5 research outputs found

    EM-based Enhancement of the Wiener Pilot-aided Channel Estimation in MIMO-OFDM Systems

    Get PDF
    Publication in the conference proceedings of EUSIPCO, Florence, Italy, 200

    Implementation of LS, MMSE and SAGE Channel Estimators for Mobile MIMO-OFDM

    Get PDF
    The use of decision directed (DD) channel estimation in a multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) downlink receiver is studied in this paper. The 3GPP long term evolution (LTE) based pilot structure is used as a benchmark. The space-alternating generalized expectation-maximization (SAGE) algorithm is used to improve the performance from that of the pilot symbol based least-squares (LS) channel estimator. The DD channel estimation improves the performance with high user velocities, where the pilot symbol density is not sufficient. Minimum mean square error (MMSE) filtering can also be used in estimating the channel in between pilot symbols. The DD channel estimation can be used to reduce the pilot overhead without any performance degradation by transmitting data instead of pilot symbols. The pilot overhead is reduced to a third of the LTE pilot overhead, obtaining a ten percent increase in throughput. The pilot based LS, MMSE and the SAGE channel estimators are implemented and the performance-complexity trade-offs are studied

    Channel Fading in Mobile Broadband Systems: Challenges and Opportunities

    Full text link
    High-speed data signals transmitted over mobile broadband channels are seriously distorted by both time-varying effect and frequency-selective fading (FSF). These distortions introduce challenges since channel variances in both time-domain and frequency-domain form a two-dimensional channel matrix which is hard to estimate, but meanwhile provide opportunities for information security since all signals are directly encrypted by the channels which are adequately random over time, frequency and space. These challenges and opportunities are studied in this thesis as two parts. In the first part, we propose a novel time-varying channel estimation (TVCE) algorithm named piece-wise time-invariant approximation (PITIA) to estimate a typical type of mobile broadband channels - the high-speed train (HST) channels. PITIA customizes general time-varying channel models according to HST channels' specific features, and outperforms conventional TVCE algorithms by about 3-dB in terms of estimation error. In the second part, we propose the first physical-layer challenge-response authentication mechanism (PHY-CRAM) which uses the mobile broadband channels to prevent eavesdropping during authentication. Since pilots and reference signals are eliminated, eavesdroppers cannot demodulate credential information, while legitimate receivers use the channels' reciprocal property to cancel FSF. PITIA is evaluated by computer based simulations, and the effectiveness of PHY-CRAM is validated by prototyping and real-world experiments. Both pieces of works are built upon a unified system model and orthogonal frequency-division multiplexing (OFDM) modulation.Ph.D.College of Engineering and Computer ScienceUniversity of Michigan-Dearbornhttp://deepblue.lib.umich.edu/bitstream/2027.42/106584/1/Dissertation_Dan_Shan.pd

    Channel and frequency offset estimation schemes for multicarrier systems

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaO presente trabalho aborda o problema da estimação de canal e da estimação de desvio de frequência em sistemas OFDM com múltiplas configurações de antenas no transmissor e no receptor. Nesta tese é apresentado o estudo teórico sobre o impacto da densidade de pilotos no desempenho da estimação de canal em sistemas OFDM e são propostos diversos algoritmos para estimação de canal e estimação de desvio de frequência em sistemas OFDM com antenas únicas no transmissor e receptor, com diversidade de transmissão e MIMO. O estudo teórico culmina com a formulação analítica do erro quadrático médio de um estimador de canal genérico num sistema OFDM que utilize pilotos dedicados, distribuidos no quadro transmitido em padrões bi-dimensionais. A formulação genérica é concretizada para o estimador bi-dimensional LS-DFT, permitindo aferir da exactidão da formulação analítica quando comparada com os valores obtidos por simulação do sistema abordado. Os algoritmos de estimação investigados tiram partido da presença de pilotos dedicados presentes nos quadros transmitidos para estimar com precisão os parâmetros pretendidos. Pela sua baixa complexidade, estes algoritmos revelam-se especialmente adequados para implementação em terminais móveis com capacidade computacional e consumo limitados. O desempenho dos algoritmos propostos foi avaliado por meio de simulação do sistema utilizado, recorrendo a modelos aceites de caracterização do canal móvel multipercurso. A comparação do seu desempenho com algoritmos de referência permitir aferir da sua validade. ABSTRACT: The present work focus on the problem of channel estimation and frequency offset estimation in OFDM systems, with different antenna configurations at both the transmitter and the receiver. This thesis presents the theoretical study of the impact of the pilot density in the performance of the channel estimation in OFDM systems and proposes several channel and frequency offset algorithms for OFDM systems with single antenna at both transmitter and receiver, with transmitter diversity and MIMO. The theoretical study results in the analytical formulation of the mean square error of a generic channel estimator for an OFDM system using dedicated pilots, distributed in the transmitted frame in two-dimensional patterns. The generic formulation is implemented for the two-dimensional LS-DFT estimator to verify the accuracy of the analytical formulation when compared with the values obtained by simulation of the discussed system. The investigated estimation algorithms take advantage of the presence of dedicated pilots present in the transmitted frames to accurately estimate the required parameters. Due to its low complexity, these algorithms are especially suited for implementation in mobile terminals with limited processing power and consumption. The performance of the proposed algorithms was evaluated by simulation of the used system, using accepted multipath mobile channel models. The comparison of its performance with the one of reference algorithms measures its validity
    corecore