1,645 research outputs found

    A Space Communications Study Final Report, Sep. 15, 1965 - Sep. 15, 1966

    Get PDF
    Reception of frequency modulated signals passed through deterministic and random time-varying channel

    Development of a Time-Resolved Laser-Induced Fluorescence Technique for Nonperiodic Oscillations

    Full text link
    Time-resolved measurements of ion dynamics could be key to understanding the physics of instabilities, electron transport, and erosion in Hall thrusters. Traditional measurements of the ion velocity distribution in Hall thrusters using laser-induced fluorescence (LIF) are time-averaged since lock-in amplifiers must average over a long time constant for a reasonable signal-to-noise ratio. Over about the past decade, at least four other time-resolved LIF techniques have been developed and applied to Hall thrusters or similar plasma devices. One limitation of these techniques is the implicit assumption of periodic oscillations in the averaging scheme. There is a need for a more general technique since Hall thrusters can operate with nonperiodic oscillations that vary unpredictably. This dissertation presents the development of a time-resolved LIF (TRLIF) technique that addresses this need. This system averages the signal using a combination of electronic filtering, phase-sensitive detection, and Fourier analysis. A transfer function is measured to map an input signal (such as discharge current) to an output signal (TRLIF signal). The implicit assumption of this technique is that the input is related to the output by a time-invariant linear system, a more general assumption than periodicity. The system was validated using a hollow cathode with both periodic and random discharge current oscillations. A series of benchmark tests was developed to validate the signal by verifying that it satisfies theoretical expectations. The first campaign with the H6 Hall thruster demonstrated signal recovery in both periodic and nonperiodic modes. Measurements of the evolution of the ion flow downstream show that kinematic compression explains the width of the ion velocity distribution only at certain phases of the oscillation. A distinct change in ion dynamics was detected as the magnetic field magnitude increased: a high-amplitude, relatively periodic oscillation in the ion velocity distribution gave way to a low-amplitude, chaotic oscillation. High amplitude oscillations of the mean ion velocity suggest that the bimodal distributions detected at many operating conditions (with time-averaged measurements) are the result of oscillations.PhDApplied PhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133454/1/durot_1.pd

    Channel estimation techniques for filter bank multicarrier based transceivers for next generation of wireless networks

    Get PDF
    A dissertation submitted to Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering (Electrical and Information Engineering), August 2017The fourth generation (4G) of wireless communication system is designed based on the principles of cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) where the cyclic prefix (CP) is used to combat inter-symbol interference (ISI) and inter-carrier interference (ICI) in order to achieve higher data rates in comparison to the previous generations of wireless networks. Various filter bank multicarrier systems have been considered as potential waveforms for the fast emerging next generation (xG) of wireless networks (especially the fifth generation (5G) networks). Some examples of the considered waveforms are orthogonal frequency division multiplexing with offset quadrature amplitude modulation based filter bank, universal filtered multicarrier (UFMC), bi-orthogonal frequency division multiplexing (BFDM) and generalized frequency division multiplexing (GFDM). In perfect reconstruction (PR) or near perfect reconstruction (NPR) filter bank designs, these aforementioned FBMC waveforms adopt the use of well-designed prototype filters (which are used for designing the synthesis and analysis filter banks) so as to either replace or minimize the CP usage of the 4G networks in order to provide higher spectral efficiencies for the overall increment in data rates. The accurate designing of the FIR low-pass prototype filter in NPR filter banks results in minimal signal distortions thus, making the analysis filter bank a time-reversed version of the corresponding synthesis filter bank. However, in non-perfect reconstruction (Non-PR) the analysis filter bank is not directly a time-reversed version of the corresponding synthesis filter bank as the prototype filter impulse response for this system is formulated (in this dissertation) by the introduction of randomly generated errors. Hence, aliasing and amplitude distortions are more prominent for Non-PR. Channel estimation (CE) is used to predict the behaviour of the frequency selective channel and is usually adopted to ensure excellent reconstruction of the transmitted symbols. These techniques can be broadly classified as pilot based, semi-blind and blind channel estimation schemes. In this dissertation, two linear pilot based CE techniques namely the least square (LS) and linear minimum mean square error (LMMSE), and three adaptive channel estimation schemes namely least mean square (LMS), normalized least mean square (NLMS) and recursive least square (RLS) are presented, analyzed and documented. These are implemented while exploiting the near orthogonality properties of offset quadrature amplitude modulation (OQAM) to mitigate the effects of interference for two filter bank waveforms (i.e. OFDM/OQAM and GFDM/OQAM) for the next generation of wireless networks assuming conditions of both NPR and Non-PR in slow and fast frequency selective Rayleigh fading channel. Results obtained from the computer simulations carried out showed that the channel estimation schemes performed better in an NPR filter bank system as compared with Non-PR filter banks. The low performance of Non-PR system is due to the amplitude distortion and aliasing introduced from the random errors generated in the system that is used to design its prototype filters. It can be concluded that RLS, NLMS, LMS, LMMSE and LS channel estimation schemes offered the best normalized mean square error (NMSE) and bit error rate (BER) performances (in decreasing order) for both waveforms assuming both NPR and Non-PR filter banks. Keywords: Channel estimation, Filter bank, OFDM/OQAM, GFDM/OQAM, NPR, Non-PR, 5G, Frequency selective channel.CK201

    Muffler characterization with implementation of the finite element method and experimental techniques

    Get PDF
    Determining how an exhaust system will perform acoustically before a prototype muffler is built can save the designer both a substantial amount of time and resources. In order to effectively use the simulation tools available it is important to understand what is the most effective tool for the intended purpose of analysis as well as how typical elements in an exhaust system affect muffler performance. An in-depth look at the available tools and their most beneficial uses are presented in this thesis. A full parametric study was conducted using the FEM method for typical muffler elements which was also correlated to experimental results. This thesis lays out the overall ground work on how to accurately predict sound pressure levels in the free field for an exhaust system with the engine properties included. The accuracy of the model is heavily dependent on the correct temperature profile of the model in addition to the accuracy of the source properties. These factors will be discussed in detail and methods for determining them will be presented. The secondary effects of mean flow, which affects both the acoustical wave propagation and the flow noise generation, will be discussed. Effective ways for predicting these secondary effects will be described. Experimental models will be tested on a flow rig that showcases these phenomena

    Synthetic Aperture Vector Flow Imaging

    Get PDF

    Informed Sound Source Localization for Hearing Aid Applications

    Get PDF
    • …
    corecore