31 research outputs found

    A simple polynomial time algorithm to approximate the permanent within a simply exponential factor

    Full text link
    We present a simple randomized polynomial time algorithm to approximate the mixed discriminant of nn positive semidefinite n×nn \times n matrices within a factor 2O(n)2^{O(n)}. Consequently, the algorithm allows us to approximate in randomized polynomial time the permanent of a given n×nn \times n non-negative matrix within a factor 2O(n)2^{O(n)}. When applied to approximating the permanent, the algorithm turns out to be a simple modification of the well-known Godsil-Gutman estimator

    On the expressive power of planar perfect matching and permanents of bounded treewidth matrices

    Get PDF
    Valiant introduced some 25 years ago an algebraic model of computation along with the complexity classes VP and VNP, which can be viewed as analogues of the classical classes P and NP. They are defined using non-uniform sequences of arithmetic circuits and provides a framework to study the complexity for sequences of polynomials. Prominent examples of difficult (that is, VNP-complete) problems in this model includes the permanent and hamiltonian polynomials. While the permanent and hamiltonian polynomials in general are difficult to evaluate, there have been research on which special cases of these polynomials admits efficient evaluation. For instance, Barvinok has shown that if the underlying matrix has bounded rank, both the permanent and the hamiltonian polynomials can be evaluated in polynomial time, and thus are in VP. Courcelle, Makowsky and Rotics have shown that for matrices of bounded treewidth several difficult problems (including evaluating the permanent and hamiltonian polynomials) can be solved efficiently. An earlier result of this flavour is Kasteleyn's theorem which states that the sum of weights of perfect matchings of a planar graph can be computed in polynomial time, and thus is in VP also. For general graphs this problem is VNP-complete. In this paper we investigate the expressive power of the above results. We show that the permanent and hamiltonian polynomials for matrices of bounded treewidth both are equivalent to arithmetic formulas. Also, arithmetic weakly skew circuits are shown to be equivalent to the sum of weights of perfect matchings of planar graphs.Comment: 14 page

    On the number of matrices and a random matrix with prescribed row and column sums and 0-1 entries

    Get PDF
    We consider the set Sigma(R,C) of all mxn matrices having 0-1 entries and prescribed row sums R=(r_1, ..., r_m) and column sums C=(c_1, ..., c_n). We prove an asymptotic estimate for the cardinality |Sigma(R, C)| via the solution to a convex optimization problem. We show that if Sigma(R, C) is sufficiently large, then a random matrix D in Sigma(R, C) sampled from the uniform probability measure in Sigma(R,C) with high probability is close to a particular matrix Z=Z(R,C) that maximizes the sum of entropies of entries among all matrices with row sums R, column sums C and entries between 0 and 1. Similar results are obtained for 0-1 matrices with prescribed row and column sums and assigned zeros in some positions.Comment: 26 pages, proofs simplified, results strengthene

    Geometric versions of the 3-dimensional assignment problem under general norms

    Get PDF
    We discuss the computational complexity of special cases of the 3-dimensional (axial) assignment problem where the elements are points in a Cartesian space and where the cost coefficients are the perimeters of the corresponding triangles measured according to a certain norm. (All our results also carry over to the corresponding special cases of the 3-dimensional matching problem.) The minimization version is NP-hard for every norm, even if the underlying Cartesian space is 2-dimensional. The maximization version is polynomially solvable, if the dimension of the Cartesian space is fixed and if the considered norm has a polyhedral unit ball. If the dimension of the Cartesian space is part of the input, the maximization version is NP-hard for every LpL_p norm; in particular the problem is NP-hard for the Manhattan norm L1L_1 and the Maximum norm LL_{\infty} which both have polyhedral unit balls.Comment: 21 pages, 9 figure

    Maximum Scatter TSP in Doubling Metrics

    Full text link
    We study the problem of finding a tour of nn points in which every edge is long. More precisely, we wish to find a tour that visits every point exactly once, maximizing the length of the shortest edge in the tour. The problem is known as Maximum Scatter TSP, and was introduced by Arkin et al. (SODA 1997), motivated by applications in manufacturing and medical imaging. Arkin et al. gave a 0.50.5-approximation for the metric version of the problem and showed that this is the best possible ratio achievable in polynomial time (assuming PNPP \neq NP). Arkin et al. raised the question of whether a better approximation ratio can be obtained in the Euclidean plane. We answer this question in the affirmative in a more general setting, by giving a (1ϵ)(1-\epsilon)-approximation algorithm for dd-dimensional doubling metrics, with running time O~(n3+2O(KlogK))\tilde{O}\big(n^3 + 2^{O(K \log K)}\big), where K(13ϵ)dK \leq \left( \frac{13}{\epsilon} \right)^d. As a corollary we obtain (i) an efficient polynomial-time approximation scheme (EPTAS) for all constant dimensions dd, (ii) a polynomial-time approximation scheme (PTAS) for dimension d=loglogn/cd = \log\log{n}/c, for a sufficiently large constant cc, and (iii) a PTAS for constant dd and ϵ=Ω(1/loglogn)\epsilon = \Omega(1/\log\log{n}). Furthermore, we show the dependence on dd in our approximation scheme to be essentially optimal, unless Satisfiability can be solved in subexponential time
    corecore