51,704 research outputs found

    Functional lower bounds for arithmetic circuits and connections to boolean circuit complexity

    Get PDF
    We say that a circuit CC over a field FF functionally computes an nn-variate polynomial PP if for every x{0,1}nx \in \{0,1\}^n we have that C(x)=P(x)C(x) = P(x). This is in contrast to syntactically computing PP, when CPC \equiv P as formal polynomials. In this paper, we study the question of proving lower bounds for homogeneous depth-33 and depth-44 arithmetic circuits for functional computation. We prove the following results : 1. Exponential lower bounds homogeneous depth-33 arithmetic circuits for a polynomial in VNPVNP. 2. Exponential lower bounds for homogeneous depth-44 arithmetic circuits with bounded individual degree for a polynomial in VNPVNP. Our main motivation for this line of research comes from our observation that strong enough functional lower bounds for even very special depth-44 arithmetic circuits for the Permanent imply a separation between #P{\#}P and ACCACC. Thus, improving the second result to get rid of the bounded individual degree condition could lead to substantial progress in boolean circuit complexity. Besides, it is known from a recent result of Kumar and Saptharishi [KS15] that over constant sized finite fields, strong enough average case functional lower bounds for homogeneous depth-44 circuits imply superpolynomial lower bounds for homogeneous depth-55 circuits. Our proofs are based on a family of new complexity measures called shifted evaluation dimension, and might be of independent interest

    Superpolynomial lower bounds for general homogeneous depth 4 arithmetic circuits

    Full text link
    In this paper, we prove superpolynomial lower bounds for the class of homogeneous depth 4 arithmetic circuits. We give an explicit polynomial in VNP of degree nn in n2n^2 variables such that any homogeneous depth 4 arithmetic circuit computing it must have size nΩ(loglogn)n^{\Omega(\log \log n)}. Our results extend the works of Nisan-Wigderson [NW95] (which showed superpolynomial lower bounds for homogeneous depth 3 circuits), Gupta-Kamath-Kayal-Saptharishi and Kayal-Saha-Saptharishi [GKKS13, KSS13] (which showed superpolynomial lower bounds for homogeneous depth 4 circuits with bounded bottom fan-in), Kumar-Saraf [KS13a] (which showed superpolynomial lower bounds for homogeneous depth 4 circuits with bounded top fan-in) and Raz-Yehudayoff and Fournier-Limaye-Malod-Srinivasan [RY08, FLMS13] (which showed superpolynomial lower bounds for multilinear depth 4 circuits). Several of these results in fact showed exponential lower bounds. The main ingredient in our proof is a new complexity measure of {\it bounded support} shifted partial derivatives. This measure allows us to prove exponential lower bounds for homogeneous depth 4 circuits where all the monomials computed at the bottom layer have {\it bounded support} (but possibly unbounded degree/fan-in), strengthening the results of Gupta et al and Kayal et al [GKKS13, KSS13]. This new lower bound combined with a careful "random restriction" procedure (that transforms general depth 4 homogeneous circuits to depth 4 circuits with bounded support) gives us our final result

    Static Data Structure Lower Bounds Imply Rigidity

    Full text link
    We show that static data structure lower bounds in the group (linear) model imply semi-explicit lower bounds on matrix rigidity. In particular, we prove that an explicit lower bound of tω(log2n)t \geq \omega(\log^2 n) on the cell-probe complexity of linear data structures in the group model, even against arbitrarily small linear space (s=(1+ε)n)(s= (1+\varepsilon)n), would already imply a semi-explicit (PNP\bf P^{NP}\rm) construction of rigid matrices with significantly better parameters than the current state of art (Alon, Panigrahy and Yekhanin, 2009). Our results further assert that polynomial (tnδt\geq n^{\delta}) data structure lower bounds against near-optimal space, would imply super-linear circuit lower bounds for log-depth linear circuits (a four-decade open question). In the succinct space regime (s=n+o(n))(s=n+o(n)), we show that any improvement on current cell-probe lower bounds in the linear model would also imply new rigidity bounds. Our results rely on a new connection between the "inner" and "outer" dimensions of a matrix (Paturi and Pudlak, 2006), and on a new reduction from worst-case to average-case rigidity, which is of independent interest

    Circuit Size Lower Bounds and #SAT Upper Bounds Through a General Framework

    Get PDF
    Most of the known lower bounds for binary Boolean circuits with unrestricted depth are proved by the gate elimination method. The most efficient known algorithms for the #SAT problem on binary Boolean circuits use similar case analyses to the ones in gate elimination. Chen and Kabanets recently showed that the known case analyses can also be used to prove average case circuit lower bounds, that is, lower bounds on the size of approximations of an explicit function. In this paper, we provide a general framework for proving worst/average case lower bounds for circuits and upper bounds for #SAT that is built on ideas of Chen and Kabanets. A proof in such a framework goes as follows. One starts by fixing three parameters: a class of circuits, a circuit complexity measure, and a set of allowed substitutions. The main ingredient of a proof goes as follows: by going through a number of cases, one shows that for any circuit from the given class, one can find an allowed substitution such that the given measure of the circuit reduces by a sufficient amount. This case analysis immediately implies an upper bound for #SAT. To~obtain worst/average case circuit complexity lower bounds one needs to present an explicit construction of a function that is a disperser/extractor for the class of sources defined by the set of substitutions under consideration. We show that many known proofs (of circuit size lower bounds and upper bounds for #SAT) fall into this framework. Using this framework, we prove the following new bounds: average case lower bounds of 3.24n and 2.59n for circuits over U_2 and B_2, respectively (though the lower bound for the basis B_2 is given for a quadratic disperser whose explicit construction is not currently known), and faster than 2^n #SAT-algorithms for circuits over U_2 and B_2 of size at most 3.24n and 2.99n, respectively. Here by B_2 we mean the set of all bivariate Boolean functions, and by U_2 the set of all bivariate Boolean functions except for parity and its complement

    Minimal Universal Two-qubit Quantum Circuits

    Full text link
    We give quantum circuits that simulate an arbitrary two-qubit unitary operator up to global phase. For several quantum gate libraries we prove that gate counts are optimal in worst and average cases. Our lower and upper bounds compare favorably to previously published results. Temporary storage is not used because it tends to be expensive in physical implementations. For each gate library, best gate counts can be achieved by a single universal circuit. To compute gate parameters in universal circuits, we only use closed-form algebraic expressions, and in particular do not rely on matrix exponentials. Our algorithm has been coded in C++.Comment: 8 pages, 2 tables and 4 figures. v3 adds a discussion of asymetry between Rx, Ry and Rz gates and describes a subtle circuit design problem arising when Ry gates are not available. v2 sharpens one of the loose bounds in v1. Proof techniques in v2 are noticeably revamped: they now rely less on circuit identities and more on directly-computed invariants of two-qubit operators. This makes proofs more constructive and easier to interpret as algorithm

    Lower Bounds for Symmetric Circuits for the Determinant

    Get PDF
    Dawar and Wilsenach (ICALP 2020) introduce the model of symmetric arithmetic circuits and show an exponential separation between the sizes of symmetric circuits for computing the determinant and the permanent. The symmetry restriction is that the circuits which take a matrix input are unchanged by a permutation applied simultaneously to the rows and columns of the matrix. Under such restrictions we have polynomial-size circuits for computing the determinant but no subexponential size circuits for the permanent. Here, we consider a more stringent symmetry requirement, namely that the circuits are unchanged by arbitrary even permutations applied separately to rows and columns, and prove an exponential lower bound even for circuits computing the determinant. The result requires substantial new machinery. We develop a general framework for proving lower bounds for symmetric circuits with restricted symmetries, based on a new support theorem and new two-player restricted bijection games. These are applied to the determinant problem with a novel construction of matrices that are bi-adjacency matrices of graphs based on the CFI construction. Our general framework opens the way to exploring a variety of symmetry restrictions and studying trade-offs between symmetry and other resources used by arithmetic circuits

    Super-Linear Gate and Super-Quadratic Wire Lower Bounds for Depth-Two and Depth-Three Threshold Circuits

    Full text link
    In order to formally understand the power of neural computing, we first need to crack the frontier of threshold circuits with two and three layers, a regime that has been surprisingly intractable to analyze. We prove the first super-linear gate lower bounds and the first super-quadratic wire lower bounds for depth-two linear threshold circuits with arbitrary weights, and depth-three majority circuits computing an explicit function. \bullet We prove that for all ϵlog(n)/n\epsilon\gg \sqrt{\log(n)/n}, the linear-time computable Andreev's function cannot be computed on a (1/2+ϵ)(1/2+\epsilon)-fraction of nn-bit inputs by depth-two linear threshold circuits of o(ϵ3n3/2/log3n)o(\epsilon^3 n^{3/2}/\log^3 n) gates, nor can it be computed with o(ϵ3n5/2/log7/2n)o(\epsilon^{3} n^{5/2}/\log^{7/2} n) wires. This establishes an average-case ``size hierarchy'' for threshold circuits, as Andreev's function is computable by uniform depth-two circuits of o(n3)o(n^3) linear threshold gates, and by uniform depth-three circuits of O(n)O(n) majority gates. \bullet We present a new function in PP based on small-biased sets, which we prove cannot be computed by a majority vote of depth-two linear threshold circuits with o(n3/2/log3n)o(n^{3/2}/\log^3 n) gates, nor with o(n5/2/log7/2n)o(n^{5/2}/\log^{7/2}n) wires. \bullet We give tight average-case (gate and wire) complexity results for computing PARITY with depth-two threshold circuits; the answer turns out to be the same as for depth-two majority circuits. The key is a new random restriction lemma for linear threshold functions. Our main analytical tool is the Littlewood-Offord Lemma from additive combinatorics

    A Satisfiability Algorithm for Sparse Depth Two Threshold Circuits

    Full text link
    We give a nontrivial algorithm for the satisfiability problem for cn-wire threshold circuits of depth two which is better than exhaustive search by a factor 2^{sn} where s= 1/c^{O(c^2)}. We believe that this is the first nontrivial satisfiability algorithm for cn-wire threshold circuits of depth two. The independently interesting problem of the feasibility of sparse 0-1 integer linear programs is a special case. To our knowledge, our algorithm is the first to achieve constant savings even for the special case of Integer Linear Programming. The key idea is to reduce the satisfiability problem to the Vector Domination Problem, the problem of checking whether there are two vectors in a given collection of vectors such that one dominates the other component-wise. We also provide a satisfiability algorithm with constant savings for depth two circuits with symmetric gates where the total weighted fan-in is at most cn. One of our motivations is proving strong lower bounds for TC^0 circuits, exploiting the connection (established by Williams) between satisfiability algorithms and lower bounds. Our second motivation is to explore the connection between the expressive power of the circuits and the complexity of the corresponding circuit satisfiability problem
    corecore