1,482 research outputs found

    Deterministic Graph Exploration with Advice

    Get PDF
    We consider the task of graph exploration. An nn-node graph has unlabeled nodes, and all ports at any node of degree dd are arbitrarily numbered 0,,d10,\dots, d-1. A mobile agent has to visit all nodes and stop. The exploration time is the number of edge traversals. We consider the problem of how much knowledge the agent has to have a priori, in order to explore the graph in a given time, using a deterministic algorithm. This a priori information (advice) is provided to the agent by an oracle, in the form of a binary string, whose length is called the size of advice. We consider two types of oracles. The instance oracle knows the entire instance of the exploration problem, i.e., the port-numbered map of the graph and the starting node of the agent in this map. The map oracle knows the port-numbered map of the graph but does not know the starting node of the agent. We first consider exploration in polynomial time, and determine the exact minimum size of advice to achieve it. This size is logloglognΘ(1)\log\log\log n -\Theta(1), for both types of oracles. When advice is large, there are two natural time thresholds: Θ(n2)\Theta(n^2) for a map oracle, and Θ(n)\Theta(n) for an instance oracle, that can be achieved with sufficiently large advice. We show that, with a map oracle, time Θ(n2)\Theta(n^2) cannot be improved in general, regardless of the size of advice. We also show that the smallest size of advice to achieve this time is larger than nδn^\delta, for any δ<1/3\delta <1/3. For an instance oracle, advice of size O(nlogn)O(n\log n) is enough to achieve time O(n)O(n). We show that, with any advice of size o(nlogn)o(n\log n), the time of exploration must be at least nϵn^\epsilon, for any ϵ<2\epsilon <2, and with any advice of size O(n)O(n), the time must be Ω(n2)\Omega(n^2). We also investigate minimum advice sufficient for fast exploration of hamiltonian graphs

    3nj Morphogenesis and Semiclassical Disentangling

    Full text link
    Recoupling coefficients (3nj symbols) are unitary transformations between binary coupled eigenstates of N=(n+1) mutually commuting SU(2) angular momentum operators. They have been used in a variety of applications in spectroscopy, quantum chemistry and nuclear physics and quite recently also in quantum gravity and quantum computing. These coefficients, naturally associated to cubic Yutsis graphs, share a number of intriguing combinatorial, algebraic, and analytical features that make them fashinating objects to be studied on their own. In this paper we develop a bottom--up, systematic procedure for the generation of 3nj from 3(n-1)j diagrams by resorting to diagrammatical and algebraic methods. We provide also a novel approach to the problem of classifying various regimes of semiclassical expansions of 3nj coefficients (asymptotic disentangling of 3nj diagrams) for n > 2 by means of combinatorial, analytical and numerical tools

    Perfect Quantum Routing in Regular Spin Networks

    Full text link
    Regular families of coupled quantum networks are described such the unknown state of a qubit can be perfectly routed from any node to any other node in a time linear in the distance. Unlike previous constructions, the transfer can be achieved perfectly on a network that is local on any specified number of spatial dimensions. The ability to route the state, and the regularity of the networks, vastly improve the utility of this scheme in comparison to perfect state transfer schemes. The structures can also be used for entanglement generation.Comment: 4 pages, 3 figure

    Efficiently Controllable Graphs

    Get PDF
    We investigate graphs that can be disconnected into small components by removing a vanishingly small fraction of their vertices. We show that when a quantum network is described by such a graph, the network is efficiently controllable, in the sense that universal quantum computation can be performed using a control sequence polynomial in the size of the network while controlling a vanishingly small fraction of subsystems. We show that networks corresponding to finite-dimensional lattices are efficently controllable, and explore generalizations to percolation clusters and random graphs. We show that the classical computational complexity of estimating the ground state of Hamiltonians described by controllable graphs is polynomial in the number of subsystems/qubits

    Walking Through Waypoints

    Full text link
    We initiate the study of a fundamental combinatorial problem: Given a capacitated graph G=(V,E)G=(V,E), find a shortest walk ("route") from a source sVs\in V to a destination tVt\in V that includes all vertices specified by a set WV\mathscr{W}\subseteq V: the \emph{waypoints}. This waypoint routing problem finds immediate applications in the context of modern networked distributed systems. Our main contribution is an exact polynomial-time algorithm for graphs of bounded treewidth. We also show that if the number of waypoints is logarithmically bounded, exact polynomial-time algorithms exist even for general graphs. Our two algorithms provide an almost complete characterization of what can be solved exactly in polynomial-time: we show that more general problems (e.g., on grid graphs of maximum degree 3, with slightly more waypoints) are computationally intractable
    corecore