309,928 research outputs found

    Automatic Synonym Discovery with Knowledge Bases

    Full text link
    Recognizing entity synonyms from text has become a crucial task in many entity-leveraging applications. However, discovering entity synonyms from domain-specific text corpora (e.g., news articles, scientific papers) is rather challenging. Current systems take an entity name string as input to find out other names that are synonymous, ignoring the fact that often times a name string can refer to multiple entities (e.g., "apple" could refer to both Apple Inc and the fruit apple). Moreover, most existing methods require training data manually created by domain experts to construct supervised-learning systems. In this paper, we study the problem of automatic synonym discovery with knowledge bases, that is, identifying synonyms for knowledge base entities in a given domain-specific corpus. The manually-curated synonyms for each entity stored in a knowledge base not only form a set of name strings to disambiguate the meaning for each other, but also can serve as "distant" supervision to help determine important features for the task. We propose a novel framework, called DPE, to integrate two kinds of mutually-complementing signals for synonym discovery, i.e., distributional features based on corpus-level statistics and textual patterns based on local contexts. In particular, DPE jointly optimizes the two kinds of signals in conjunction with distant supervision, so that they can mutually enhance each other in the training stage. At the inference stage, both signals will be utilized to discover synonyms for the given entities. Experimental results prove the effectiveness of the proposed framework

    How to Identify Scientifc Revolutions?

    Get PDF
    Conceptualizing scientific revolutions by means of explicating their causes, their underlying structure and implications has been an important part of Kuhn's philosophy of science and belongs to its legacy. In this paper we show that such “explanatory concepts” of revolutions should be distinguished from a concept based on the identification criteria of scientific revolutions. The aim of this paper is to offer such a concept, and to show that it can be fruitfully used for a further elaboration of the explanatory conceptions of revolutions. On the one hand, our concept can be used to test the preciseness and accuracy of these conceptions, by examining to what extent their criteria fit revolutions as they are defined by our concept. On the other hand, our concept can serve as the basis on which these conceptions can be further specified. We will present four different explanatory concepts of revolutions – Kuhn's, Thagard's, Chen's and Barker's, and Laudan's – and point to the ways in which each of them can be further specified in view of our concept

    The SP theory of intelligence: benefits and applications

    Full text link
    This article describes existing and expected benefits of the "SP theory of intelligence", and some potential applications. The theory aims to simplify and integrate ideas across artificial intelligence, mainstream computing, and human perception and cognition, with information compression as a unifying theme. It combines conceptual simplicity with descriptive and explanatory power across several areas of computing and cognition. In the "SP machine" -- an expression of the SP theory which is currently realized in the form of a computer model -- there is potential for an overall simplification of computing systems, including software. The SP theory promises deeper insights and better solutions in several areas of application including, most notably, unsupervised learning, natural language processing, autonomous robots, computer vision, intelligent databases, software engineering, information compression, medical diagnosis and big data. There is also potential in areas such as the semantic web, bioinformatics, structuring of documents, the detection of computer viruses, data fusion, new kinds of computer, and the development of scientific theories. The theory promises seamless integration of structures and functions within and between different areas of application. The potential value, worldwide, of these benefits and applications is at least $190 billion each year. Further development would be facilitated by the creation of a high-parallel, open-source version of the SP machine, available to researchers everywhere.Comment: arXiv admin note: substantial text overlap with arXiv:1212.022

    History and scientific practice in the construction of an adequate philosophy of science: revisiting a Whewell/Mill debate

    Get PDF
    William Whewell raised a series of objections concerning John Stuart Mill’s philosophy of science which suggested that Mill’s views were not properly informed by the history of science or by adequate reflection on scientific practices. The aim of this paper is to revisit and evaluate this incisive Whewellian criticism of Mill’s views by assessing Mill’s account of Michael Faraday’s discovery of electrical induction. The historical evidence demonstrates that Mill’s reconstruction is an inadequate reconstruction of this historical episode and the scientific practices Faraday employed. But a study of Faraday’s research also raises some questions about Whewell’s characterization of this discovery. Thus, this example provides an opportunity to reconsider the debate between Whewell and Mill concerning the role of the sciences in the development of an adequate philosophy of scientific methodology.Keywords: Inductivism; Experiment; Theory; Methodology; Electromagnetism

    Reinventing grounded theory: some questions about theory, ground and discovery

    Get PDF
    Grounded theory’s popularity persists after three decades of broad-ranging critique. In this article three problematic notions are discussed—‘theory,’ ‘ground’ and ‘discovery’—which linger in the continuing use and development of grounded theory procedures. It is argued that far from providing the epistemic security promised by grounded theory, these notions—embodied in continuing reinventions of grounded theory—constrain and distort qualitative inquiry, and that what is contrived is not in fact theory in any meaningful sense, that ‘ground’ is a misnomer when talking about interpretation and that what ultimately materializes following grounded theory procedures is less like discovery and more akin to invention. The procedures admittedly provide signposts for qualitative inquirers, but educational researchers should be wary, for the significance of interpretation, narrative and reflection can be undermined in the procedures of grounded theory

    Research and its Revelation: When Should Courts Compel Disclosure

    Get PDF
    The best hope for improving the resolution of disputes concerning disclosing research is for lawyers to present the research and litigation issues clearly and for courts to develop a keener sense for the area of expertise involved

    What Can Artificial Intelligence Do for Scientific Realism?

    Get PDF
    The paper proposes a synthesis between human scientists and artificial representation learning models as a way of augmenting epistemic warrants of realist theories against various anti-realist attempts. Towards this end, the paper fleshes out unconceived alternatives not as a critique of scientific realism but rather a reinforcement, as it rejects the retrospective interpretations of scientific progress, which brought about the problem of alternatives in the first place. By utilising adversarial machine learning, the synthesis explores possibility spaces of available evidence for unconceived alternatives providing modal knowledge of what is possible therein. As a result, the epistemic warrant of synthesised realist theories should emerge bolstered as the underdetermination by available evidence gets reduced. While shifting the realist commitment away from theoretical artefacts towards modalities of the possibility spaces, the synthesis comes out as a kind of perspectival modelling

    Induction and Natural Kinds Revisited

    Get PDF
    In ‘Induction and Natural Kinds’, I proposed a solution to the problem of induction according to which our use of inductive inference is reliable because it is grounded in the natural kind structure of the world. When we infer that unobserved members of a kind will have the same properties as observed members of the kind, we are right because all members of the kind possess the same essential properties. The claim that the existence of natural kinds is what grounds reliable use of induction is based on an inference to the best explanation of the success of our inductive practices. As such, the argument for the existence of natural kinds employs a form of ampliative inference. But induction is likewise a form of ampliative inference. Given both of these facts, my account of the reliability of induction is subject to the objection that it provides a circular justification of induction, since it employs an ampliative inference to justify an ampliative inference. In this paper, I respond to the objection of circularity by arguing that what justifies induction is not the inference to the best explanation of its reliability. The ground of induction is the natural kinds themselves

    James Hutton’s geological tours of Scotland : romanticism, literary strategies, and the scientific quest

    Get PDF
    This article explores a somewhat neglected part of the story of the emergence of geology as a science and discourse in the late eighteenth century – James Hutton’s posthumously published accounts of the geological tours of Scotland that he undertook in the years 1785 to 1788 in search of empirical evidence in support of his theory of the Earth and that he intended to include in the projected third volume of his Theory of the Earth of 1795. The article brings some of the assumptions and techniques of literary criticism to bear on Hutton’s scientific travel writing in order to open up new connections between geology, Romantic aesthetics and eighteenth-century travel writing about Scotland. Close analysis of Hutton’s accounts of his field trips to Glen Tilt, Galloway and Arran, supplemented by later accounts of the discoveries at Jedburgh and Siccar Point, reveals the interplay between desire, travel and the scientific quest and foregrounds the textual strategies that Hutton uses to persuade his readers that they share in the experience of geological discovery and interpretation as ‘virtual witnesses’. As well as allowing us to revisit the interrelation between scientific theory and discovery, this article concludes that Hutton was a much better writer than he has been given credit for and suggests that if these geological tours had been published in 1795 they would have made it impossible for critics to dismiss him as an armchair geologist
    • 

    corecore