5,895 research outputs found

    Orthogonal Polynomial Representation of Imaginary-Time Green's Functions

    Full text link
    We study the expansion of single-particle and two-particle imaginary-time Matsubara Green's functions of quantum impurity models in the basis of Legendre orthogonal polynomials. We discuss various applications within the dynamical mean-field theory (DMFT) framework. The method provides a more compact representation of the Green's functions than standard Matsubara frequencies and therefore significantly reduces the memory-storage size of these quantities. Moreover, it can be used as an efficient noise filter for various physical quantities within the continuous-time quantum Monte Carlo impurity solvers recently developed for DMFT and its extensions. In particular, we show how to use it for the computation of energies in the context of realistic DMFT calculations in combination with the local density approximation to the density functional theory (LDA+DMFT) and for the calculation of lattice susceptibilities from the local irreducible vertex function.Comment: 14 pages, 11 figure

    Galactos: Computing the Anisotropic 3-Point Correlation Function for 2 Billion Galaxies

    Get PDF
    The nature of dark energy and the complete theory of gravity are two central questions currently facing cosmology. A vital tool for addressing them is the 3-point correlation function (3PCF), which probes deviations from a spatially random distribution of galaxies. However, the 3PCF's formidable computational expense has prevented its application to astronomical surveys comprising millions to billions of galaxies. We present Galactos, a high-performance implementation of a novel, O(N^2) algorithm that uses a load-balanced k-d tree and spherical harmonic expansions to compute the anisotropic 3PCF. Our implementation is optimized for the Intel Xeon Phi architecture, exploiting SIMD parallelism, instruction and thread concurrency, and significant L1 and L2 cache reuse, reaching 39% of peak performance on a single node. Galactos scales to the full Cori system, achieving 9.8PF (peak) and 5.06PF (sustained) across 9636 nodes, making the 3PCF easily computable for all galaxies in the observable universe.Comment: 11 pages, 7 figures, accepted to SuperComputing 201
    corecore