42,561 research outputs found

    Scheduling uncertain orders in the customer–subcontractor context

    Get PDF
    Within the customer–subcontractor negotiation process, the first problem of the subcontractor is to provide the customer with a reliable order lead-time although his workload is partially uncertain. Actually, a part of the subcontractor workload is composed of orders under negotiation which can be either confirmed or cancelled. Fuzzy logic and possibility theory have widely been used in scheduling in order to represent the uncertainty or imprecision of processing times, but the existence of the manufacturing orders is not usually set into question. We suggest a method allowing to take into account the uncertainty of subcontracted orders. This method is consistent with list scheduling: as a consequence, it can be used in many classical schedulers. Its implementation in a scheduler prototype called TAPAS is described. In this article, we focus on the performance of validation tests which show the interest of the method

    Design project planning, monitoring and re-planning through process simulation

    Get PDF
    Effective management of design schedules is a major concern in industry, since timely project delivery can have a significant influence on a company’s profitability. Based on insights gained through a case study of planning practice in aero-engine component design, this paper examines how task network simulation models can be deployed in a new way to support design process planning. Our method shows how simulation can be used to reconcile a description of design activities and information flows with project targets such as milestone delivery dates. It also shows how monitoring and re-planning can be supported using the non-ideal metrics which the case study revealed are used to monitor processes in practice. The approach is presented as a theoretical contribution which requires further work to implement and evaluate in practice

    An integrated shipment planning and storage capacity decision under uncertainty: a simulation study

    Get PDF
    Purpose – In transportation and distribution systems, the shipment decisions, fleet capacity, and storage capacity are interrelated in a complex way, especially when the authors take into account uncertainty of the demand rate and shipment lead time. While shipment planning is tactical or operational in nature, increasing storage capacity often requires top management’s authority. The purpose of this paper is to present a new method to integrate both operational and strategic decision parameters, namely shipment planning and storage capacity decision under uncertainty. The ultimate goal is to provide a near optimal solution that leads to a striking balance between the total logistics costs and product availability, critical in maritime logistics of bulk shipment of commodity items. Design/methodology/approach – The authors use simulation as research method. The authors develop a simulation model to investigate the effects of various factors on costs and service levels of a distribution system. The model mimics the transportation and distribution problems of bulk cement in a major cement company in Indonesia consisting of a silo at the port of origin, two silos at two ports of destination, and a number of ships that transport the bulk cement. The authors develop a number of “what-if” scenarios by varying the storage capacity at the port of origin as well as at the ports of destinations, number of ships operated, operating hours of ports, and dispatching rules for the ships. Each scenario is evaluated in terms of costs and service level. A full factorial experiment has been conducted and analysis of variance has been used to analyze the results. Findings – The results suggest that the number of ships deployed, silo capacity, working hours of ports, and the dispatching rules of ships significantly affect both total costs and service level. Interestingly, operating fewer ships enables the company to achieve almost the same service level and gaining substantial cost savings if constraints in other part of the system are alleviated, i.e., storage capacities and working hours of ports are extended. Practical implications – Cost is a competitive factor for bulk items like cement, and thus the proposed scenarios could be implemented by the company to substantially reduce the transportation and distribution costs. Alleviating storage capacity constraint is obviously an idea that needs to be considered when optimizing shipment planning alone could not give significant improvements. Originality/value – Existing research has so far focussed on the optimization of shipment planning/scheduling, and considers shipment planning/scheduling as the objective function while treating the storage capacity as constraints. The simulation model enables “what-if” analyses to be performed and has overcome the difficulties and impracticalities of analytical methods especially when the system incorporates stochastic variables exhibited in the case example. The use of efficient frontier analysis for analyzing the simulation results is a novel idea which has been proven to be effective in screening non-dominated solutions. This has provided the authors with near optimal solutions to trade-off logistics costs and service levels (availability), with minimal experimentation times

    Project Work Uncertainties and the Boundaries of the Firm

    Get PDF
    The effective use of resources in an economy requires both that they are available where and when most needed and that they are kept employed as fully and effectively as possible. A lack of certainty over future resource needs within firms brings these two requirements into conflict. It is argued that the firm and the market offer alternative means of handling this trade-off. The market switches resource services between customers to keep specialist resources employed. However, this does not guarantee the firm that a resource will always be available when needed. The firm may therefore internalise resources, switching them between different tasks to keep them employed and to make their specialist capabilities available where most needed. Idiosyncratic advantages form an important part of the theory, often severely exacerbating resource availability issues. A model of resource planning in a project with uncertain task durations is presented to illustrate the problem faced by the firm.Project, Organisation, Uncertainty, Resources, Scheduling, Internalisation

    Project scheduling under undertainty – survey and research potentials.

    Get PDF
    The vast majority of the research efforts in project scheduling assume complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. However, in the real world, project activities are subject to considerable uncertainty, that is gradually resolved during project execution. In this survey we review the fundamental approaches for scheduling under uncertainty: reactive scheduling, stochastic project scheduling, stochastic GERT network scheduling, fuzzy project scheduling, robust (proactive) scheduling and sensitivity analysis. We discuss the potentials of these approaches for scheduling projects under uncertainty.Management; Project management; Robustness; Scheduling; Stability;

    Accelerating MCMC via Parallel Predictive Prefetching

    Full text link
    We present a general framework for accelerating a large class of widely used Markov chain Monte Carlo (MCMC) algorithms. Our approach exploits fast, iterative approximations to the target density to speculatively evaluate many potential future steps of the chain in parallel. The approach can accelerate computation of the target distribution of a Bayesian inference problem, without compromising exactness, by exploiting subsets of data. It takes advantage of whatever parallel resources are available, but produces results exactly equivalent to standard serial execution. In the initial burn-in phase of chain evaluation, it achieves speedup over serial evaluation that is close to linear in the number of available cores

    A reusable iterative optimization software library to solve combinatorial problems with approximate reasoning

    Get PDF
    Real world combinatorial optimization problems such as scheduling are typically too complex to solve with exact methods. Additionally, the problems often have to observe vaguely specified constraints of different importance, the available data may be uncertain, and compromises between antagonistic criteria may be necessary. We present a combination of approximate reasoning based constraints and iterative optimization based heuristics that help to model and solve such problems in a framework of C++ software libraries called StarFLIP++. While initially developed to schedule continuous caster units in steel plants, we present in this paper results from reusing the library components in a shift scheduling system for the workforce of an industrial production plant.Comment: 33 pages, 9 figures; for a project overview see http://www.dbai.tuwien.ac.at/proj/StarFLIP
    • …
    corecore