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Abstract

Background: Identifying a proper model structure, using methods that address both structural and parameter
uncertainty, is a crucial problem within the systems approach to biology. And yet, it has a marginal presence in the
recent literature. While many existing approaches integrate methods for simulation and parameter estimation of a
single model to address parameter uncertainty, only few of them address structural uncertainty at the same time. The
methods for handling structure uncertainty often oversimplify the problem by allowing the human modeler to
explicitly enumerate a relatively small number of alternative model structures. On the other hand, process-based
modeling methods provide flexible modular formalisms for specifying large classes of plausible model structures, but
their scope is limited to deterministic models. Here, we aim at extending the scope of process-based modeling
methods to inductively learn stochastic models from knowledge and data.

Results: We combine the flexibility of process-based modeling in terms of addressing structural uncertainty with the
benefits of stochastic modeling. The proposed method combines search trough the space of plausible model
structures, the parsimony principle and parameter estimation to identify a model with optimal structure and
parameters. We illustrate the utility of the proposed method on four stochastic modeling tasks in two domains: gene
regulatory networks and epidemiology. Within the first domain, using synthetically generated data, the method
successfully recovers the structure and parameters of known regulatory networks from simulations. In the
epidemiology domain, the method successfully reconstructs previously established models of epidemic outbreaks
from real, sparse and noisy measurement data.

Conclusions: The method represents a unified approach to modeling dynamical systems that allows for flexible
formalization of the space of candidate model structures, deterministic and stochastic interpretation of model
dynamics, and automated induction of model structure and parameters from data. The method is able to reconstruct
models of dynamical systems from synthetic and real data.
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Background
Most systems in biology exhibit dynamical behavior.
Their properties change as a function of time and space
in a complex manner. Considering a dynamical biological
system to be a well-stirred mixture of its constituents,
the most commonly used mathematical model of its
dynamics takes the form of a system of coupled ordinary
differential equations, treating the entity properties as
continuous and assuming they evolve deterministically
through time. However, the deterministic nature of
ordinary differential equations renders them inadequate
for systems with a small number of copies (only few
orders of magnitude above one) of its constituents. Fur-
thermore, ordinary differential equations fail to account
for the underlying stochasticity of natural systems
[1, 2]. In molecular systems, stochastic fluctuations
are responsible for the divergence in phenotype and
genetic activities [3–5]. In such cases, models based on
stochastic kinetics are more suitable, as they allow for
treating of the modeled systems as either discrete or
continuous in terms of the properties of the observed
entities and stochastic in terms of the reactions between
them.
Establishing a deterministic or a stochastic model of

an observed biological system is an omnipresent and
often complex, tedious task. This task comprises the
two subtasks of structure identification, i.e., selecting an
appropriate model structure, and parameter estimation,
i.e., determining values of the model parameters that,
together with the selected structure, lead to accurate
reconstruction of the observed system behavior. While
many existing approaches integrate methods for simula-
tion and parameter estimation of a single model, only few
of them provide support for the task of structure iden-
tification [6, 7]. In this paper, we design and implement
a computational tool that can deal with uncertainty in
both model structure and the values of model parame-
ters for both deterministic and stochastic models. The
central component of our tool is the process-based
modeling formalism that allows for modular, compo-
sitional specification of the space of candidate model
structures.
Figure 1 puts the process-based modeling formalism in

the context of existing formalisms used for modeling bio-
logical systems. The figure sorts (along the vertical axis)
different formalisms according to their abilities to spec-
ify uncertainty with regard to the model parameter values
and uncertainty with regard to the model structure. The
vertical axis also refers to model specifications at differ-
ent abstraction levels, from low-level model implementa-
tion to high-level model specification [8]. The horizontal
axis refers to the possibilities of model interpretation:
some of the formalisms are focused on deterministic,
some on stochastic, while the third group of formalisms
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Fig. 1 The relation of the process-based modeling formalism to other
formalisms used for modeling dynamical systems in biology

allows for both deterministic and stochastic model
interpretation.
The formalisms of differential equations allow for

encoding models with all the details needed for their exe-
cution, i.e., simulation of the behavior of the correspond-
ing dynamical systems. Ordinary differential equations
are limited to deterministic model interpretation, while
stochastic differential equations are used for stochastic
modeling. Differential equations are models at the low-
est abstraction level, where every detail has to be fully
specified and are used to encode a single model; on
their own, they allow neither for parameter nor structural
uncertainty.
At a higher abstraction level, the models in the domain

of biology are often casted in the formalism of reaction
equations. Following this formalism, the biological system
is described as a reaction network. When coupled with
appropriate kinetic rates, the model defines a network
of possible transitions between system states. Reaction
equations allow for both deterministic and probabilis-
tic interpretation stemming from the propensity of each
reaction [9].
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The systems biology markup language, SBML [10], is a
standard modeling formalism in system biology. It allows
for encoding and exchange of individual models based
on ordinary differential equations or reaction equations.
Like equation-based formalisms, SBML focuses on encod-
ing a single model structure with parameter uncertain-
ties and does not support the specification of structural
uncertainties.
Furthermore, a number of formalisms have emerged

that deal with the issue of combinatorial complexity, i.e.,
the exponential complexity of the space of the combi-
nations of elementary interactions between the entities
observed in a given biological system. These formalisms
allow for specifying rules (constraints) that limit the space
of potential interactions between entities based on their
properties. Note that the encoded constraints do not
address the issue of structural uncertainty: Their applica-
tion in the context of a given observed system leads to a
single model structure. There are several classes of such
formalisms.
The first group of rule-based (also referred to as

interaction-based) languages, most notably BioNetGen
[11] and kappa [12], define the constituent entities of a
system at the level of objects with different properties.
The network of interactions between the system entities
is implicitly described by a set of rules that transform
properties or create new entities (by forming complexes
of existing entities). By defining the rules directly on
the properties, the rule-based modeling approach effi-
ciently deals with the problem of combinatorial com-
plexity, which may arise when modeling protein-protein
networks within complex signalization pathways. The
rules are encoded using formalisms based on reaction
equations.
The second group of agent-based formalisms, which

includes process algebras [13, 14], model individual enti-
ties as agents in a complex system that act according
to a set of predefined rules for communication with
other agents. The process algebras describe the behavior
of each agent through processes describing the inter-
agent communications via different channels. A biological
system described using process calculi is treated as a
constrained distributed system of communication. This
formal description allows for more detailed represen-
tation of the basic principles of interaction. Examples
of process algebra extensions that have been adapted
to and are being used in the domain of biology are
the stochastic pi-calculus [15], Bio-PEPA [16] and beta
binders [17].
Related to the process algebras group, the formalisms

in the third group are based on constraint programming
[18]. In contrast to the process calculi, the constraint pro-
gramming approaches allow for defining interactions not
only through specific communication channels, but by

concurrently posting global constraints on the properties
of the agent entities.
The limitation that is common to all aforementioned

formalisms is that they can not properly represent the
structural uncertainty. Uncertainty in parameter values is
typically addressed by various formalism extensions that
are complementary to the computational tools that offer
support for them. COPASI [19] is an example of a such
a tool that allows for introducing uncertainties in model
parameter values and performing parameter estimation
for models based on equations. The MathWorks SimBi-
ology toolbox [20] is a proprietary software for modeling
and analysis of dynamical systems in biology providing
features similar to the ones of COPASI. Both tools provide
a range of methods for the analysis of models (e.g., sensi-
tivity and identifiability of model parameters), but do not
provide computational methods for addressing structural
uncertainty; users can only perform manual comparative
analysis of different model structures.
Network inference methods [21] explicitly address

structural uncertainty: most often, given gene expres-
sion data, the methods seek for a network of interactions
between the observed genes. Since these methods focus
on the structure of the observed network of interactions,
they seldom deal with the reconstruction of the dynam-
ical behavior of the observed system. Several methods
are exception to this general rule and cast the recon-
structed networks into the formalism of ordinary differ-
ential equations [21–24]. In contrast to the process-based
modeling approach presented in this paper, thesemethods
are limited to deterministic models. Furthermore, these
methods follow the assumption that the same interac-
tion dynamics applies to all of the network interactions:
the process-based modeling formalism can encode dif-
ferent classes of model structures (interactions/processes)
with different assumptions about the interaction dynam-
ics. Finally, when it comes to constraining the space of
possible model structures, some methods employ data-
driven heuristics [22, 25], while some of them additionally
limit the search for plausible structures based on the inter-
actions already documented in the literature [22, 24]. The
method by Wahl et al. [22] also allows for user-defined
Boolean constraints specifying implausible network inter-
actions.
Finally, ABC-SysBio [6] is most closely related to

the process-based modeling approach presented here. It
builds on SBML and addresses structural uncertainty by
allowing the user to explicitly enumerate the alternative
model structures. The process-based modeling formalism
the we propose addresses exactly this limitation of the
existing formalisms, i.e., the ability to properly address
structural uncertainty. It allows for modular and flexible
specification of the space of candidate model structures
to be considered in the modeling process. Instead of
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specifying a fixed list of candidates, like ABC-SysBio [6],
our formalism allows users to specify model components,
which are then used in a compositional modeling set-
ting, where combinations of components correspond to
candidate model structures. Thus, we approach the struc-
ture identification task as a search problem [26], where
we search for the most appropriate combination of model
components.
This paper builds upon our previous work on inductive

process-based modeling that combines knowledge and
data to automatically build explanatorymodels of dynami-
cal systems [27–30]. While inductive process-based mod-
eling has been successfully applied to modeling tasks in
the domain of systems biology [7, 31, 32], its scope has
been limited to building deterministic models of dynami-
cal systems cast as ordinary differential equations.
Here, we extend the scope of the process-based model-

ing formalism to models cast as reaction equations, hence
the arrow in the top-right corner of Fig. 1. In this way, we
combine the benefits of process-based modeling (in terms
of addressing structural uncertainty) with the benefits of
different model interpretations (including the stochas-
tic interpretation). Finally, the formalism is implemented
within a computational tool ProBMoTs for automated
induction of models that combines domain knowledge
represented in our formalism with measurements of the
observed system behavior.
In the remainder of the paper, we first introduce

the process-based modeling formalism, its extensions
towards handling stochastic models of biochemical sys-
tems and the computational tool for process-based mod-
eling, ProBMoTs. We present then two examples of use of
the proposed computational tool, i.e. modeling gene reg-
ulatory networks and modeling the spread of pathogens,
illustrating the use of the proposed tool and evaluating its
utility. Finally, we discuss the results of the evaluation, put
them in the context of existing work and outline directions
for further research.

Methods
In this section, we introduce the notion of process-based
models and a formalism for their representation. We
illustrate the formalism use on an example of encod-
ing knowledge for modeling gene regulatory networks
and a process-based model of a specific network, the
repressilator [33]. We then introduce methods for induc-
ing process-based models from knowledge and data by
selecting appropriate model structures and parameters.

Process-based modeling
Scientists often describe dynamical systems in terms of
processes that govern the system dynamics and the enti-
ties involved in the processes1. Following this high-level
model description, modelers assign lower-level detailed

equation-based specifications of the dynamics to individ-
ual processes and combine them into a system of coupled
differential equations. The differential equations can be in
turn used to simulate the behavior of the observed system
or to extrapolate the simulation and predict future system
behavior. However, by transforming the high-level model
description into equations, its explanatory power is lost,
since the equations fail to reveal (in an accessible man-
ner) the structure of the observed system in terms of the
interacting entities and processes.
Process-based modeling (PBM) clearly relates a high-

level model description (entities and processes), that
carries significant explanatory power, and a lower-level
mathematical model (equations), that allows for simula-
tion and prediction. To build process-based models, we
first formalize the modeling knowledge by establishing
templates of generic (template) entities that appear in the
generic (template) processes that govern the dynamics
of systems in the particular domain. Each process-based
model then refers to these template components and
instantiates them into specific components of the studied
system.
Existing process-based formalisms rely on a coarse

description of dynamics, based on fragments of differen-
tial equations. The formalism introduced in this paper
relies on reaction equations, which are closer to the basic
principles of system biology and are more comprehensible
to biologists. A reaction equation Rs → Ps [rate] specifies
a set of reactants Rs and a set of products Ps, as well as
the reaction rate. Reaction equations are a powerful and
flexible formalism for modeling the temporal evolution of
dynamical systems.

Representation ofmodeling knowledge
Table 1 provides an example library of template compo-
nents for modeling gene regulatory networks. It includes
a template entity gene, whose instances represent nodes
in gene regulatory networks. We assume gene entities to
represent protein-coding genes and describe them using
five numerical properties. The variable properties (vars
section of the entity specification) denote two gene prop-
erties that change through time: Pmol is the number of
encoded protein molecules and mRNAmol is the number
of mRNA transcripts. The other three properties do not
change over time; they denote the constant kinetic rates
of the uncontrolled gene expression alpha0, the transla-
tion of mRNA into proteins and their degradation beta,
as well as the mRNA molecules degradation delta.
Furthermore, the library specifies templates for model-

ing the processes of gene interaction, gene translation into
proteins, and protein degradation. The degradation
template specifies two reaction equations that correspond
to the degradation of the encoded protein molecules with
the kinetic rate of g.beta (i.e., the degradation kinetic
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Table 1 Templates of entities and processes for modeling gene
regulatory networks. The template entity gene typifies network
nodes, while the process templates represent gene regulation, as
well as translation and protein degradation processes. The empty
set symbol ∅ denotes the absence of reactants or products

template entity gene {

vars: mRNAmol, Pmol;

consts: alpha0, beta, delta;

}

template process regulation(sg:gene, dg:gene) {

consts: alpha, n;

}

template process inhibition: regulation {

equations: ∅ -> dg.mRNAmol [alpha / (1 + sg.Pmoln)];

}

template process activation: regulation {

equations:

∅ -> dg.mRNAmol [alpha - (alpha / (1 + sg.Pmoln))];

}

template process translation(g:gene) {

equations:

∅ -> g.mRNAmol [g.alpha0],

g.mRNAmol -> g.Pmol + g.mRNAmol [g.beta];

}

template process degradation(g:gene) {

equations: g.Pmol -> ∅ [g.beta], g.mRNAmol ->

∅ [g.delta];

}

rate for the particular gene g) and the degradation of
the mRNA molecules with the rate of g.delta. Simi-
larly, the translation process integrates the reaction
equations of the gene transcription to mRNA and the
mRNA translation to protein molecules.
Finally, the regulation process template represents

gene interactions via their protein products. It has two
mutually exclusive alternatives of activation and
inhibition. The first corresponds to the case where
one gene increases the transcription rate of the other,
while the second alternative models repression, where
one gene decreases the transcription rate of the other by
binding the source gene protein to the promoter region
of the repressed gene. In both cases, the reaction rate
(specified between the brackets) is modeled using a Hill
function, derived as a steady-state approximation of the
biochemical kinetics [34].
The templates from Table 1 represent generic knowl-

edge on modeling gene regulatory networks. They can

be instantiated to entities and processes of an arbitrary
network model. Note the hierarchical structure of the
regulation template process: it constrains the space of
instantiations by rendering the two subordinate templates
of activation and inhibition mutually exclusive.
This reflects the simple fact that only one regulation type
applies to a given pair of genes. In the following, we will
illustrate the use of this knowledge for modeling a simple
regulatory network.

Process-basedmodels
The repressilator [33] is a regulatory network of three
genes interacting in a single feedback loop of inhibitions as
depicted in Fig. 2. The repressilator is a synthetic network
designed to exhibit a stable oscillatory behavior. Its in-vivo
implementation in E. coli has been proven to exhibit the
desired behavior. The three genes involved are TetR, often
used for fine regulation in synthetic gene networks, and
two repressor genes, cI and LacI.
Using the domain knowledge for modeling gene regu-

latory networks from Table 1, we can establish a process-
based model of the repressilator, presented in Table 2. It
provides a high-level representation akin to the graph-
ical network layout depicted in Fig. 2, where entities
correspond to network nodes, and processes are repre-
sented by arcs. The model does not give details about
the particular modeling choices for degradation, trans-
lation and inhibition, since they are inherited from the
corresponding process templates. Each entity specifies
the boundary conditions for the variables (declarations
of the initial value) and the parameter values, while
each process specifies the involved entities and the
parameter values. Note, for example, the value assign-
ments for the parameters alpha and n in the inhibition
processes.
The process-based model retains the understandability

of the graphical model representation and provides a clear,
high-level insight into the structure of the studied sys-
tem. At the same time, by using the detailed knowledge
of the reaction equations encoded in the templates, we

Fig. 2 Graphical representation of the repressilator gene regulatory
network
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Table 2 A process-based model of the repressilator built using
the templates for modeling gene regulatory networks from
Table 1

entity TetR:gene {

vars: Pmol { initial: 5; }, mRNAmol { initial: 0; };

consts: alpha0 = 0, beta = 9.75, delta = 1;

}

entity LacI:gene {

vars: Pmol { initial: 0; }, mRNAmol { initial: 0; };

consts: alpha0 = 0.27, beta = 10, delta = 1;

}

entity cI:gene {

vars: Pmol { initial: 15; }, mRNAmol { initial: 0; };

consts: alpha0 = 0.41, beta = 10, delta = 1;

}

process regualtion1(TetR, cI): inhibition {

consts: alpha = 407, n = 3;

}

process regulation2(cI, LacI): inhibition {

consts: alpha = 222, n = 4.7;

}

process regulation3(LacI, TetR): inhibition {

consts: alpha = 237, n = 1.95;

}

process translation1(TetR): translation {}

process translation2(LacI): translation {}

process translation3(cI): translation {}

process degradation1(TetR): degradation {}

process degradation2(LacI): degradation {}

process degradation3(cI): degradation {}

can automatically translate the high-level description into
a mathematical model and use it for simulation and anal-
ysis. Consider the process translation1 in Table 2:
By combining it with the template translation from
Table 1, we instantiate a set of two reaction equations
modeling the uncontrolled transcription of TetR to
mRNA (∅ -> TetR.mRNAmol with a kinetic rate of
TetR.alpha0 = 0) and the translation of the mRNA
to the TetR protein molecules (TetR.mRNAmol ->
TetR.Pmol + TetR.mRNAmol with a kinetic rate of
TetR.beta = 9.75).
Table 3 presents the mathematical model of the repres-

silator which includes the above two reaction equations,
as well as all other reaction equations obtained by

Table 3 List of reaction equations stemming from the
process-based model of the repressilator from Table 2

∅ -> TetR.mRNAmol [407 / (1 + cI.Pmol3)]

∅ -> LacI.mRNAmol [222 / (1 + TetR.Pmol4.7)]

∅ -> cI.mRNAmol [237 / (1 + LacI.Pmol1.95)]

∅ -> TetR.mRNAmol [0]

TetR.mRNAmol -> TetR.Pmol + TetR.mRNAmol [9.75]

∅ -> LacI.mRNAmol [0.27]

LacI.mRNAmol -> LacI.Pmol + LacI.mRNAmol [10]

∅ -> cI.mRNAmol [0.41]

cI.mRNAmol -> cI.Pmol + cI.mRNAmol [10]

TetR.Pmol -> ∅ [9.75]

TetR.mRNAmol -> ∅ [1]

LacI.Pmol -> ∅ [10]

LacI.mRNAmol -> ∅ [1]

cI.Pmol -> ∅ [10]

cI.mRNAmol -> ∅ [1]

combining the processes in Table 2 with their corre-
sponding templates from Table 1. The model is sim-
ulated by calculating the state of the system x(t),
a vector of the number of molecules of each reac-
tant at time t. The repressilator state includes six
variables: TetR.Pmol, TetR.mRNAmol, LacI.Pmol,
LacI.mRNAmol, cI.Pmol and cI.mRNAmol. In any
given state x, we can calculate the propensity, i.e., the
probability that the reaction Rj will be active in the
infinitesimal time interval [ t, t + dt), using the formula
aj(x) = cjhj(x)dt, where cj denotes the reaction rate
and hj(x) denotes the number of distinct combinations of
reactant molecules in state x.
The evolution of the probability P(x, t|x0, t0) that the

system is in a state x at a given time t, given the initial
state x0 at time t0, can be then defined using the following
ordinary differential equation (also known as the Master
Equation) [35]:

∂

∂t
P(x, t|x0, t0)

=
M∑
j=1

[aj(x − νj)P(x − νj, t|x0, t0) − aj(x)P(x, t|x0, t0)] ,

(1)

for dt → 0, where νj is a vector specifying the changes
of the number of reactant molecules after the reaction
Rj. We can then model the system dynamics using cou-
pled differential equations, where each equation models
the probability that the system state equals a unique com-
bination of values of the state variables x.
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For real biological systems, the Master Equation is too
complex to be solved analytically or numerically. To this
end, alternative approaches to estimating the exact or
approximate probabilities have been developed. One of
the most popular exact approaches is based on Monte
Carlo sampling and is known as the Stochastic Simula-
tion Algorithm (SSA) proposed by Gillespie, where others
include the Gibson-Bruckmethod of next reaction and the
class of τ -leaping methods [9].
If we assume that the propensity does not signifi-

cantly change in infinitesimal time intervals and that
the expected number of firings of each reaction is sig-
nificantly large (i.e., the number of reactant molecules
is large compared to the probability rate constant),
we can derive the Langevin Equation. It represents a
mathematical model of the reaction equations cast in
terms of coupled Itō stochastic differential equations
[36]. These stochastic differential equations can fur-
ther be reduced to ordinary differential equations,
under the assumption that we observe a negligible
amount of noise in a system with a large number of
reactants.
Thus, from a process-based model, we can automati-

cally infer the reaction equations and then simulate them
using the Gillespie algorithm or its improvements [9].
Alternatively, we can transform them to a system of ordi-
nary differential equations. Figure 3 shows the simulated
trajectories of the number of TetR molecules obtained
by simulating the reaction equations (left-hand side)
and the system of ordinary differential equations (right-
hand side) inferred from the process-based model of the
repressilator.
To summarize, process-based models have four impor-

tant properties that make them particularly suitable for
modeling dynamical systems. First, they retain the under-
standability and explanatory power of graphical model
representations by providing clear insight into the struc-
ture of the observed system. At the same time, they inherit
the utility of mathematical models for simulation and
analysis of system behavior. Third, process-based models
provide general model descriptions that support both

Fig. 3 Stochastic and deterministic simulation of the number of TetR
protein molecules using the process-based model of the repressilator

stochastic and deterministic approaches tomodeling, sim-
ulation and analysis. The fourth property is the modular-
ity provided by the knowledge representation formalism:
the templates can be instantiated into a number of model
components. This last property is particularly relevant for
the algorithms that induce process-based models from
data.

Inducing process-basedmodels
The formalized knowledge on modeling gene regulatory
networks brings another benefit. It represents a source of
constraints that limit the space of candidate model struc-
tures to be explored when modeling a particular gene reg-
ulatory network. Consider the repressilator model again
and assume that we are only provided with information
that it involves the three genes of TetR, LacI and cI. Now
we can infer all the instances of the process templates
from Table 1: the degradation process template that
involves one gene, leads to three process instantiations,
one for each gene. Similarly, the translation tem-
plate leads to three processes. Finally, each pair of genes
results in one instance of the activation and one instance
of the inhibition template. Thus, for the three repressila-
tor genes, we obtain six instances of the activation and
six instances of the inhibition template. In sum, the three
repressilator genes lead to 18 process instances.
Each of the process instances represents a valid model

component. Following a naïve approach, one can consider
any subset of components as a legitimate model struc-
ture, which yields 218 = 262, 144 candidates. However,
these include many implausible models, e.g., ones that do
not include gene translation for some of the genes. To
avoid implausible models, the inductive process model-
ing approach relies on the use of constraints that limit
the ways model components are combined. For example,
a constraint ruling out models that do not include trans-
lation and degradation processes for all the genes, reduces
the search space to 212 = 4096 candidates. Furthermore,
the constraint specifying the mutual exclusivity of the
activation and inhibition processes for a given ordered
pair of gene entities further reduces the number of can-
didates to 36 = 729 (for each of the six possible pairs
of repressilator genes, we consider three modeling alter-
natives: absence of regulatory influence; activation; and
inhibition).
The constraints discussed above can be classified in two

groups. First, the mutual exclusivity of the activation and
inhibition processes is specified in the domain knowledge
library shown in Table 1. Second, the constraint ruling
out models that do not include translation and degrada-
tion of individual gene/protein are defined at the level
of process instances. The constraints from the second
group are specified in the incomplete model, which is
one of the inputs to our software tool ProBMoTs. One
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such incomplete model is depicted graphically in Fig. 5
and shown in Table 4. The lower part of the table speci-
fies that the model must include both a translation and a
degradation process for each of the three genes/proteins

Table 4 An incomplete process-based model of a gene
regulatory network specifying the model structures as depicted
in Fig. 5

entity TetR:gene {

vars: Pmol { initial: 5; }, mRNAmol { initial: 0; };

consts: alpha0, beta, delta = 1;

}

entity LacI:gene {

vars: Pmol { initial: 0; }, mRNAmol { initial: 0; };

consts: alpha0, beta, delta = 1;

}

entity cI:gene {

vars: Pmol { initial: 15; }, mRNAmol { initial: 0; };

consts: alpha0, beta, delta = 1;

}

process regualtion1(TetR, cI): regulation {

consts: alpha, n;

}

process regulation2(cI, LacI): regulation {

consts: alpha, n;

}

processregulation3(LacI, TetR): regulation {

consts: alpha, n;

}

processregualtion4(TetR, LacI):regulation {

consts: alpha,n;

}

processregulation5(LacI, cI):regulation {

consts: alpha,n;

}

process regulation6(cI, TetR): regulation {

consts: alpha,n;

}

mandatory process translation1(TetR):translation {}

mandatory process translation2(LacI): translation {}

mandatory process translation3(cI):translation {}

mandatory process degradation1(TetR):degradation {}

mandatory process degradation2(LacI):degradation {}

mandatory process degradation3(cI): degradation {}

(note the mandatory qualifier in the process specifica-
tions). Figure 5 (and the upper part of Table 4) specifies
the three modeling alternatives for each of the six possible
pairs of genes.
Finally, the inductive process-based modeling approach

validates each candidate model structure by matching its
simulation against the observed system behavior. In order
to simulate the model (and assess its quality), we first have
to determine the values of its constant parameters. To this
end, we employ parameter estimation and find parame-
ter values that lead to a model reproducing the observed
behavior as closely as possible. We formulate the param-
eter estimation task as an optimization problem: We aim
at minimizing an objective function that measures the
goodness of fit of the model simulation to the observed
behavior using the maximum-likelihood estimator [37].
The algorithm for inducing process-based models, pre-

sented in Table 5, puts together the components outlined
above. Its input is a library of template entities and pro-
cesses, such as the one presented in Table 1, the specific
entity instances observed in the system at hand, a set of
constraints that limit the way we combine components
into models, and time-series data comprising measure-
ments of the system variables/outputs of observed system.
The algorithm first instantiates the templates from the
library using the entities of the observed system into a set
of model components. Then, taking into account the con-
straints, the algorithm enumerates the plausible combina-
tions of components as candidate model structures. For
each model structure, the algorithm performs parameter
estimation that fits the model simulation against observed
data. At output, the algorithm returns a list of mod-
els ranked with respect to their fit against the measured
data.
Different implementations of the induction algorithm

make different design choices. In the following, we pro-
vide a brief overview of the different implementations: A
detailed overview is given by Džeroski and Todorovski
[7]. Lagramge 2.0 [38] transforms the library and con-
straints into a grammar that enumerates candidate model

Table 5 Top-level outline of the algorithm for inducing
process-based models from knowledge and data

procedure IPM(library, entities, constraints, data):

components = Instantiate(library, entities)

for mstructure in Enumerate(components,

constraints):

(model, error) = ParameterEstimation(mstructure,

data)

append(model_list, (model, error))

sort(model_list, key = error)

return model_list



Tanevski et al. BMC Systems Biology  (2016) 10:30 Page 9 of 17

structures. IPM [28] takes a naïve approach and uses
constraints on the number of components involved in
the model to address combinatorial explosion. HIPM
[29] encodes the constraints into a hierarchy of pro-
cess templates and approaches enumeration as a combi-
natorial search problem. SCIPM [39] explicitly encodes
the constraints and approaches the enumeration using
constraint satisfaction methods. Finally, ProBMoT [40]
extends HIPM with explicit constraints referring to the
particular system at hand and meta-heuristic optimiza-
tion methods for parameter estimation.
Note, however, that the above inductive process-based

modeling approaches have limited their focus on induc-
ing deterministic models cast as ordinary differential
equations. ProBMoTs, our extension of ProBMoT pre-
sented in this paper that allows for inducing stochastic
models of dynamical systems cast as reaction equations.
The extension is based on the novel formalism for encod-
ing a library of components that supports the specification
of reaction equations as models of individual processes.
ProBMoTs also integrates standard simulators for reaction
equations [41].
Both ProBMoT and ProBMoTs are released as open-

source software packages available for download at http://
probmot.ijs.si 2.

Experimental setup andmodel selection
To evaluate the algorithm for inducing stochastic process-
based models, we apply it to several problems of model-
ing dynamical behavior of biological systems at different
scales. We consider two synthetic modeling problems
from the domain of gene regulatory networks and two
real modeling problems from the domain of epidemi-
ology. In each domain, we first encode process-based
knowledge for modeling dynamical systems. In this paper,
our focus is limited to encoding domain knowledge in
two domains, covering models on fundamentally different
scales. Note, however, that the process-based modeling
approach can be applied to other domains as well, given
that modeling knowledge about the domain of interest is
encoded as a library of entity and process templates. For
example, when modeling metabolic networks, the cen-
tral entity templates will represent enzymes and metabo-
lites, while process templates would represent different
metabolic reactions (with different kinetics), formulat-
ing different models of the dynamical interactions among
them. For further examples of domain knowledge libraries
for process-based modeling, we refer the reader to the
ProBMoT web site. Second, for the synthetic modeling
problems, we select a target model and simulate it to
obtain a data set for inducing models. On the other hand,
the real modeling problems come with data sets of mea-
sured system behavior. Third, for each modeling problem,
we define an ordered list of plausible model structures

P. For the synthetic problems, this list includes the tar-
get model only, while for the real modeling problems, it
includes all the structures of the models that have been
reported in the literature as plausible explanations of the
measurements. Note that for all problems, the list of
candidate models considered by the induction algorithm
includes all the model structures from the list P.
To perform induction, for each modeling problem we

run ProBMoTs using the corresponding modeling knowl-
edge (including the constraints) and the data set as inputs.
Recall that the modeling knowledge defines the space
of candidate model structures. The values of the model
parameters are estimated by using the Differential Evo-
lution method [42] with the recommended parameter
settings: crossover probability of 0.9, differential weight of
0.8, population size 50 and the rand/1/bin strategy. We
set the number of evaluations of the objective function
to 1000 times the number of constant model parame-
ters. To assess the stability of the parameter estimator, we
use 10 restarts of the Differential Evolution method. For
simulating the reaction equations, ProBMoTs employs the
Gillespie direct method [9] to obtain 20 realizations.
The parameter estimationmethod in ProBMoTs can use

different objective functions for measuring the discrep-
ancy between the realizations and the observed data. The
first objective function we use in the experiments cor-
responds to a typical laboratory setting used in biology,
where the measurements from multiple replicates of an
experiment are averaged. Thus, the 20 realizations (K in
the equation) are averaged just as the observed data:

RMSEAR(m) =
∑
i

1√
N

‖xi−x̂i‖, x̂i = 1
K

∑
k

x̂ki , (2)

where m denotes the model, i iterates over the observed
variables xi and k iterates over the realizations, where x̂ki
denotes the k-th realization of xi, and N is the number of
observed time points.
Alternatively, in situations where the data are measured

within a single experiment, we use the second objective
function. Instead of averaging the realizations, we average
the error of each realization, i.e.:

RMSESR(m) = 1
K

∑
k

∑
i

1√
N

‖xi − x̂ki ‖. (3)

Recall that the result of ProBMoTs is a list of mod-
els ranked with respect to their descending fit against
the measured data, in our case, ascending model error.
The trivial model selection strategy would be to select
the model with the optimal value of the objective func-
tion. Note, however, that error-based estimates of model
performance tend to overfit observations, a problem espe-
cially relevant in the context of noisy experimental data.
To address the problem of overfitting, we use an alterna-
tive model selection approach that introduces a penalty

http://probmot.ijs.si
http://probmot.ijs.si
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for model complexity, measured as the number of reaction
equations in the model. To additively combine the model
complexity and the degree of fit into a single score, we nor-
malize both to the [0, 1] scale. The normalization is based
on the minimal and maximal values of the degree of fit
and complexity, respectively, over all the candidate model
structures considered by ProBMoTs.
We visualize the result of ProBMoTs (i.e., the ranked list

of models) using an error profile, as depicted in Fig. 4.
Each point of the error profile corresponds to a model
induced by ProBMoTs and the y-axis of the profile cor-
responds to the respective value of the model selection
criterion. In our experiments, we use the error profile to
evaluate the ProBMoTs results in two ways. The first one
selects the left-most model in the error profile, i.e., the
model with the lowest model selection score, as the most
appropriate model. We refer to this method as the sin-
gular method. This method is short-sighted since it only
considers the best model. As an alternative to the singular
method, we propose the inclusive method that consid-
ers models in the left-most plateau of the error profile.
We employ a simple heuristic to identify plateaus: a rela-
tive change of error between two consecutive error-profile
points that is above a threshold value of 0.1 indicates a
plateau end. The first (leftmost) plateau of the error profile
in Fig. 4 includes the cluster of ten points in the lower-left
corner of the graph. Note that it includes ten top-ranked
model structures that are indistinguishable in terms of the
model error and therefore better represent the results of
induction. The plateaus of the error profile lead to a partial
ordering of the models.
Finally, to evaluate the results of induction, we compare

the list of selected models to the list of plausible mod-
els P using a triple of metrics (recall, hit, plateau_size).
The recall is the proportion of the plausible models in the
first plateau of the error profile. The indicator hit tells us
whether the first plateau contains the first model structure
in P. The size of the plateau (plateau_size) indicates the

Fig. 4 An example error profile of a ProBMoTs output that includes
100 models ranked according to increasing model error

discriminative power of the inductionmethod: the smaller
the plateau, the larger the discriminative power. The ide-
ally performing induction method would lead to the triple
(100 %, true, |P|).

Results
In this section, we present the results of the evaluation
of ProBMoTs on the four problems of inducing stochastic
process-based models from knowledge and data. The first
two are from the domain of gene regulatory networks, the
other from the domain of epidemiology.

Gene regulatory networks
We first address the task of modeling the simple gene
regulatory network of the repressilator, introduced in the
previous section. We select the model from Table 3 as a
target model and set the list of plausible model structures
P to contain a single structure that corresponds to the
target model. We then perform two experiments. In the
first, we assume that the kinetic rates in processes belong-
ing to a single class of regulatory processes (degradation,
translation and regulation) have the same values. To this
end, we restructure the library of templates to introduce
an global template entity that declares the global kinetic
rates, which are then used by the process templates. In
the second experiment, we perform induction without the
assumption of global kinetic rates and therefore use the
library of templates as presented in the previous section.

Global kinetic rates
The model of the repressilator considered here has been
already addressed in other studies [6, 43]. Note, how-
ever, that both studies address only the task of param-
eter estimation from synthetic data assuming a single
model structure. In our experiment, we also aim at iden-
tifying the structure of the model. We select the single
model structure used in previous studies as our target
and use the following values of the global kinetic rates:
(alpha0, alpha, beta, delta, n) = (0.0, 250.0, 5.0, 1.0, 2.1).
To obtain experimental data, we average 20 realizations of
the target model in the time interval t ∈[0, 35]. Accord-
ingly, we use the RMSEAR objective function.
In order to define a structure identification problem, we

describe the space of possible model structures as repre-
sented in Fig. 5. Each rectangle represents a gene entity,
while the dashed lines represent a regulation interaction
between the entities. The interactions in the incomplete
model are instantiated from the regulation process
template from Table 1. This results in 36 = 729 possi-
ble model structures, one of which is the target model
structure of the repressilator.
Figure 6 depicts the error profile for the list of mod-

els obtained with ProBMoTs. First, note that the small
standard deviations across the restarts of the parameter
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Fig. 5 Graphical representation of the space of model structures
considered during the induction of the repressilator model. Note that
we do not assume fixed forms of the regulation interactions between
the genes

estimator show its stability. Furthermore, the first plateau
of the error profile is easy to identify in the lower-left cor-
ner of the figure: it contains a single model. The structure
of this model is a perfect match to the structure of the tar-
get model. Therefore, the recall is 100 %, the hit is true
and the plateau size is 1, or in other words, the perfor-
mance of ProBMoTs on this task is ideal. This result gives
proof-of-principle evidence that confirms the ability of
the developed process-based modeling method to induce
both the structure and parameters of stochastic models
from knowledge and data.

Local kinetic rates
To test the robustness of our method, we remove the
assumption of global kinetic rates from the modeling
scenario. Thus, we forget the changes we made to the
library in the previous experiment and use the library
as described in Table 1. Other than the different for-
malization of the domain knowledge, given the relaxed

assumptions, the task remains the same: we use the
same target model, the data set, the objective function
(RMSEAR) and the list of plausible models as in the first
experiment. The relaxed assumptions lead to an explo-
sion in the parameter space, while the structure space
remains the same. We want to test whether (and how) the
relaxed modeling assumption will influence (deteriorate)
the results of ProBMoTs.
The obtained error profile for the described task is

shown in Fig. 7; note again the small standard deviation
of the error over the parameter estimator restarts. The
first plateau of the error profile includes four models.
The second model has the structure that exactly matches
the structure of the target model leading to the perfor-
mance triple of (100 %, true, 4). The structures of the other
three models in the plateau contain the repressilator motif
and a number of additional gene regulation interactions,
indicating an overfit of the experimental data. Indeed,
Fig. 8 shows that if model complexity is taken into account
when selecting models, the first plateau of the error pro-
file includes only the target model, leading to the ideal
performance triple of (100 %, true, 1).

Compartmental epidemiological models
In the domain of epidemiology, we first formalize the
knowledge to be used for establishing stochastic models,
using the basic principles of compartmental modeling as
presented by Brauer et al. [44]. There, the spread of disease
ismodeled by the flows of individuals between healthy and
infected populations, referred to as compartments. Each
flow ismodeled using a reaction equation, where reactants
and products correspond to compartments.
Figure 9 graphically illustrates the general structure

of epidemiological compartmental models. We distin-
guish between six compartments corresponding to six

Fig. 6 Error profile for the task of inducing the repressilator model with global kinetic rates. Complete error profile (left). The top six models in the
first two plateaus with error bars showing the standard deviation across restarts. The gray horizontal lines depict plateaus (right)
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Fig. 7 Error profile for the task of inducing the repressilator model with local kinetic rates. Complete error profile (left). The top six models in the first
two plateaus with error bars showing the standard deviation across restarts. The gray horizontal lines depict plateaus (right)

subpopulations of individuals that are susceptible (S) to
the observed disease, latently infected (L), infected with
(I ) and without symptoms (A, i.e., asymptomatic), quar-
antined (Q) and recovered (or removed, in case of fatal
diseases, R). In the library of modeling knowledge, all
these compartments are represented with a single entity
template compartment which has the variable property
of noi, representing the number of individuals in the
compartment at a given time point.
At the point of introduction of a pathogen in the popu-

lation, the entire population can be considered to consist
of susceptible individuals (in the compartment S), except
for the individuals by whom the pathogen is introduced.
From this point on, we can observe different processes of
flow between compartments. One way to model the infec-
tion of individuals is to assume that all infected individuals

manifest the disease symptoms. In this case, the A com-
partment is not populated. An alternative, more complex,
model assumes that we can also have infected individu-
als that do not manifest the symptoms. In both cases, the
infection might cause a direct flow from S to I (and/or
A) or indirect flow through the L compartment of latently
infected individuals.
The recovery of individuals from a disease can either

cause flows from the A and I compartments to the pop-
ulation of recovered (or removed) individuals R or cause
flows from the A and I to the population of susceptible
individuals S. In any case, the recovery of the individuals
from I can be controlled by moving the infected individu-
als to the quarantine compartment Q. Finally, the general
model involves a flow of individuals from the recovery
compartment to the population of susceptible individuals.

Fig. 8 Error profile for the task of inducing the repressilator model with local kinetic rates based on a model selection score that takes into account
model complexity penalization. Complete error profile (left). The top seven models in the first three plateaus with error bars showing the standard
deviation across restarts. The gray horizontal lines depict plateaus (right)
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Fig. 9 Graphical representation of a general compartmental model in
epidemiology. The boxes correspond to compartments, i.e.,
subpopulations, and arrows denote the flows of individuals between
compartments

The general model can be instantiated to a number of
variants, ranging from the simple SIR model that assumes
only three compartments of susceptible, infected and
recovered individuals, through the SLIR model that intro-
duces the population of latently infected individuals, to
the most complex SLIAQRS model that comprises all the
compartments depicted in Fig. 9. For example, the SIR
model includes two processes. The first instantiates the
template process of infection_symptomatic that includes
a single reaction equation: S.noi + I.noi → I.noi + I.noi
[i], where i represents the rate of infection. The other
process represents the template of recovery_symptomatic
that includes the reaction equation I.noi → R.noi [r],
where r denotes the recovery rate.
In contrast to the previous synthetic tasks, here we use

two data sets of real measurements for induction. These
come from two epidemic outbreaks, the outbreak of the
Great Plague in Eyam in 1666 [45] and the outbreak of
influenza type A subtype H3N2 in Tristan da Cunha in
1967 [46, 47]. The measurements for the case of the out-
break in Eyam are taken bimonthly at seven time points in
the period from 3rd of July to 20th of October 1666. They
include two variables: number of healthy individuals and
the number of individuals that have complained of symp-
toms. Themeasurements fromTristan da Cunha are taken
daily at 21 time points in October 1967. They also include
two variables: number of individuals showing symptoms
of infection and the number of recovered individuals.
To match the compartment variables to the variables in

the data sets, we calculate the number of healthy (individ-
uals not showing any symptoms of infection) as the sum
of the number of individuals in the S, L and A compart-
ments, the number of infected as the sum of the number

of individuals in the I and Q compartments and the num-
ber of recovered as the number of individuals in the R
compartment.
In accordance with the experimental setting for obtain-

ing the measurements, we use the second objective func-
tionRMSESR. Since the experimental data comes from real
and therefore noisy measurements, we take into account
model complexity to obtain the model selection score.

Eyam plague outbreak
For this task, we consider all possible instances of the gen-
eral model as previously described, by introducing a small
set of constraints of mutual exclusivity of symptomatic
and asymptomatic infection, thus instantiating only the
corresponding recovery for each type of infection. The
total number of model structures under these constraints
is 24. The initial conditions at the first time point were
set to 254 individuals in the S, 7 individuals in the I and
0 in the other compartments, which exactly matches the
initial conditions from the original study by Ragget [45].
The same paper proposes two plausible model structures:
SIR, the structure that has been analyzed in the paper,
and SLIR, suggested as the most promising one for fur-
ther study. Thus, our list of plausible models structures P
is (SIR, SLIR).
The first plateau of the error profile, depicted in Fig. 10,

contains a single model that has the SIR structure. There-
fore the recall is 50 %, the hit is true and the plateau
size is 1. The model with the SLIR structure is ranked
as second and comprises the second error-profile plateau.
Thus, when considering the two models in the two left-
most plateaus, ProBMoTs successfully reconstructs the
two plausible model structures suggested before [45].
Note that the complexity-based model selection score
bears high discriminative power, since each model forms
its own plateau. The next four plateaus of the error pro-
file include the SIRS, SLIRS, SIQR and SLIQR models,
which render model structures that extend the basic SIR
and SLIR with the assumptions of survivors (return to
the susceptible compartment) or a quarantine compart-
ment to provide plausible explanations of the observed
data.

Tristan da Cunha influenza outbreak
For this task, we consider the same set of 24 model struc-
tures that instantiate the general model from Fig. 9. Based
on the data available, we set the initial number of infected
individuals to 1, other initial values to 0, except for the
initial number of susceptible individuals that was fitted as
a model parameter. We selected the two best performing
model structures from Toni et al. [6] as plausible and set P
to (SLIR, SIR). The other twomodel structures considered
in the study are a modified SLIR structure, that includes
time-delayed flow models, and a SIRS structure.
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Fig. 10 Error profile for the Eyam plague modeling task. The error bars show the standard deviation of the model selection score across the runs.
The gray horizontal lines depict plateaus

The first plateau of the error profile, depicted in Fig. 11,
contains the SLIR model that is the first model in P, lead-
ing to a recall of 50 %, the hit indicator is true and the
plateau size is 1. The second ranked model in the sec-
ond plateau has the SIR structure of the second model in
P. As in the case of the Eyam plague experiments, ProB-
MoTs perfectly reconstructed the results of the previous
modeling experiments reported by Toni et al. [6].

Discussion
The formalism for stochastic process-based modeling,
that we introduce in this work, retains the modular and
straight-forward specification of entire classes of model
structures from its deterministic counterpart. In contrast
to the formalisms commonly used in systems biology that
employ different levels of abstraction but focus primar-
ily on the efficient description of a single model structure
[10–13], the process-based formalism allows for describ-
ing uncertainty in both the structure and parameter

values of a model by representing classes of model
structures. The introduction of reaction-equation based
description of processes improves the understandability
of process-based models and allows for their stochastic
interpretation, improving the generality and utility of the
process-based modeling approach and bringing it closer
to the domain of biology.
The experimental evaluation shows that our approach

can be successfully applied to a range of problems of
learning stochastic models. These can come from dif-
ferent biological domains and represent phenomena at
different scales. Our approach exhibits excellent per-
formance on the considered tasks, producing accurate
and understandable models and successfully reconstruct-
ing the results of previous modeling efforts. The pro-
posed approach can be applied to an arbitrary domain
of interest by encoding an appropriate library of tem-
plate entities and processes encountered in the particular
domain.

Fig. 11 Error profile for the Tristan da Cunha influenza outbreak modeling task. The error bars show the standard deviation of the model selection
score across the runs. The gray horizontal lines depict plateaus
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However, several limiting issues may arise during the
application of the proposed approach.
First, solving the parameter estimation task for each

model structure can lead to both identifiability and dis-
tinguishability problems. The identifiability of the model
parameters is a problem often encountered when mod-
eling biological systems [48]. Performing identifiability
analysis for each candidate structure is in principle pos-
sible. However, this can be challenging in terms of com-
putational complexity when considering a large number
of candidate model structures. A more tractable prob-
lem is the one of distinguishability of the candidate model
structures in terms of the applied model selection criteria.
Within process-based modeling, this problem presents
itself in the form of long plateaus in the error profile.
This problem has been studied for the task of learning
deterministic models of dynamical systems from data and
domain knowledge [32]. The study shows that the prob-
lem of distinguishability can be successfully addressed by
the introduction of problem specific, domain dependent
criteria for parameter optimization and model selection.
Although this study is limited to the case of determinis-
tic models, further work can extend its scope to stochastic
modeling.
Second, the encoding of very large and complex systems

in the proposed formalisms may be cumbersome. The use
of reaction equations to encode a system with many enti-
ties, that is comprised of a large number of simple and
repeating interactions might lead to excessively lengthy
descriptions. Following concepts from related work, the
issue of combinatorial complexity of composing models
from elementary interactions may be solved by rule- or
agent-based formalisms by introducing further abstraction.
Finally, the third limitation of our approach is related to

computational cost. The simulation of a candidate model
is the computationally most expensive step of the pro-
cess of model induction. Therefore, the computational
cost is proportional to the number of evaluations (and
the number of simulations per evaluation) needed for
each model during the parameter estimation task. Our
method requires exhaustive enumeration and optimiza-
tion of a number of candidate model structures defined by
entity/process templates organized in multiple-level hier-
archies of alternatives within a library of domain knowl-
edge. Subsequently, a combinatorial explosion is possible
if the problem is not well constrained. This is exactly why
the process-based modeling approach includes the facility
for imposing constraints on the space of possible model
structures by allowing for the definition of an incomplete
model.

Conclusion
The area of computational biology lacks a unifiedmethod-
ology for modeling dynamical systems that would include

a formalism for representing complex dynamics in a
manner easily understandable to biologists and modeling
experts. In this paper, we advocate the use of process-
based modeling for this purpose. It allows for understand-
able description of a space of candidate model structures
for a given modeling task. It allows for both determinis-
tic and stochastic interpretation of process-based models.
Also, it allows for automated induction of models from
data and knowledge.
In order to bridge the gap between the existing and

commonly used tools for modeling the dynamics of bio-
logical systems and the machine learning approaches to
computational scientific discovery, we have extended the
scope of process-based modeling approaches, specifically
ProBMoT, to include stochastic models. As an interme-
diate representation, our ProBMoTs formalism includes
the finer, more intuitive and easier to comprehend rep-
resentation of reaction equations, which should increase
the ease of use of process-based modeling in biology.
This finer-grained representation of processes is a feature
that broadens the possibilities of interpretation, mainly
in the direction of capturing the inherent stochasticity of
dynamical systems in biology.
Through the tasks considered in this work, we have

shown that our approach can deal with complex param-
eter and structure search spaces, in lightly constrained
settings, with synthetically generated tasks and in less
constrained real world problems. We have thus demon-
strated the potential of our approach for automated dis-
covery of novel scientific knowledge in domains that
require stochastic modeling of dynamical systems. Our
results also point at an array of possibilities for further
evaluation and improvement.
The presented extension of the process-based formal-

ism integrates reaction equations as a proxy that allows
for multiple interpretations of the process-based models.
However, we can continue this initial step by integrat-
ing other higher-level formalisms. Combining rule-based
modeling languages with the process templates from the
process-based modeling formalism can be considered as a
first direction for further work. The introduction of rule-
based constraints would allow for automated modeling of
more complex systems.
Another direction for further work stems naturally from

the formulation of the modeling task as a combinato-
rial search problem. It concerns the implementation of
incomplete, heuristics-based search strategies over the
space of candidate models. Although a comparative eval-
uation with the method using exhaustive search is needed
to establish its utility, this extension will scale-up our
approach towards applications to large-scale modeling
problems.
Other factors might also contribute to the overall suc-

cess of our approach, e.g., the choice of a parameter
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estimation method and a method for simulation. Exist-
ing literature offers comparisons of the performance of
different parameter estimation methods on single model
structures for modeling tasks from the domain of sys-
tems biology (both deterministic and stochastic) [49, 50].
A comparison of the performance of different parameter
estimation methods has also been performed in the con-
text of deterministic process-based modeling of aquatic
ecosystems [40]. The conclusions from these studies are
a good starting point to investigate their performance
in the context of stochastic process-based modeling
tasks.
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Endnotes
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30. Čerepnalkoski D. Process-based models of dynamical systems:
representation and induction. PhD thesis, Jožef Stefan International
Postgraduate School, Ljubljana, Slovenia. 2013.

31. Džeroski S, Todorovski L. Modeling the dynamics of biological networks
from time course data In: Choi S, editor. Systems Biology for Signaling
Networks. Berlin Heidelberg: Springer; 2010. p. 275–94.

32. Tanevski J, Todorovski L, Kalaidzidis Y, Dzeroski S. Domain-specific
model selection for structural identification of the rab5-rab7 dynamics in
endocytosis. BMC Syst Biol. 2015;9(1):31.

33. Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional
regulators. Nature. 2000;403:335–8.

34. Sanft KR, Gillespie DT, Petzold LR. Legitimacy of the stochastic
michaelis-menten approximation. IET Syst Biol. 2011;5(1):58–69.

35. Gillespie DT. A rigorous derivation of the chemical master equation.
Physica A Stat Mech Appl. 1992;188(1–3):404–25.

36. Gillespie DT. The chemical langevin equation. J Chem Phys. 2000;113(1):
297–306.

37. Rice JA. Mathematical Statistics and Data Analysis. Boston: Cengage
Learning; 2006.

38. Todorovski L, Džeroski S. Integrating domain knowledge in equation
discovery In: Džeroski S, Todorovski L, editors. Computational Discovery
of Scientific Knowledge. Berlin Heidelberg: Springer; 2007. p. 69–97.

39. Bridewell W, Langley P. Two kinds of knowledge in scientific discovery.
Top Cogn Sci. 2010;2(1):36–52.
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