a given prime p and a non-negative integer m, any extension
field element Xi : Xi ∈ F∗pm can be presented as:

Xi = c0x0 + c1x1 + c2x2 + · · ·+ cm−1xm−1 (6)

The construction of cyclic difference set X′i from elements of Xi for i = 0, 1, 2, · · · , (pm − 2) is
given below:

X′i =(c0 − 1)x0 + (c1 − 1)x1 + (c2 − 2)x2+

· · ·+(cm−1 − 1)xm−1

=
m−1

∑
j=0

(cj − 1)xj

(7)

Cyclic difference set randomizes sequence bits by changing the order of extension field elements
which are converted to sequence bits later.

3.2. Generation Algorithm

For a given prime p and a non-negative integer m, generation of proposed pseudo random binary
sequence S = {s0, s1, s2, · · ·, spm−2} of length λ = pm − 1 is presented here. The procedure composes
of four phases that are described below (Algorithm 1):
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Algorithm 1 Proposed Algorithm for MK Sequence.

¬ Primitive polynomial and primitive element:
Generate a primitive polynomial f (x) over F∗pm as defined in Section 2.2. Let, ω be a primitive
root of f (x) defined as ωi = ∑m−1

j=0 cjxj. A primitive root is a reduced residue of order pm − 1.
­ Generation of all elements in F∗pm :

Every element in F∗pm is congruent to some power ωi mod f (x) of ω, and i can be reduced
mod pm − 1. Therefore, any element Xi in F∗pm can be generated as follows:
Xi = ωi mod f (x) for i = 0, 1, 2, · · · , (pm − 2).

® Generation of cyclic difference set:
Now, generate cyclic difference set X′i from elements of Xi for i = 0, 1, 2, · · · , (pm− 2) as described
in Section 3.1:

X′i =
m−1

∑
j=0

(cj − 1)xj

¯ Binary sequence using quadratic residue:
For any element a ∈ X′, sequence element si in proposed sequence S≥ = {s0, s1, ..., sm−2} of

length λ = pm − 1 is generated using quadratic residue, i.e., a
pm−1

2 = 1 as follows:

si =

0 when a
pm−1

2 = 1 for a ∈ X′

1 when a
pm−1

2 = −1 for a ∈ X′
(8)

4. Experimental Results

In this section, we evaluate our proposed MK sequence. First, the effectiveness is verified using
NIST STS [16,17]. Then, experimental results of linear complexity and uniformity are presented.
Finally, a comparison with existing NTU sequence is presented.

4.1. Randomness Analysis

In cryptography, PRBS is adopted in many applications as the primary security component.
Therefore, the efficiency of PRBS must be verified with standard statistical measures before practical
applications. Several statistical test suits such as NIST, DIEHARD, Gustafson, CryptXS suite,
and Donald Knuth [25–28] are available to verify randomness of a sequence. However, NIST is
regarded as the most complete test suite for verification of randomness of a sequence. NIST is
composed of 15 statistical tests which measure different behaviors of binary sequences to verify
their randomness. All tests are independent that reveal various deviations from random behavior.
Each test computes a probability value called p value from given binary sequence. The p value falls
within range [0,1]. When p value equals to 1, it means that the sequence is random. Again, when p value
equals to 0, it means that the sequence is not random. When the value is greater than a given value,
α ∈ (0, 1), the sequence is considered random with a confidence of 1− α. In other cases, it is not
considered random.

This work considers value of α is 0.01 as suggested in studies [29–31]. A value α = 0.01 indicates
a probability of one sequence out of hundred to be rejected. A sequence is random with a confidence of
99% when p value is higher than 0.01. Similarly, it is not random with a confidence of 99% when p value
is less than 0.01. The range of acceptable proportions is determined by the following expression:

1− α± 3
√

α

n
(9)
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where n is sample size. For sample size, n = 1000, the acceptable interval is between [0.98056, 0.99943].
Any proportion outside of this interval is regarded as non-random [25]. The randomness of proposed
MK sequence is verified by using NIST 800-22 test suite. Sequence with at least 106 bits is applied as
input to NIST test suite. The experimental result is listed in Table 1. The experiment is conducted using
primitive polynomial x3 + x + 3, p = 467 and m = 3. In NIST test suite, some tests such as random
excursions variant, random excursions, and non-overlapping template test comprise of several number
of tests. Therefore, minimum and maximum results for those tests are listed in Table 1. The results in
Table 1 demonstrate that MK sequence successfully passed all tests defined in NIST suite.

Table 1. NIST test results for proposed sequence.

Statistical Test Portion of Successful ResultSequences ≥ 0.01

Frequency 0.997 ©

Block frequency 0.991 ©

Cumulative sums (1) 0.997 ©

Cumulative sums (2) 0.996 ©

Runs 0.995 ©

Longest run 0.992 ©

Rank 0.991 ©

Fast fourier transform 0.989 ©

Non-overlapping template max: 0.997 ©
min: 0.983 ©

Overlapping template 0.986 ©

Maurer’s universal statistical 0.990 ©

Approximate entropy 0.984 ©

Random excursions max: 1.000 ©
min: 0.974 ©

Random Excursions Variant max: 1.000 ©
min: 0.983 ©

Serial (1) 0.987 ©

Serial (2) 0.989 ©

Linear complexity 0.984 ©
©: success, ×: failure.

4.2. Linear Complexity Analysis

In this experiment, linear complexity and linear complexity profile of different sequences are
analyzed to understand the statistical behavior of proposed sequence. As a measure of unpredictability
these properties are extensively studied in cryptography. The linear complexity is calculated from the
length of shortest linear feedback shift register (LFSR) [6]. Similarly, the n-th linear complexity can
be calculated from the length of LFSR that can produce first n elements of the sequence. A series of
n-th linear complexities is considered as the linear complexity profile. In this work, Berlekamp-Massey
algorithm [20] is utilized to derive both linear complexity and linear complexity profile of MK sequence.
It should be noted that linear complexity is expected to be n

2 for a sequence of length n [32–34]. Table 2
summarizes the linear complexity analysis of MK sequence for different sets of p and m. The numerical
results in Table 2 demonstrate that for length n, proposed sequence has linear complexity of n

2 which is
equal to ideal.
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Table 2. Results of linear complexity for proposed sequence.

p, m Length of Sequence Linear Complexity

p = 5, m = 3 124 62

p = 7, m = 3 342 171

p = 7, m = 5 16,806 8403

p = 11, m = 5 161,050 80,525

p = 101, m = 3 1,030,300 515,150

p = 467, m = 3 101,847,562 50,923,781

Figure 1 shows linear complexity profile of MK sequence for primitive polynomial x3 + 3x + 2,
p = 7 and m = 3 in extension field F73 . In Figure 1, the green line represents linear complexity
profile for ideal random sequence where the red line does for the proposed MK sequence. The linear
complexity profile curve in Figure 1, can be approximated to ideal n

2 line curve, with the length and
linear complexity of the sequence. The experimental results indicate that proposed sequence has
expected linear complexity like ideal one.
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Two periods of sequence N = 2L.
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it

y
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C
).

Ideal sequence Proposed sequence

Figure 1. Result of linear complexity profile of proposed MK sequence for p = 7 and m = 3.

4.3. Result of Uniformity

Evaluation of randomness of a PRBS is a challenging task. Some important measures are
introduced in Golomb’s postulates which work as basis to form basic properties for a pseudorandom
sequence to be random looking. One important measure in Golomb’s [35–37] postulates is uniformity
of bits in sequence, which is determined by the number of 0’s and 1’s in it. A random sequence of
n-bits is expected to have approximately n

2 bits of 0’s and n
2 bits of 1’s. Inspired by this postulate,

herein, we study distribution of bit pattern of proposed MK sequence for evaluation of its uniformity.
The experimental results of bit pattern distribution of the proposed sequence for different

sets of p and m are presented in Tables 3 and 4. The experiments are conducted using primitive
polynomials x5 + 4x + 2 and x3 + x + 3 respectively. For any bit pattern, the number of 0’s almost
equals to the number of 1’s. The experimental results ensure that QR/QNR-based binarization can
successfully generate uniform sequence of equal number of 0’s and 1’s. This uniform behavior is
consistent and continued even when considered pattern length is increased.
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Table 3. Result of uniformity test for p = 5, m = 5.

Pattern Length Bit Pattern # of Appearance

1 0 1562
1 1562

2

00 781
01 781
10 781
11 781

3

000 385
001 396
010 396
011 385
100 396
101 385
110 385
111 396

Table 4. Result of uniformity test for p = 467, m = 3.

Pattern Length Bit Pattern # of Appearance

1 0 50,923,781
1 50,923,781

2

00 25,461,890
01 25,461,891
10 25,461,891
11 25,461,890

3

000 12,731,725
001 12,730,165
010 12,730,165
011 12,731,726
100 12,730,165
101 12,731,726
110 12,731,726
111 12,730,164

4.4. Evaluation by Comparison

This section evaluates our proposed sequence by comparing with other sequence generated from
primitive polynomial. We consider NTU sequence [9] for this purpose as it is derived from primitive
polynomial, trace function and Legendre symbol that matches ours methodically for fair comparison.
Linear complexity and uniformity of bit pattern distribution of sequences are taken into consideration
while comparing two sequences. For linear complexity, we derived linear complexity for different
length of proposed MK and NTU sequences. Table 5 shows comparison results of linear complexity.
For n bit sequence, linear complexity of the proposed sequence is n

2 which is similar to ideal. On the
other hand, linear complexity of NTU sequence is lower than proposed sequence, i.e., ideal value.
Then, we investigated linear complexity profile of both sequences and the result is showed in Figure 2
for p = 5 and m = 3. The result indicates that the linear complexity profile of proposed sequence is
almost similar to ideal. On the other hand, for NTU sequence it becomes saturated at a lower point
and lags far behind the proposed sequence.
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Table 5. Comparison of linear complexity between proposed and NTU [9] sequence.

Length of Sequence Linear Complexity

Proposed Sequence NTU Sequence

p = 5, m = 3 62 62

p = 7, m = 3 171 114

p = 7, m = 5 8403 5602

p = 11, m = 5 80,525 32,210

p = 101, m = 3 515,150 20,606

p = 463, m = 3 50,923,781 437,114

0 100 200 300 400 500 600
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200

300

Two periods of sequence N = 2L.

Li
ne

ar
co

m
pl

ex
it

y
(L

C
).

Ideal NTU [9] Proposed

Figure 2. Comparison of linear complexity profile between proposed and NTU [9] sequence for p = 7
and m = 3.

For comparison of uniformity of bit pattern distribution, we consider 2-bit pattern,
i.e., (00, 01, 10, 11) and 3-bit pattern, i.e., (000, 001, 010, 011, 100, 101, 110, 111) to compare their number
of appearance in the sequence. It should be noted that for ideal sequence, the number of appearance
of any bit pattern should be equal in a sequence. The comparison result for 2 bit pattern and 3 bit
pattern for p = 5 and m = 5 is showed in Figure 3. In Figure 3, dotted horizontal red line indicates the
ideal value for bit pattern. The results indicate that bit patterns are equally distributed for proposed
MK sequence. However, for NTU sequence, pattern distribution is irregular and varies more with
increasing number of bit pattern considered.

It should be noted that the randomness of proposed MK sequence is evaluated by experimental
results. However, theoretical analysis on computation complexity of different properties of sequence is
still worth of further investigation in future.
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(a) Result of uniformity for 2-bit pattern distribution.
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(b) Result of uniformity for 3-bit pattern distribution.

Figure 3. Comparison of uniformity between proposed MK sequence and NTU sequence for p = 5
and m = 5.

5. Conclusions

In this work, we proposed a new pseudo random binary sequence, i.e., MK sequence with
an aim to use in security of applications. The proposed sequence is derived from a primitive
polynomial in extension field, cyclic difference set and finally binarized using quadratic residue
and quadratic nonresidue. The proposed sequence is uniform in terms of zeros and ones, has
maximum cycle length and high linear complexity that are prerequisite for any security applications.
Numerical results are presented for different length of sequences in support of the claim. Our method
was verified with statistical randomness test suite, NIST STS 800-20 package where proposed MK
sequence successfully passed all statistical randomness tests. The results confirmed that proposed
sequence has high degree of randomness, statistical characteristics conforming to ideal sequence and
uniform in bit distribution. In future, we will consider security measure as a function of parameters,
e.g., p and m of the proposed algorithm for specific applications and would like to derive theoretical
proof of properties presented in this paper. In addition, we want to apply our proposed sequence
in practical cryptographic applications such as stream cipher, steganography and investigate its
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worthiness for security applications and compare with other cryptographically secured pseudo random
sequence generator such as AES-128-CTR, ChaCha20 and SHAKE-128 [38–40].
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4. Šajić, S.; Maletić, N.; Todorović, B.M.; Šunjevarić, M. Random binary sequences in telecommunications.
J. Electr. Eng. 2013, 64, 230–237. [CrossRef]

5. Pasqualini, L.; Parton, M. Pseudo random number generation: A reinforcement learning approach.
Procedia Comput. Sci. 2020, 170, 1122–1127. [CrossRef]

6. Golomb, S.W. Shift Register Sequences; Aegean Park Press: Walnut Creek, CA, USA, 1967.
7. Gold, R. Optimal binary sequences for spread spectrum multiplexing (Corresp.). IEEE Trans. Inf. Theory

1967, 13, 619–621. [CrossRef]
8. Kasami, T. Weight Distribution Formula for Some Class of Cyclic Codes; Report No. R-285; Coordinated Science

Laboratory, University of Illinois; 1966.
9. Nogami, Y.; Tada, K.; Uehara, S. A geometric sequence binarized with Legendre symbol over odd

characteristic field and its properties. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2014,
97, 2336–2342. [CrossRef]

10. Yu, N.Y.; Gong, G. New construction of M-ary sequence families with low correlation from the structure of
Sidelnikov sequences. IEEE Trans. Inf. Theory 2010, 56, 4061–4070. [CrossRef]

11. Su, M.; Winterhof, A. Autocorrelation of Legendre–Sidelnikov Sequences. IEEE Trans. Inf. Theory 2010,
56, 1714–1718. [CrossRef]

12. Kim, Y.T.; San Kim, D.; Song, H.Y. New M-Ary Sequence families with low correlation from the array
structure of Sidelnikov sequences. IEEE Trans. Inf. Theory 2014, 61, 655–670.

13. Zierler, N. Legendre Sequences; Technical Report; Massachusetts Institute of Technology, Lincoln Laboratory:
Lincoln, NE, USA, 1958.

14. No, J.S.; Lee, H.K.; Chung, H.; Song, H.Y.; Yang, K. Trace representation of Legendre sequences of Mersenne
prime period. IEEE Trans. Inf. Theory 1996, 42, 2254–2255.

15. Ding, C.; Hesseseth, T.; Shan, W. On the linear complexity of Legendre sequences. IEEE Trans. Inf. Theory
1998, 44, 1276–1278. [CrossRef]

16. Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E. A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications; Technical Report; Booz Allen & Hamilton inc Greensboro
Drive: McLean, VA, USA, 2001.

17. Bassham, L.E., III; Rukhin, A.L.; Soto, J.; Nechvatal, J.R.; Smid, M.E.; Barker, E.B.; Leigh, S.D.; Levenson, M.;
Vangel, M.; Banks, D.L.; et al. Sp 800-22 rev. 1a. A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications; National Institute of Standards & Technology: Gaithersburg, MD,
USA, 2010.

http://dx.doi.org/10.1007/s11071-017-3656-1
http://dx.doi.org/10.2478/jee-2013-0033
http://dx.doi.org/10.1016/j.procs.2020.03.057
http://dx.doi.org/10.1109/TIT.1967.1054048
http://dx.doi.org/10.1587/transfun.E97.A.2336
http://dx.doi.org/10.1109/TIT.2010.2050793
http://dx.doi.org/10.1109/TIT.2010.2040893
http://dx.doi.org/10.1109/18.669398


Symmetry 2020, 12, 1202 13 of 13

18. Koblitz, N. A Course in Number Theory and Cryptography; Springer Science & Business Media, Berlin, Germany,
1994; Volume 114.

19. Lehmer, D. On Euler’s totient function. Bull. Am. Math. Soc. 1932, 38, 745–751. [CrossRef]
20. Massey, J. Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory 1969, 15, 122–127. [CrossRef]
21. Cohen, S.D. Generators in cyclic difference sets. J. Comb. Theory Ser. A 1989, 51, 227–236. [CrossRef]
22. Xia, B. Cyclotomic difference sets in finite fields. Math. Comput. 2018, 87, 2461–2482. [CrossRef]
23. Dillon, J.F.; Dobbertin, H. New cyclic difference sets with Singer parameters. Finite Fields Their Appl. 2004,

10, 342–389. [CrossRef]
24. Polhill, J. Generalizations of partial difference sets from cyclotomy to nonelementary abelian p-groups.

Electron. J. Comb. 2008, 15, R125. [CrossRef]
25. Murillo-Escobar, M.; Cruz-Hernández, C.; Cardoza-Avendaño, L.; Méndez-Ramírez, R. A novel

pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn.
2017, 87, 407–425. [CrossRef]

26. Marsaglia, G. DIEHARD Test Suite. 1998. Volume 8. Available online: http://www.Stat.Fsu.Edu/pub/
diehard (accessed on 20 March 2014).

27. Gustafson, H.; Dawson, E.; Nielsen, L.; Caelli, W. A computer package for measuring the strength of
encryption algorithms. Comput. Secur. 1994, 13, 687–697. [CrossRef]

28. Knuth, G. The Art of Computer Programming, Seminumerical Algorithms—Volume 2: Addition; Wesley:
Reading, MA, USA, 1998.
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31. Sỳs, M.; Matyáš, V. Randomness testing: Result interpretation and speed. In The New Codebreakers; Springer:
New York, NY, USA, 2016; pp. 389–395.

32. Hu, H.; Liu, L.; Ding, N. Pseudorandom sequence generator based on the Chen chaotic system.
Comput. Phys. Commun. 2013, 184, 765–768. [CrossRef]

33. Yang, L.; Xiao-Jun, T. A new pseudorandom number generator based on a complex number chaotic equation.
Chin. Phys. B 2012, 21, 090506.

34. Liu, L.; Miao, S.; Hu, H.; Deng, Y. Pseudorandom bit generator based on non-stationary logistic maps.
IET Inf. Secur. 2016, 10, 87–94. [CrossRef]

35. Helleseth, T., Golomb’s randomness postulates. In Encyclopedia of Cryptography and Security; van Tilborg,
H.C.A.; Jajodia, S., Eds.; Springer: Boston, MA, USA, 2011; pp. 516–517._351. [CrossRef]
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